
Computational Chemistry, 2019, 7, 121-142 
https://www.scirp.org/journal/cc 

ISSN Online: 2332-5984 
ISSN Print: 2332-5968 

 

DOI: 10.4236/cc.2019.74009  Oct. 22, 2019 121 Computational Chemistry 
 

 
 
 

Development of Predictive QSPR Model of the 
First Reduction Potential from a Series of 
Tetracyanoquinodimethane (TCNQ) Molecules 
by the DFT (Density Functional Theory) Method 

Fatogoma Diarrassouba1, Mawa Koné2, Kafoumba Bamba1*, Yafigui Traoré1,  
Mamadou Guy-Richard Koné1, Edja Florentin Assanvo1 

1Laboratoire de Thermodynamique et de Physico-chimie du Milieu, UFR-SFA, Université Nangui Abrogoua, Abidjan,  
Côte d’Ivoire 
2Laboratoire de Chimie Organique et des Substances Naturelles, UFR-SSMT, Université Félix Houphouët Boigny, Abidjan,  
Côte d’Ivoire 

 
 
 

Abstract 
In this work, which consisted to develop a predictive QSPR (Quantitative 
Structure-Property Relationship) model of the first reduction potential, we 
were particularly interested in a series of forty molecules. These molecules 
have constituted our database. Here, thirty molecules were used for the training 
set and ten molecules were used for the test set. For the calculation of the de-
scriptors, all molecules have been firstly optimized with a frequency calcula-
tion at B3LYP/6-31G(d,p) theory level. Using statistical analysis methods, a 
predictive QSPR (Quantitative Structure-Property Relationship) model of the 
first reduction potential dependent on electronic affinity (EA) only have been 
developed. The statistical and validation parameters derived from this model 
have been determined and found interesting. These different parameters and 
the realized statistical tests have revealed that this model is suitable for pre-
dicting the first reduction potential of future TCNQ (tetracyanoquinodime-
thane) of this same family belonging to its applicability domain with a 95% 
confidence level. 
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1. Introduction 
Conjugated simple organic molecules carrying both electron donors and accep-
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tors have recently attracted a lot of attention because of their various and inter-
esting properties. Non-linear optical properties [1], molecular electronic devices 
[2], artificial photosynthesis models [3] and solvatochromic effects [4] are among 
their potential applications. 

Intramolecular electron transfer processes are one of the main topics of cur-
rent interest in physic organic chemistry [5], particularly regarding tetracyano-
quinodimethane (TCNQ)-based charge transfer complexes. In fact, TCNQ is an 
organic electron acceptor with a high electron affinity [6] [7] [8]. This electron 
acceptor can react according to an oxidation-reduction process with electron 
donors to form charge transfer complexes that display electrical properties and 
various applications. Indeed, it has been used for the synthesis of a large number 
of charge transfer compounds that have been widely explored as molecular elec-
tronics building blocks [9] [10], non-linear optics [11] and organic semiconduc-
tors [12] [13]. Existing TCNQ molecules have generally exhibited exemplary re-
dox properties. Improving their properties and finding molecules with even bet-
ter properties is therefore a challenge for scientific research. However, in the syn-
thesis of these complexes, the objective of organic chemists is to synthesize ther-
modynamically stable radical species, which is not an easy task. Also, the two 
molecules constituting the charge transfer complex must have moderate donor 
and acceptor powers [14]. Under these conditions, the use of alternative me-
thods for experimentation becomes essential. Among these, QSPR (Quantitative 
Structure-Property Relationships) methods are of great interest and even rec-
ommended according to new regulations [15] [16]. They make it possible to de-
velop mathematical models linking physico-chemical properties with molecular 
structure. They either explain the origin of these properties or predict them for 
the molecules whose experimental data are not available. Quantum chemistry 
provides access to a large number of descriptors through its different methods. 

The objective of this work is to develop a predictive QSPR model of the first 
reduction potential from a series of TCNQ molecules using quantum descriptors, 
to explain and predict the first reduction potential of the future TCNQ mole-
cules of this same family belonging to its applicability domain. 

2. Computational Details 
2.1. Training Set and Test Set 

In the development of the predictive QSPR model of the first reduction potential, 
we considered a series of forty Tetracyanoquinodimethane derivatives codified 
TCNQ [17]-[23]. The choice of these molecules is due to the availability of their 
experimental first reduction potentials. These properties have been all deter-
mined by cyclic voltammetry in acetonitrile. These molecules have constituted 
our database. Thirty of which (75% of the database) were used for the training 
set and ten molecules (25% of the database) were used for the test set. Table 1 
presents these different molecules with their corresponding experimental first 
reduction potentials expressed in volts (V). 
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Table 1. Series of studied tetracyanoquinodimethane (TCNQ) molecules. 

Training set 

Code Molecule ( )1
expE V  Reference 

TCNQ_1 

 

+0.170 [18] 

TCNQ_2 

 

+0.110 [18] 

TCNQ_3 

 

+0.120 [18] 

TCNQ_4 

 

+0.012 [17] 

TCNQ_5 

 

−0.180 [17] 

TCNQ_6 

 

+0.130 [17] 
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Continued 

TCNQ_8 

 

−0.470 [17] 

TCNQ_9 

 

-0.090 [17] 

TCNQ_10 

 

+0.068 [17] 
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Continued 

TCNQ_16 

 

+0.200 [17] 

TCNQ_17 

 

−0.360 [17] 

TCNQ_18 

 

−0.370 [17] 

TCNQ_19 

 

−0.340 [17] 

TCNQ_20 

 

+0.290 [19] 

TCNQ_21 

 

+0.300 [21] 

TCNQ_22 

 

−0.010 [19] 
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Conrinued 

TCNQ_23 

 

+0.530 [19] 

TCNQ_24 

 

−0.010 [22] 

TCNQ_25 

 

+0.080 [17] 

TCNQ_26 

 

+0.210 [17] 

TCNQ_27 

 

−0.040 [17] 

TCNQ_28 

 

−0.570 [17] 

TCNQ_29 

 

−0.140 [17] 
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Conrinued 

TCNQ_30 

 

−0.026 [17] 

Test set 

TCNQ_31 

 

+0.260 [17] 

TCNQ_32 

 

+0.070 [19] 

TCNQ_33 

 

+0.410 [19] 

TCNQ_34 

 

+0.650 [19] 

TCNQ_35 

 

+0.120 [23] 

TCNQ_36 

 

+0.130 [17] 
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−0.440 [17] 
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Conrinued 

TCNQ_38 

 

+0.030 [17] 

TCNQ_39 

 

+0.260 [20] 

TCNQ_40 

 

−0.020 [22] 

2.2. Computational Theory Level and Softwares 

The GaussView 5.0 [24] software was used to represent the 3D structure and vi-
sualize the studied molecules. Then, the Gaussian 09 software [25] was used for 
optimization and frequency calculation (temperature 298.15 Kevin, pressure 1 
atmosphere, in vacuum). The theory level used is B3LYP/6-31G(d,p). As for 2D 
structures, they have been designed with ChemSketch [26]. The EXCEL software 
[27] was used for graphic representation. The XLSTAT software [28] was used 
for modeling and statistical tests. For the calculation of the observation levers, 
the Minitab 18 [29] software was used. 

2.3. Statistical Analysis 

To develop a QSPR model, a data analysis method is required. This method quan-
tifies the relationship between the studied property and the molecular structure 
(descriptors). There are several methods for the implementation of a model and 
the analysis of its statistical data. But the one we used in our study is Simple Li-
near Regression (SLR) (a single explanatory variable). Generally speaking, the eq-
uation of the simple regression is of the form: 

0 1Y a a X= +                            (1) 

with Y standing for the studied property, X represents the explanatory variable 
in correlation with the studied property and 0 1,a a  are the model regression con-
stants. 

The selection of descriptors is a crucial step in QSPR modeling. In this study, 
the selection of descriptors was based on two criteria described as follows: 
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 Criterion 1 
There must be a linear dependence relationship between the first reduction 

potential and the descriptors. Under these conditions we shall have 0.50R ≥  

[30] with R, the linear correlation coefficient of the line ( )exp iE f Descripteur= . 

 Criterion 2 
The descriptors must be independent from one another. To do this, the partial 

correlation coefficient ija  between the descriptors i and j must be less than 0.70 
( 0.70ija < ) [30]. For a multilinear regression, the coefficients R and ija  are ex-
pressed as follows: 

( ),

X Y

COV X Y
R

S S
=

⋅
                       (2) 

and 

( )
( )

,i i
ij

i

COV X X
a

Var X
=                       (3) 

The relationships (4), (5), (6) and (7) were used to calculate many statistical 
and validation parameters: 

( )2
,ESS i cal expY Y= −∑                     (4) 

( )2
,TSS i exp expY Y= −∑                     (5) 

( )2
, ,RSS i exp i calY Y= −∑                     (6) 

TSS ESS RSS= +                       (7) 

where TSS is total sum of squares, ESS stands for extended sum of squares and 
RSS is residual sum of squares. 
 Determination coefficient (R2) [31] 

The determination coefficient is given by the following relationship: 

( )
( )

2
, ,2

2
,

RSS1 1
TSS 

i exp i cal

i exp exp

Y Y
R

Y Y

−
= − = −

−

∑
∑

                   (8) 

with 

( )
( )

2
,

2
,

ESS
TSS

i cal exp

i exp exp

Y Y
R

Y Y

−
= =

−

∑
∑

                     (9) 

 Standard deviation (s) [32] 
It is an indicator of dispersion. It provides information on how the distribu-

tion of data is performed around the average. The closer its value is to 0, the bet-
ter the adjustment and the more reliable will be the prediction. 

( )2
, , RSS

1 1
i exp i calY Y

s
n p n p

−
= =

− − − −
∑                 (10) 

 Adjusted determination coefficient ( 2
adjustedR ) [33] 
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It allows to measure the robustness of a model unlike 2R . This coefficient is 
used in multiple regressions because it considers the number of descriptors pa-
rameters of the model. 

( ) ( ) ( )2 2
adjusted

Intercept InterceptRSS1 1 1
1 TSS 1

n n
R R

n p n p
− −

= − ⋅ = − ⋅ −
− − − −

     (11) 

 Fisher-Snedecor coefficient (F) [34] 
It allows to test the global significance of linear regression. A globally signifi-

cant regression equation contains at least a relevant explanatory variable to ex-
plain the dependent variable. The Fisher-Snedecor coefficient is related to the 
determination coefficient by the following relationship: 

2

2

1 ESS 1
RSS 1

n p n p RF
p p R

− − − −
= ⋅ = ⋅

−
                (12) 

 Kubinyi Criterion (FIT) [35] 
It measures the size or robustness of the model. The smaller the FIT, the more 

robust the model is, meaning that the model has more variables. 

( )

2

2 2

1FIT
1

n p R
Rn p

− −
= ⋅

−+
                      (13) 

 Cross-validation coefficient ( 2
LOOQ ) [36] 

It measures the accuracy of the prediction on the data of the training set 

( )

2
, ,2

LOO 2
,

( ) PRESS1 1
TSS

i exp i pred

i exp exp

y y
Q

y y

−
= − = −

−

∑
∑

              (14) 

 Cross-validation criteria (PRESS) [36] 
As the sum of the quadratic prediction errors, PRESS (Prediction Sum of Squares) 

is defined by the relationship: 

( )2
, ,PRESS i exp i predy y= −∑                     (15) 

This criterion is used to select models with good predictive power (we always 
look for the smallest PRESS). A Standard Deviation of Error of Prediction (SDEP) 
is calculated from PRESS: 

( )2
, , PRESSSDEP i exp i predy y

n n

−
= =

∑
              (16) 

In these expressions, n is the number of molecules in the training set, p is the 
number of explanatory variables. ,i expy  and ,i predy  are respectively the expe-
rimental and predicted values of property for molecule i and expy  is the average 
value of the property for the training set. 
 Todeschini’s parameter ( 2c

PR ) [37] 
2c
PR  is the corrected form of P.P. Roy’s parameter noted 2

PR  [38]. It allows 
to know if the model is due to chance correlations or not. If this parameter is 
greater than 0.50, the model is not due to a chance correlations. It is defined 
as:  
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2 2 2c
P rR R R R= −                      (17) 

with 2
rR , the average value of 2

riR  of the models obtained with the randomized 
property. 
 External validation coefficient ( 2

extQ ) [39] 
It measures the accuracy of the prediction on the test set data. 

( )2 PRESS test
1

TSSext
ext

nQ
n

= −                      (18) 

here, next refers to the number of test set compounds. 
 Parameter (RMSEP) [39] 

External predictive ability of QSPR model may further be determined by the 
Root Mean Square Error in Prediction given by: 

( ) ( )( )2

test test
RMSEP

exp pred

ext

y y

n

−
=

∑
                  (19) 

 Roy K. and al. parameters ( 2
mr  and 2

mr∆ ) [40] 
For the acceptable prediction, the value of 2

mr∆  should preferably be lower 
than 0.20 when the value of  2

mr  is more than 0.50. 
2 2

2

2
m m

m
r r

r
′+

=                            (20) 

2 2 2
m m mr r r′∆ = −                           (21) 

here 

( )2 2 2 2
01mr r r r= − −                       (22) 

and 

( )2 2 2 2
01mr r r r′ ′= − −                     (23) 

The parameters 2r  and 2
0r  are the determination coefficients between the 

observed and predicted values of the compounds (training set or test set) with 
and without intercept, respectively. The parameter 2

0r′  bears the same meaning 
but uses the reversed axes. 
 External validation criteria or “Tropsha’s criteria” [36] [41] 

There are five such criteria: 
 Criterion 1: 2 0.70extR >  
 Criterion 2: 2 0.60extQ >  

 Criterion 3: 
2 2

0

2 0.1ext

ext

R R

R

−
<  and 0.85 1.15k< <  

 Criterion 4: 
2 2

0

2 0.1ext

ext

R R

R

′−
<  and 0.85 1.15k ′< <  

 Criterion 5: 2 2
0 0.3extR R− <  

where, 2
extR  stands for the determination coefficient of molecules for the test set; 
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2
0R  represents the determination coefficient of the regression between predicted 

and experimental values for the test set without intercept; 2
0R′  is the determi-

nation coefficient of the regression between experimental and predicted values 
for the test set without intercept; k stands for the slope of the correlation line 
(values predicted according to the experimental values with intercept = 0) and 
k ′  is the slope of the correlation line (experimental values according to the pre-
dicted values with intercept = 0). Ouanlo Ouattara et al. [42] reported that if at 
least 3/5 of the Tropsha’s criteria are verified, the QSPR model developed is con-
sidered as a successful model in predicting of the studied property. 
 Lever (hii) [43] 

The lever is a kind of distance from the barycentre of the points in the space of 
the explanatory variables. It identifies observations that are abnormally far from 
others. For observation i 

( ) ( )
1T T 1, ,ii i ih x X X x i n
−

==                   (24) 

where xi is the line vector of the descriptors of compound i and X is the matrix 
of the model derived from the values of the descriptors of the training set. The 
index T refers to the transposed matrix/vector. The critical value of lever h* is, in  

general, set to 
( )3 1p

n
+

 [44], where n is the number of compounds in the  

training set and p is the number of model descriptors. If a compound has a resi-
dual and a lever that exceeds the critical value h* then this compound is consi-
dered outside the applicability domain of the developed model. 

2.4. Calculation of Molecular Descriptor 

The descriptor considered in this work is electronic affinity (EA). This descrip-
tor has been calculated according to Koopmans [45] approach: the electronic af-
finity is the opposite of LUMO energy. 

LUMOEA E= −                             (25) 

where LUMO is the Lowest Unoccupied Molecular Orbital. Table 2 reports the 
values of this descriptor for both the training set and the test set. 

2.5. Submission of the Descriptor to the Selection Criterion 1 

The calculated descriptor (electronic affinity) will be subject to selection crite-
rion 1 because it is the lone considered descriptor (Table 3). 

3. Resultats and Discussion 
3.1. QSPR Model 

The regression equation of the predictive QSPR (Quantitative Structure-Property 
Relationship) model of the first reduction potential dependent to electronic af-
finity (EA) is given below: 

1 2.5314 0.5708 EAtheoE = − + ∗  

https://doi.org/10.4236/cc.2019.74009


F. Diarrassouba et al. 
 

 

DOI: 10.4236/cc.2019.74009 133 Computational Chemistry 
 

Table 2. Descriptor values expressed in eV, at B3LYP/6-31G(d,p) theory level. 

Training set Test set 

CODE EA CODE EA CODE EA 

TCNQ_1 4.7196 TCNQ_16 4.7253 TCNQ_31 4.7153 

TCNQ_2 4.6219 TCNQ_17 3.8607 TCNQ_32 4.5776 

TCNQ_3 4.5302 TCNQ_18 3.8297 TCNQ_33 5.0778 

TCNQ_4 4.5376 TCNQ_19 3.8085 TCNQ_34 5.5402 

TCNQ_5 4.2251 TCNQ_20 4.9545 TCNQ_35 4.7109 

TCNQ_6 4.3299 TCNQ_21 5.0348 TCNQ_36 4.8048 

TCNQ_7 4.4298 TCNQ_22 4.3152 TCNQ_37 3.5692 

TCNQ_8 3.708 TCNQ_23 5.2544 TCNQ_38 4.5944 

TCNQ_9 4.438 TCNQ_24 4.4573 TCNQ_39 4.9333 

TCNQ_10 4.6023 TCNQ_25 4.8206 TCNQ_40 4.4605 

TCNQ_11 4.5517 TCNQ_26 4.8021 
  

TCNQ_12 4.4094 TCNQ_27 4.5060 
  

TCNQ_13 4.5582 TCNQ_28 3.3972 
  

TCNQ_14 4.5253 TCNQ_29 4.0640 
  

TCNQ_15 4.8269 TCNQ_30 4.4714 
  

 
Table 3. Submission of the descriptor to the selection criterion 1. 

Equation Coefficient of corrélation R  Descriptors is selected if 0.50R ≥  

( )1 EAexpE f=  0.9605 selected 

 
2 2

adjusted30; 0.9605; 0.9225; 0.9197; 0.0694;

333.3279; FIT 0.3469; -value 0.000; TSS 1.7407;
ESS 1.6058; 95%

n R R R s

F p
α

= = = = =

= = < =
= =

 

The positive sign of the coefficient of the EA in the regression equation of 
model shows that the first reduction potential increases with electronic affinity. 
There is therefore a direct correlation between the explanatory variable and the 
studied property. Examination of the above parameters shows that the correla-
tion coefficient is very high ( 0.9605R = ). This high value indicates that there is 
a strong correlation between the first reduction potential and the selected de-
scriptor. The determination coefficient 2 0.9225R =  shows that 92.25% of the 
experimental variance of the first reduction potential is explained by the model's 
descriptor alone. In addition, the standard deviation ( 0.0694s = ) tends towards 
0, indicating a good fit and high reliability of the prediction. The p-value is less 
than 0.0001 so 1 0.05α− =  (5% risk). It is therefore clear that the regression 
equation of the model is highly significant for predicting the first reduction po-
tential of the series of studied molecules. This global significance is confirmed by 
the very high Fischer value (F = 333.3279). Under these conditions, the only ex-
planatory variable (electronic affinity) of the regression equation is very relevant 
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to explain the studied property (first reduction potential). In addition, the expe-
rimental variance is TSS = 1.7407 when the theoretical variance due to the model 
is ESS = 1.6058. It is important to note that this relationship of dependence be-
tween the first reduction potential and electronic affinity has been corroborated 
by the work of Peter W. Kenny [46] who showed that the first reduction poten-
tial is a function of LUMO energy. He developed a predictive QSPR model de-
pendent only on LUMO energy calculated at HF/6-31G(d) theory level, from a 
series of sixteen analogous TCNQ molecules with statistical parameters ( 16n = ; 

2 0.969R = ; 436F = ; 0.04 Vs = ; 95%α = ). However, the internal and ex-
ternal validations of this model have not been studied. It is also important to 
note that a QSPR (Quantitative Structure-Property Relationship) model can be 
obtained in a hazardous way. Therefore, one must always make sure of its stabil-
ity. To do this, both internal and external validations methods are performed. 

3.2. Internal Validation of the Model 

For internal validation, the Leave-One-Out (LOO) procedure and the property 
of the randomization test have been used. 
 Leave-One-Out procedure 

Table 4 indicates that the value of 2
LOO 0.9136Q = . The model is therefore 

excellent as seen 2
LOO 0.90Q >  [47]. In addition, 91.36 % of the molecules in the 

training set have their redox potentials predicted by this model. With regard to 
the molecules of the training set, this model therefore has a high predictive 
power. This result shows that model is not very sensitive to this operation of set-
ting apart a molecule and putting it back into the training set (Leave-One-Out 

procedure). This justifies the stability of this model. For ( )2 LOOmr , its value is 

greater than 0.50 when that of ( )2 LOOmr∆  is less than 0.20. Consequently, for 
the prediction of the redox potential, the model is acceptable. Moreover, to en-
sure that the model is not due to chance correlations, the Y-randomization test 
of the property has been realized. A circular permutation of the property has 
been made (29 iterations). 
 Y-randomization test 

The average values of the Y-randomization parameters are shown in Table 5. 
Table 5 shows that the average value of 2

rR  tends to 0 ( 2 0.0600rR = ), show-
ing that the equation of the regression line only determines 6.00% of the point 
distribution (redox potential). In addition, there is scatter around the regression 
line confirmed by a high standard deviation ( 0.2415rs = ). The very low value of 
the statistic rF  shows that the equation of the model obtained with the rando-
mized property is not significant. As for Todeschini’s parameter 2c

PR , its value is 
greater than 0.50 ( 2 0.50c

PR > ). This confirms that the established model is not 
due to chance correlations. 

3.3. External Validation of the Model 

The external validation only concerns the molecules of the test set. Table 6 re-
ports the statistical parameters of the external validation of the model. 
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Table 4. Statistical parameters of the LOO internal validation of the model. 

n 2
LOOQ  ( )2 LOOmr  ( )2 LOOmr∆  PRESS SDEP 

30 0.9136 0.9136 0.0000 0.1504 0.0708 

 
Table 5. Mean values of the randomization parameters. 

Randomized parameter 2
rR  rs  rF  2c

PR  

Average value 0.0600 0.2415 1.9987 0.8920 

 
Table 6. Statistical parameters of the external validation of the model. 

extn  2
extR  2

extQ  2
0R  2

0R′  ( )2 testmr  ( )2 testmr∆  RMSEP 

10 0.9617 0.9504 0.9613 0.9617 0.9521 0.0096 0.0536 

 
From the analysis of the data in Table 6, it appears that the model has a very 

high predictive power because 2 0.9504extQ = . This shows that, 95.04% of mole-
cules of the test set have their redox potentials predicted by the model. Also, 
96.17 % of the experimental variance of the first reduction potential is explained 
by the descriptor model. For ( )2 testmr , its value is greater than 0.50 while that of 

( )2 testmr∆  is less than 0.2. Thus, this model is acceptable for the prediction of 
the redox potential of the test set molecules. In addition, the five (05) criteria of 
external validation (Tropsha’s criteria) have been verified. 

Verification of Tropsha’s criteria 
Criterion 1: 2 0.9617 0.70extR = >  
Criterion 2: 2 0.9504 0.60extQ = >  

Criterion 3: 
2 2

0

2 0.0004 0.1ext

ext

R R

R

−
= <  and 0.9905k =  avec 0.85 1.15k< <  

Criterion 4: 
2 2

0

2 0.0000 0.1ext

ext

R R

R

′−
= <  and 0.9797k ′ =  avec  

0.85 1.15k ′< <  
Criterion 5: 2 2

0 0.0004 0.3extR R− = <  
At this level, we see that all five (05) Tropsha criteria are verified. As a result, 

the developed model is very efficient in predicting the first reduction potential of 
the series of studies molecules. 

3.4. Correlation between the Predicted Values by the Model and 
the Experimental Values 

In Figure 1, all points tend to approach the regression line. This figure therefore 
shows a strong linear correlation between the predicted values of the first reduc-
tion potential by model and the experimental values. As for Figure 2, it shows 
that the predicted values by the model and the experimental values evolve in a 
similar way, particularly for the test set. Thus, these graphs confirm that the 
model is validated and is very efficient in predicting the redox potential. This re-
flects the adequacy of the theory level used to develop this model. 
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Figure 1. 1 1

exp-theoE E  scatter diagram of the model. 

 

 
Figure 2. Similarity between model-predicted values and experimental values. 

3.5. Model Normality Tests 

 Shapiro-Wilk’s test [48] 
The data in Table 7 shows that the calculated p-value is greater than 1 0.05α− =  

(5% threshold). Thus, the theoretical values of the first reduction potential ob-
tained from the model follow a normal distribution law. This normal distribu-
tion is confirmed by the distribution of the point cloud according to the first bi-
sector in Figure 3. 
 Durbin-Watson’s test [49] 

The values in Table 8 show that the calculated p-value is greater than 
1 0.05α− =  (5% threshold). It is therefore clear that the residues are not auto-
correlated (zero correlation). Under these conditions, these residues do not con-
tain information that can influence the model’s prediction of the first reduction 
potential. This interpretation is confirmed by the random distribution of the 
point cloud in Figure 4. 
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Table 7. Values of the parameters of Shapiro-Wilk’s test. 

Shapiro-Wilk’s parameter (W) p-value 1 α−  

0.9539 0.1036 0.05 

 
Table 8. Values of the parameters of Durbin-Watson’s test. 

Durbin-Watson’s parameter (d) p-value 1 α−  

1.8705 0.3402 0.05 

 

 
Figure 3. P-P plot ( 1

theoE ) graph of the model. 

 

 

Figure 4. Normalized residue = ( )1
theof E  graph of the model. 

3.6. Applicability Domain (AD) of the Model 

The Applicability Domain (AD) has been determined by analyzing Williams’s di-
agram of Figure 5. 
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Figure 5. Williams diagram of the model. 

 
The examination of the Williams diagram shows that for training and test set, 

all observations have their standardized residuals between ±3 standard deviation 
units (±3σ) [50]. This justifies the absence of outliers. The choice “3 units of 
standard deviation” was made because our data follow a normal distribution law. 
Indeed, for leverage effect, a value of 3 is commonly used as a limit value for ac-
cepting predictions because the points between ±3 standard deviation units cov-
er on average 99% of the data that follow a normal distribution law [51]. With 
regard to the levers of the training set, except for the observation TCNQ_28, all 
the others have their levers below the threshold value (h* = 0.2000). In the case of 
the test set, it is observation TCNQ_34, which has its lever above the critical 
value. However, the value of a lever above the critical value does not always in-
dicate an outlier for the developed model. Compounds of training set with levers 
above the threshold value with low residues stabilize the model and increase its 
accuracy. They are called “good influential points”. On the other hand, com-
pounds with hii greater than the critical value h* with large residues are called 
“bad influencing points” [51]. As a result, our elaborate QSPR (Quantitative 
Structure-Property Relationship) model does not show any evidence of aberrant 
observation of molecules in either set. The molecule TCNQ_28 is a “good influ-
ence point”. The results of the external validation showed that the model is suit-
able for predicting future redox potentials of TCNQ of this same family belong-
ing to its applicability domain. 

4. Conclusion 

The objective of this study was to develop a predictive QSPR (Quantitative Struc- 
ture-Property Relationship) model linking the first reduction potential from a 
series of tetracyanoquinodimethane molecules analogous to quantum descrip-
tors from the conceptual density functional theory. A predictive QSPR model 
dependent to electronic affinity has been developed. The determination coeffi-
cient 2 0.9225R =  of this model shows that 92.25% of the experimental va-
riance of the first reduction potential is explained by the model’s descriptor 
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alone. The Fisher coefficient of this model is very high ( 333.3279F = ) indicat-
ing that the regression equation is highly significant. The standard deviations 
( 0.0694s = ) are well below 0.50 indicating a good fit and high reliability of the 
prediction. Regarding the parameters of the internal and external validations, 
they revealed that the model is validated and is assumed to predict efficiently the 
first reduction potential. The cross-validation coefficient 2

LOO 0.9136Q =  indi-
cates that 91.36% of molecules of the training set have their predicted first re-
duction potential. Regarding the external validation coefficient, 2 0.9504extQ = , 
it shows that 95.04% of the test set molecules have their predicted first reduction 
potentials. Thus, to search for new tetracyanoquinodimethane (TCNQ) accep-
tors of this same family with the desired first reduction potentials, one can play 
on electronic affinity. 
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