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Abstract 
A combinatorial method based on the determination of the averaged weight 
of permutations controlling the chirality/achirality fittingness of 2n substitu-
tion sites of the monocyclic cycloalkane allows to obtain generalized func-
tional equations for direct enumeration of enantiomers pairs and achiral ske-
letons of any derivatives of monocyclic cycloalkanes having heteromorphic 
alkyl substituents with the distinct length k with the empirical formula 

( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
, wherein at least two alkyl groups 

2 1k k kR C H
α α α +=  of the distinct size ( )1kα α ζ≤ ≤  each. mα  is the number of 

alkyl radicals kR
α

 of the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 veri-

fying the relation 0
1

2m m n
ζ

α
α =

+ =∑ . The integer sequences of enantiomer 

pairs and achiral skeletons are given for substituted derivatives of monocyclic 
cycloalkane for n = 3, 4 and k = 3, 4, 5. The composite stereoisomerism of this 
particular compound is also highlighted. 
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1. Introduction 

From the 1800s to 1870, the enumeration of isomers in chemistry consisted of a 
manual enumeration based on the so-called “draw and count” method which 
consists of drawing and counting all the possible molecular structures of a given 
organic compound in two dimensions or a plan. This exhausting exercise used to 
expose certain risks of repetition and/or omission of structures, especially for 
large molecules [1]. 

Chemists sorted out these difficulties of enumeration of chemical structures 
by developing methods and models of enumeration using not only mathematical 
theories (group theory, graph theory, etc.) but also more and more information 
technology tools (computers, softwares, etc.). This allowed to first generate sev-
eral methods of enumeration of the isomers of constitution or function [2] [3] 
[4] [5] [6] and in a second step of the enumeration of isomers of substitution 
then the elaboration of the direct formulas of quantitative determination ste-
reoisomers [7]-[16]. Concretely, the computation of the number of stereoiso-
mers of the homopolysubstituted and heteropolysubstituted monocyclic cycloal-
kane has been the subject of several studies [17]-[22]. Nemba et al. have dealt in 
this dynamic with the problem of enumeration of substituted monocycloalkanes 
with homomorphic alkyl substituents [23] and Emadak et al. have enumerated 
the enumeration of substituted monocyclic cycloalkanes having sterically hete-
romorphic alkyl substituents of identical k order [24]. 

In this work, we are interested in determining the number of enantiomeric 
pairs and achiral skeletons of cycloalkanes with heteromorphic alkyl substituents 
of distinct order k. To simplify the language, we will speak of heteropolyalkyla-
tion of monocyclic cycloalkane with alkyl radicals of distinct k size. Beyond the 
direct formulas of computation established, this work highlights, on the one 
hand, a composite stereoisomerism due to the intrinsic chirality of the alkyl trees 
and to the extrinsic chirality induced by their positioning or placement on the 
monocycloalkane, on the other hand, the total number of different stereoisomers 
increases correlatively with the number of chiral centers present in the molecular 
graph and finally the concepts of pseudochirality, pseudosymmetry and enan-
tiomeric mirror in the molecules of this family of saturated hydrocarbon com-
pounds is also elucidated. 

2. Definitions and Mathematical Formulation 

2.1. Stereograph Composition of kGγ  

Let us consider the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
, the empirical  

formula of the heteropolyalkylated monocyclic cycloalkane having heteromorphous 
alkyl substituents including at least two alkyl groups noted 2 1k k kR C H

α α α += , hav-
ing the distinct order, size or length kα , with (1 α ζ≤ ≤ ). mα  is the number  

of alkyl radicals kR
α

 of the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 where 
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0
1

2m m n
ζ

α
α =

+ =∑ . 

The molecular composite stereograph kG
α

 of the system 

( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 

is obtained by connecting the roots of the graphs of the distinct planted steric 
trees kR

α
 to the sites or positions of substitution of the stereograph G of the 

parent molecule of the monocyclic cycloalkane 2n nC H  described in our pre-
vious work [24]. The mathematical and graphical interpretations of this compo-
sition of the graph G and the graphs kR

α
 to obtain kG

α
 are given respectively 

by the relation (1) and Figure 1.  

( ) ( ) ( ) ( )0 1 1
1k n m k k kk m m m

G G R C H R R R
α α ζα α ζ

α ζ≤ ≤= =  
       (1) 

kG
α

 is the stereograph of a monocyclic cycloalkane heteropolyalkylated having 

alkyl radicals kR
α

 of distinct size k. The approach used to enumerate stereoi-

somers of the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 is to first determine  

the number of heteromorphic combinations of distinct alkyl radicals of orders 
kα , with (1 α ζ≤ ≤ ), and then to carry out the product of the latter by the re-
sults of the enumeration of the stereoisomers of the homopolysubstituted and/or 
heteropolysubstituted monocyclic cycloalkane obtained in our previous work 
[21] [22] [25]. 

2.2. Calculation of the Number of Combinations of  
Heteromorphous Alkyl Radicals of Distinct Size k  

According to graph theory, any alkyl radical 2 1k kC H +  is equivalent to a planted 
steric tree which may have one or more isomers or stereoisomers including the 
chiral and achiral forms. sk and pk respectively give the total number and the num-
ber of steric trees planted of order k. We recall that the generating functions which 
give these numbers were established by Robinson et al. [26] in polynomials’  
series: ( ) k

k
k

s x s x= ∑  and ( ) k
k

k
p x p x= ∑  for 0 14k≤ ≤ . Values of sk, pk and 

sk-pk for 0 18k≤ ≤  are computed and compiled in Table 1. 
Graphs of planted steric trees ( 2 1k kC H + ) can be combined in three sets whose  

 

 
Figure 1. Composition of graph G with distinct planted heteromorphous trees. 
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Table 1. Value of sk, pk, and sk-pk for k ≤ 18. 

k sk pk sk-pk 

0 1 1 0 

1 1 1 0 

2 1 1 0 

3 2 2 0 

4 5 3 2 

5 11 5 6 

6 28 8 20 

7 74 14 60 

8 199 23 176 

9 551 41 510 

10 1533 69 1464 

11 4436 122 4314 

12 12,832 208 12,624 

13 37,496 370 37,126 

14 110,500 636 109,864 

15 327,420 1134 326,286 

16 979,819 1963 977,856 

17 2,944,873 3505 2,941,368 

18 8,896,515 6099 8,890,416 

 
elements are equivalent to stereoisomers of sterically distinct alkyl radicals, 
namely: 
- Ea+c is the set of chiral and achiral trees of cardinality sk. Elements of Ea+c are 

pairs of enantiomers and achiral skeletons. 
- Ea is the set of achiral trees of cardinality pk. Elements of Ea are achiral skele-

tons. 
- Ec is the set pairs enantiomers of cardinality sk-pk. 

From these definitions, we can write the following relations: 

, c a c a
c a k a k

c a

E E E
E s E p

E E φ
+

+

= ∪
= = ⇒  ∩ =

               (2) 

Considering (2), we have:  

c a c a c c a aE E E E E E+ += + ⇒ = −                 (3) 

And consequently c k kE s p= −                    (4) 

Table 2 gives us the graphic representation of some distinct sterical trees of 
size k identified by letters, 1 5k≤ ≤ . 

Note that a pair of enantiomers is represented by the same letter whose two 
stereoisomers are differentiated by the apostrophe. 
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Table 2. Graphical representation of some planted trees identified by letters of the alpha-
bet. 

Size k Alkyl radicals or planted trees 

1  
A 

2 
 

A 

3 

 
A            B 

4 

 
A       B            C              D            D’ 

5 

 
A          B             C           D            E 

 
F            F’            G            G’ 

 
H              H’ 

 
Before calculating the numbers of heteromorphic combinations of distinct al-

kyl radicals of different order k, we first define the different sets of alkyl radicals 
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of distinct orders kα , with (1 α ζ≤ ≤ ). kIR
α

 is a set constituted of chiral and 
achiral alkyl radicals having kα  carbons. Considering Table 2 illustrating the 
alkyl radicals of order 1 to 5 below, and assigning kα  as an index under each 
letter corresponding to an alkyl radical having kα  carbons, one can set up the 
following sets: 

{ }
1 1 1kIR IR A= =  

{ }
2 2 2kIR IR A= =  

{ }
3 3 3 3,kIR IR A B= =  

{ }
4 4 4 4 4 4 4, , , ,kIR IR A B C D D′= =  

{ }
5 5 5 5 5 5 5 5 5 5, , , , , , , , ,kIR IR A B C D E E F F G G′ ′ ′= =  

We can generalize all these sets as follows:  

{ }, , , , , , ,kIR A B C D D Z Z
α α α α α α α α′ ′=  . 

- a
kIR
α

 designates a set formed of alkyl radicals only achiral and having the 
same order kα . 

Example: { }1 1
aIR A= , { }2 2

aIR A= , { }3 33 ,a AIR B= , { }4 44 4, ,a AIR B C= , 
{ }5 55 5 5 5, , , ,a A B C DIR E= ,   

- c
kIR
α

 means a group consisting of only chiral alkyl radicals and having the 
same order kα . 

Example: { }5 54 ,c DI DR = ′ , { }5 55 5 5 5 5, , , , ,c F F G HIR G H′ ′= ′ ,   
- k kC IR sard

α α
= , a

k kpd IRCar
α α
=  and c

k k kC IR sa d pr
α α α
= − . 

- A group of substituents or alkyl radicals refers in this chapter to a combina-
tion of at least two different substituent types selected from at least two sets 
of alkyl radicals of order kα  different and that composes a substitution. 

Example: Heteromorphous substituent groups A1A3 and A1B3 were formed by 
combining a radical of 1

aIR  and one of 3
aIR .  

- i is the number of substituent types or alkyl radicals that make up a group of 
substituents or else i-uples. iα  is the number of substituent or alkyl radical 

of order kα  chosen in kIR
α

, a
kIR
α

 or c
kIR
α

 such that ki s
αα ≤ , kp

α
 or 

k ks p
α α
−  and i iα

α
=∑ . 

Example: In the group of heteromorphic substituents A1A3B3, i3 = 2, i1 = 1 and 
i = 3; in heteromorphous substituent groups A1A3 and A1B3 we have i3 = 1, i1 = 1 
and i = 2. 

Following these definitions, we can roll out the algorithm of our method of 
counting the stereoisomers of the molecular system  

( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
  

as follows by first establishing the formula for calculating the number of substi-
tuting group or number of i-uples of letters identifying the alkyl radicals. 

The number of i-uples of distinct letters without repetition or groups of subs-
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tituents taken in kIR
α

, a
kIR
α

 or c
kIR
α

 (1 α ζ≤ ≤ ) in such a way that we have i 
types of heteromorphic substituents of different orders kα  and composing a subs-

titution is given respectively by 
1 2, , ,

k
k k k

s
N

i
α

α
α α

 
=   

 
∏



, 
1 2, , ,

ka
k k k

p
N

i
α

α
α α

 
=   

 
∏



 

and 
1 2, , ,

k kc
k k k

s p
N

i
α α

α
α α

− 
=   

 
∏



.  

The number of i-tuples mixed letter representing heteromorphic combina-
tions of chiral and achiral radicals of distinct orders is given by  

1 2 1 2 1 2 1 2, , , , , , , , , , , ,
a c a c
k k k k k k k k k k k kN N N N

α α α α

+ = − −
   

. 

Example:  
1) Let us determine the number of substituent groups having 2 types of subs-

tituents or even 2-ones of letters of which one is taken in 3IR  and in 4IR . 
We have { }3 3 3,IR A B= , { }4 44 4 4 4, , , ,A B C DIR D′= , 4 5s = , 4 3p = , 

4 4 2s p− = , 4 1i = , 3 2s = , 3 2p = , 3 3 0s p− = , 3 1i =  then  

3,4

2 5
10

1 1
N    

= ⋅ =   
   

  

which corresponds to the groups of substituents A3A4, A3B4, A3C4, A3D4, 3 4A D′ ,  

B3A4, B3B4, B3C4, B3D4, 3 4B D′ , 3,4 0cN = , 3,4

2 3
6

1 1
aN    
= ⋅ =   
   

 which corresponds  

to the groups of substituents A3A4, A3B4, A3C4, B3A4, B3B4, B3C4. 3,4 10 6 4a cN + = − =  
which corresponds to the group of substituents A3D4, 3 4A D′ , B3D4, 3 4B D′ .  

2) Let us determine the number of substituent groups having 4 substituent 
types or even 4-tuples of letters of which one is chosen from 1IR , one in 2IR  
and 2 in 3IR . 

We have { }1 1IR A= , { }2 2IR A=  and { }3 3 3,IR A B= ; 1 1s = , 1 1p = , 

1 1 0s p− = , 1 1i = , 2 1s = , 2 1p = , 2 2 0s p− = , 2 1i = , 3 2s = , 3 2p = , 

3 3 0s p− = , 3 2i = ; 1,2,3 1,2,3

1 1 2
1

1 1 2
aN N      

= = ⋅ ⋅ =     
     

 which is the group de 

substituents A1A2A3B3, 1,2,3 0cN = , 1,2,3 0a cN + = . 

3) Let us determine the number of substituent groups having 6 substituent 
types or even 6-tuples of letters, one of which is chosen from 1IR , one in 2IR , 
two in 3IR  and two in 4IR . 

We have { }1 1IR A= , { }2 2IR A= , { }3 3 3,IR A B=  and  

{ }4 44 4 4 4, , , ,A B C DIR D′= ;  

1 1s = , 1 1p = , 1 1 0s p− = , 1 1i = , 2 1s = , 2 1p = , 2 2 0s p− = , 2 1i = , 3 2s = , 

3 2p = , 3 3 0s p− = , 3 1i = , 4 5s = , 4 3p = , 4 4 2s p− = , 4 2i =  

We obtain 1,2,3,4

1 1 2 5
10

1 1 2 2
N        

= ⋅ ⋅ ⋅ =       
       

 which is the following groups of  

substituents: A1A2A3B3A4B4, A1A2A3B3A4C4, A1A2A3B3A4D4, 1 2 3 3 4 4A A A B A D′ , 
A1A2A3B3B4C4, A1A2A3B3B4D4, 1 2 3 3 4 4A A A B B D′ , A1A2A3B3C4D4, 1 2 3 3 4 4A A A B C D′ ,  
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1 2 3 3 4 4A A A B D D′ ; 1,2,3,4

1 1 2 3
3

1 1 2 2
aN        

= ⋅ ⋅ ⋅ =       
       

 is the groups of substituents:  

A1A2A3B3A4B4, A1A2A3B3A4C4, A1A2A3B3B4C4; 1,2,3,4 0cN = ; 1,2,3,4 10 3 7a cN + = − =  
which corresponds to the following groups of substituents: A1A2A3B3A4D4, 

1 2 3 3 4 4A A A B A D′ , A1A2A3B3B4D4, 1 2 3 3 4 4A A A B B D′ , A1A2A3B3C4D4, 1 2 3 3 4 4A A A B C D′ , 

1 2 3 3 4 4A A A B D D′ . 

2.3. Calculation of the Number of Chiral and Achiral Skeletons of  
the System ( ) ( ) ( )n m k k km m m

C H R R R
α ζα ζ

0 1 1
   

The “stereoisomeric” composition of the system  

( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
  

results from 1) the nature of alkyl radicals of distinct k-size (chiral or achiral tree) 
and 2) the manner of attaching or implanting them to the monocycle (chiral or 
achiral location on the monocycle). 

Unlike the polyalkylation of the monocyclic cycloalkane treated by Nemba et 
al. [23] where we had combinations of alkyl groups of the same order and same 
steric configuration that is to say homomorphous trees, we perform in this work 
combinations of heteromorphous alkyl trees having distinct configurations and 
same order k, chiral (c), achiral (a), or mixed (a + c) which will be planted on the 
monocyclic cycloalkane. In summary and at the risk of repeating ourselves, we 
observe that once again we have a composite stereoisomerism due to the intrin-
sic chirality of the alkylated trees and the extrinsic chirality induced by their po-
sition or placement on the monocyclic cycloalkane. 

The composite stereoisomerism resulting from the present exercise of hete-
ropolyalkylation of the monocyclic cycloalkane is summarized in Table 3 below. 

The different entities of Table 3 integrating the stereospecificity of the hete-
ropolyalkylated monocyclic cycloalkane skeletons are defined as follows: 

( )0 1 1; , , , , , ; , , , ,c
cA n m m m m k k kα ζ α ζ    : is the number of chiral stereoi-

somers composed from chiral alkyls (Chiral Radicals—Chiral Placements); 
( )0 1 1; , , , , , ; , , , ,c

aA n m m m m k k kα ζ α ζ    : is the number of achiral stereoi-
somers compounded from chiral alkyls (Chiral Radicals—Achiral Placements); 

 
Table 3. Composite stereoisomerism in heteropolyalkylated monocyclic cycloalkanes [23]. 

Chirality or achirality of the 
heteropolyalkylated  

monocycloalkane 
Combinations of steric configurations of alkyl radicals 

Characteristics of placements 
m1, …, mγ, …, msk alkyl trees 

All the radicals combined i to i are 
chiral 

All the radicals combined i to i are 
achiral 

All the radicals combined i to i are 
achiral and chiral 

Chiral placements 
Chiral radicals—Chiral placement 

( c
cA ) 

Achiral radicals—Chiral placement 
( a

cA ) 
Achiral and chiral radicals—Chiral 

placement ( a c
cA + ) 

Achiral placements 
Chiral radicals—Achiral placement 

( c
aA ) 

Achiral radicals—Achiral placement 
( a

aA ) 
Achiral and chiral radicals—Achiral 

placement ( a c
aA + ) 
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( )0 1 1; , , , , , ; , , , ,a
cA n m m m m k k kα ζ α ζ    : is the number of chiral stereoi-

somers composed of achiral alkyl trees (Achiral Radicals—Chiral Placements); 
( )0 1 1; , , , , , ; , , , ,a

aA n m m m m k k kα ζ α ζ    : is the number of achiral stereoi-
somers compounded from achiral alkyl trees (Achiral Radicals—Achiral Place-
ments); 

( )0 1 1; , , , , , ; , , , ,a c
cA n m m m m k k kα ζ α ζ
−

    : is the number of chiral ste-
reoisomers composed of achiral and chiral alkyl trees (Achiral and chiral radi-
cals—chiral Placements); 

( )0 1 1; , , , , , ; , , , ,a c
aA n m m m m k k kα ζ α ζ
−

    : is the number of achiral ste-
reoisomers composed of achiral and chiral alkyl trees (Achiral and chiral radi-
cals—Achiral Placements). 

The number of chiral and achiral stereoisomers of a monocyclic cycloalkane 
heteropolysubstituted by alkyl groups of distinct orders k is directly obtained 
from the product of the number of groups of substituents 

1 2, , ,
c
k k kN

α

, 
1 2, , ,
a
k k kN

α

, 

1 2, , ,
a c
k k kN

α

+


 by the number of chiral placements ( )0 1, , , , , ,cA n m m m mα ζ   
and achiral placements ( )0 1, , , , , ,aA n m m m mα ζ   of alkyl trees on the mo-
nocyclic cycloalkane of size n. 

For this purpose, we recall the results of our recurrence formulas established 
in previous papers [21] [22] [25] which gives respectively the numbers of chiral 
and achiral skeletons ( ),cA n m  and ( ),aA n m  of the system 2n n m mC H X−  and 
also ( )1 2, , , , , ,c i qA n m m m m   and ( )1 2, , , , , ,a i qA n m m m m   of the system 

1 i qn m m mC X Y Z  . We can therefore generate relations (5)-(10) which give an 
inventory of the different varieties of stereoisomers resulting from the hetero-
morphous polyalkylation of the monocyclic cycloalkane with alkyl trees of dis-
tinct order k.  

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

c
c

c
k k k c

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ= ×


   

 

            (5) 

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

c
a

c
k k k a

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ= ×


   

 

            (6) 

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

a
c

a
k k k c

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ= ×


   

 

            (7) 

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

a
a

a
k k k a

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ= ×


   

 

            (8) 

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

a c
c

a c
k k k c

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ

+

+= ×


   

 

           (9) 

( )
( )1 2

0 1 1

, , , 0 1

; , , , , , ; , , , ,

, , , , , ,

a c
a

a c
k k k a

A n m m m m k k k

N A n m m m m
α

α ζ α ζ

α ζ

+

+= ×


   

 

           (10) 

Therefore, the total number of chiral skeletons of the system  
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( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 

is given by: 

( )
( )
( )
( )
( )

1 , , , ,
0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1

; , , , , , ; , , , ,
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And the total number of achiral stereoisomers is: 
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1 , , , ,
0 1 1

0 1 1

; , , , , , ; , , , ,

; , , , , , ; , , , ,

k k k
a

a
a
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A n m m m m k k k

α ζ
α ζ α ζ

α ζ α ζ=

 

   

   

        (12) 

3. Some Examples of Application, Results and Graphical  
Representations 

3.1. Number of Stereoisomers of the Heteropolyalkylated  
Cyclopropane Having Two Heteromorphous Radicals Methyl  
(i1 = 1) and Ethyl (i2 = 1)  

We have { }1 1IR A= , { }2 2IR A= ; 1 1s = , 1 1p = , 1 1 0s p− = , 1 1i = , 2 1s = ,  

2 1p = , 2 2 0s p− = , 2 1i = ; 1,2 1,2

1 1
1

1 1
aN N    

= = ⋅ =   
   

 which corresponds to the 

group of substituents A1A2, 1,2 0cN = , 1,2 0a cN + = . 

The group of substituents A1A2 induces heteropolyalkylation of type 
0 1 23 m m mC H X Y  

where 1X A= , 2Y A=  or 2X A=  and 1Y A=  and 0 1 2 6m m m+ + = . The 
numbers of stereoisomers a

aA , a
cA , c

aA , c
cA , a c

aA +  and a c
cA +  are respectively 

obtained from the following formulas: 

1,2
a a
a aA N A= × , 1,2

a a
c cA N A= × , 1,2

c c
a aA N A= × , 1,2

c c
c cA N A= × , 

1,2
a c a c
a aA N A+ += ×  and 1,2

a c a c
c cA N A+ += × . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 23 m m mC H X Y  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠  are the same with 
those of the system 

1 2 3n m m mC X Y Z  which have been calculated in our previous 
paper for n = 3 [21] [22] [25]. They are recalled in the present paper. 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 23 m m mC H X Y  having 0 0m = , 1 0m ≠ , 2 0m ≠  are equivalent to 
those of the system 2n n m mC H X−  given in our previous paper for n = 3 [21] [22] 
[25]. 

Using all these data, the inventory of stereoisomers of the heteropolyalkylated 
cyclopropane having two distinct alkyl trees methyl ( 1 1i = ) and ethyl ( 2 1i = ) is 
summarized in Table 4. 
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Table 4. Number of stereoisomers of the heteropolyalkylated cyclopropane having two 
distinct alkyl trees methyl ( 1 1i = ) and ethyl ( 2 1i = ). 

m0 m1 m2 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 4 1 2 1 2 0 0 0 0 

1 2 3 2 4 2 4 0  0 0 

2 2 2 4 7 4 7 0 0 0 0 

0 1 5 1 0 1 0 0 0 0 0 

0 2 4 2 1 2 1 0 0 0 0 

0 3 3 2 1 2 1 0 0 0 0 

 
Some graphical representations:  
n = 3, m0 = 4, m1 = 1, m2 = 1:  

 

 
n = 3, m0 = 3, m1 = 2, m2 = 1:  

 

 

3.2. Number of Stereoisomers of Heteropolyalkylated  
Cyclobutane Having Two Heteromorphous Radicals Methyl  
(i1 = 1) and Ethyl (i2 = 1) 

We have { }1 1IR A= , { }2 2IR A= ; 1 1s = , 1 1p = , 1 1 0s p− = , 1 1i = , 2 1s = ,  

2 1p = , 2 2 0s p− = , 2 1i = ; 1,2 1,2

1 1
1

1 1
aN N    

= = ⋅ =   
   

 which corresponds to the 

group of substituents A1A2, 1,2 0cN = , 1,2 0a cN + = . 

The group of substituents A1A2 induces heteropolyalkylation of type 

0 1 24 m m mC H X Y  with 1X A= , 2Y A=  or 2X A= , 1Y A=  and 0 1 2 8m m m+ + = . 
The numbers of stereoisomers a

aA  a
cA , c

aA , c
cA , a c

aA +  and a c
cA +  are respec-

tively obtained from the following formulas: 

1,2
a a
a aA N A= × , 1,2

a a
c cA N A= × , 1,2

c c
a aA N A= × , 1,2

c c
c cA N A= × , 

1,2
a c a c
a aA N A+ += ×  and 1,2

a c a c
c cA N A+ += × . 
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The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 24 m m mC H X Y  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠  are the same with 
those of the system 

1 2 3n m m mC X Y Z  which have been calculated in our previous 
paper for n = 4 [21] [22] [25]. They are recalled and used in the present paper. 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 24 m m mC H X Y  having 0 0m = , 1 0m ≠ , 2 0m ≠  are equivalent to 
those of the system 2n n m mC H X−  given in our previous paper for n = 4 [21] [22] 
[25]. 

Using all these data, the inventory of stereoisomers of the heteropolyalkylated 
cyclobutane having two distinct alkyl trees methyl ( 1 1i = ) and ethyl ( 2 1i = ) is 
summarized in Table 5. 

Representation of some graphs: 
n = 4, m0 = 5, m1 = 2, m2 = 1:  

 

 

3.3. Number of Stereoisomers of Heteropolyalkylated  
Cyclopropane Having Two Heteromorphous Radicals Propyl  
(i3 = 1) and Butyl (i4 = 1) 

We have { }3 3 3,IR A B= , { }4 4 4 4 4 4, , , ,IR A B C D D′= , 4 5s = , 4 3p = ,  

4 4 2s p− = , 4 1i = , 3 2s = , 3 2p = , 3 3 0s p− = , 3 1i =  then  

3,4

2 5
10

1 1
N    

= ⋅ =   
   

 which corresponds to groups of substituents A3A4, A3B4, 

A3C4, A3D4, 3 4A D′ , B3A4, B3B4, B3C4, B3D4, 3 4B D′ , 3,4 0cN = , 3,4

2 3
6

1 1
aN    
= ⋅ =   
   

 

which corresponds to the groups of substituents A3A4, A3B4, A3C4, B3A4, B3B4, 
B3C4 ; 3,4 10 6 4a cN + = − =  which corresponds to the group of substituents A3D4, 

3 4A D′ , B3D4, 3 4B D′ . 
All groups of substituents give heteropolyalkylations of type 

0 1 23 m m mC H X Y  
such as 0 1 2 6m m m+ + = ; with the group de substituents A3B4 for example, we 
can make the assignment 3X A= , 4Y B=  or 4X B= , 3Y A= . Numbers of 
stereoisomers a

aA , a
cA , c

aA , c
cA , a c

aA +  and a c
cA +  are respectively obtained 

from the following formulas: 
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Table 5. Number of stereoisomers of heteropolyalkylated cyclobutane having two distinct 
alkyl trees methyl ( 1 1i = ) and ethyl ( 2 1i = ). 

m0 m1 m2 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

6 1 1 3 2 3 2 0 0 0 0 

5 2 1 5 8 5 8 0  0 0 

4 2 2 14 23 14 23 0 0 0 0 

4 3 1 7 14 7 14 0 0 0 0 

3 3 2 10 30 10 30 0 0 0 0 

2 3 3 10 30 10 30 0 0 0 0 

0 7 1 1 0 1 0 0 0 0 0 

0 6 2 4 1 4 1 0 0 0 0 

0 5 3 3 2 3 2 0 0 0 0 

0 4 4 7 3 7 3 0 0 0 0 

 

4
a a
a aA N A= × , 4

a a
c cA N A= × , 4

c c
a aA N A= × , 4

c c
c cA N A= × , 4

a c a c
a aA N A+ += ×  

and 4
a c a c
c cA N A+ += ×  with 3,4 6aN = , 3,4 0cN =  and 3,4 4a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 23 m m mC H X Y  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠  are the same with 
those of the system 

1 2 3n m m mC X Y Z  which have been calculated in our previous 
paper for n = 3 [21] [22] [25]. They are recalled in the present paper. 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 23 m m mC H X Y  having 0 0m = , 1 0m ≠ , 2 0m ≠  are equivalent to 
those of the system 2n n m mC H X−  given in our previous paper for n = 3 [21] [22] 
[25]. 

Using all these data, the inventory of stereoisomers of the heteropolyalkylated 
cyclopropane having two heteromorphous radicals propyl ( 3 1i = ) and butyl 
( 4 1i = ) is summarized in Table 6. 

Some graphical representations:  
n = 3, m0 = 4, m1 = 1, m2 = 1:  

 

 

https://doi.org/10.4236/cc.2019.73006


A. Emadak et al. 
 

 

DOI: 10.4236/cc.2019.73006 85 Computational Chemistry 
 

Table 6. Number of stereoisomers of heteropolyalkylated cyclopropane having two hete-
romorphous radicals propyl ( 3 1i = ) and butyl ( 4 1i = ). 

m0 m1 m2 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 4 1 2 6 36 0 0 4 8 

1 2 3 2 4 12 24 0 0 8 16 

2 2 2 4 7 24 42 0 0 16 28 

0 1 5 1 0 6 0 0 0 4 0 

0 2 4 2 1 12 6 0 0 8 4 

0 3 3 2 1 12 6 0 0 8 4 

3.4. Number of Stereoisomers of Heteropolyalkylated  
Cyclobutane Having Two Heteromorphous Radicals Propyl  
(i3 = 1) and Butyl (i4 = 1) 

We have { }3 3 3,IR A B= , { }4 4 4 4 4 4, , , ,IR A B C D D′= , 4 5s = , 4 3p = , 

4 4 2s p− = , 4 1i = , 3 2s = , 3 2p = , 3 3 0s p− = , 3 1i =  then  

3,4

2 5
10

1 1
N    

= ⋅ =   
   

 which corresponds to groups of substituents A3A4, A3B4, 

A3C4, A3D4, 3 4A D′ , B3A4, B3B4, B3C4, B3D4, 3 4B D′ , 3,4 0cN = , 3,4

2 3
6

1 1
aN    
= ⋅ =   
   

 

which corresponds to the group of substituents A3A4, A3B4, A3C4, B3A4, B3B4, 
B3C4. 3,4 10 6 4a cN + = − =  which corresponds to groups of substituents A3D4, 

3 4A D′ , B3D4, 3 4B D′ .  
The groups of substituents induce heteropolyalkylation of type 

0 1 24 m m mC H X Y
such as 0 1 2 8m m m+ + = , with the group de substituents A3B4 for example, we 
can make the assignment 3X A= , 4Y B=  or 4X B= , 3Y A= .  

The numbers of stereoisomers a
aA , a

cA , c
aA , c

cA , a c
aA +  and a c

cA +  are re-
spectively obtained from the following formulas: 

3,4
a a
a aA N A= × , 3,4

a a
c cA N A= × , 3,4

c c
a aA N A= × , 3,4

c c
c cA N A= × , 

3,4
a c a c
a aA N A+ += ×  and 3,4

a c a c
c cA N A+ += × ,  

with 3,4 6aN = , 3,4 0cN =  and 3,4 4a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 24 m m mC H X Y  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠  are the same with 
those of the system 

1 2 3n m m mC X Y Z  which have been calculated in our previous 
paper for n = 4 [21] [22] [25]. They are recalled and used in the present paper. 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 24 m m mC H X Y  having 0 0m = , 1 0m ≠ , 2 0m ≠  are equivalent to 
those of the system 2n n m mC H X−  given in our previous paper for n = 4 [21] [22] 
[25]. 

Using all these data, the inventory of stereoisomers of the heteropolyalkylated 
cyclobutane having two heteromorphous radicals propyl ( 3 1i = ) and butyl 
( 4 1i = ) is summarized in Table 7. 
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Table 7. Number of stereoisomers of heteropolyalkylated cyclobutane having two hete-
romorphous radicals propyl ( 3 1i = ) and butyl ( 4 1i = ) 

m0 m1 m2 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

6 1 1 3 2 18 12 0 0 12 8 

5 2 1 5 8 30 48 0 0 20 32 

4 2 2 14 23 84 138 0 0 56 92 

4 3 1 7 14 42 84 0 0 28 56 

3 3 2 10 30 60 180 0 0 40 120 

0 7 1 1 0 6 0 0 0 4 0 

0 6 2 4 1 24 6 0 0 16 4 

0 5 3 3 2 18 12 0 0 12 8 

0 4 4 7 3 42 18 0 0 28 12 

 
Some graphical representations:  
n = 4, m0 = 6, m1 = 1, m2 = 1:  

 

 

3.5. Number of Stereoisomers of Heteropolyalkylated  
Cyclopropane Having Heteromorphous Radicals Propyl  
(i3 = 2) and Butyl (i4 = 1)  

We have { }3 3 3,IR A B= , { }4 4 4 4 4 4, , , ,IR A B C D D′= , 4 5s = , 4 3p = ,  

4 4 2s p− = , 4 1i = , 3 2s = , 3 2p = , 3 3 0s p− = , 3 2i =  then  

3,4

2 5
5

2 1
N    

= ⋅ =   
   

 which corresponds to groups of substituents A3B3A4, A3B3B4, 

A3B3C4, A3B3D4, 3 3 4A B D′ ; 3,4 0cN = , 3,4

2 3
3

2 1
aN    
= ⋅ =   
   

 which corresponds to 

groups of substituents A3B3A4, A3B3B4, A3B3C4; 3,4 5 3 2a cN + = − =  which corres-
ponds to groups of substituents A3B3D4, 3 3 4A B D′ .  

All those groups of substituents generate heteropolyalkylations of type  

0 1 2 33 m m m mC H X Y Z  such as 0 1 2 3 6m m m m+ + + = ; with the group of substituents 
A3B3C4 for example, we can make the assignment 3X A= , 3Y B= , 4Z C= ; 
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3X A= , 4Y C= , 3Z B= ; 3X B= , 3Y A= , 4Z C= ; 3X B= , 4Y C= , 

3Z A= ; 4X C= , 3Y A= , 3Z B= ; 4X C= , 3Y B= , 3Z A= . The numbers of 
stereoisomers a

aA , a
cA , c

aA , c
cA , a c

aA +  and a c
cA +  are respectively obtained 

from the following formulas: 

3,4
a a
a aA N A= × , 3,4

a a
c cA N A= × , 3,4

c c
a aA N A= × , 3,4

c c
c cA N A= × , 

3,4
a c a c
a aA N A+ += ×  and 3,4

a c a c
c cA N A+ += × ,  

with 3,4 3aN = , 3,4 0cN =  and 3,4 2a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 2 33 m m m mC H X Y Z  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  are 
the same with those of the system 

1 2 3 4n m m m mC X Y Z U  which have been calculated 
in our previous paper for n = 3 [21] [22] [25]. They are recalled in the present 
paper. 

The numbers of stereoisomers of position aA  and cA  of 
0 1 2 33 m m m mC H X Y Z  

having 0 0m = , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  are equivalent to those of the system 

1 2 3n m m mC X Y Z  given in our previous paper for n = 3 [21] [22] [25]. 
Using all these data, the inventory of stereoisomers of the heteropolyalkylated 

cyclopropane having two heteromorphous alkyl trees butyl ( 4 1i = ) and propyl 
( 3 2i = ) is tabulated in Table 8. 

Representation of some graphs: 
n = 3, m0 = 0, m1 = 4, m2 = 1, m3 = 1:  

 

 

3.6. Number of Stereoisomers of Heteropolyalkylated  
Cyclobutane Having Heteromorphous Radicals Propyl (i3 = 2)  
and Butyl (i4 = 1) 

We have { }3 3 3,IR A B= , { }4 4 4 4 4 4, , , ,IR A B C D D′= , 4 5s = , 4 3p = ,  

4 4 2s p− = , 4 1i = , 3 2s = , 3 2p = , 3 3 0s p− = , 3 2i =  then  
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Table 8. Number of stereoisomers of the heteropolyalkylated cyclopropane having two 
heteromorphous alkyl trees butyl ( 4 1i = ) and propyl ( 3 2i = ). 

m0 m1 m2 m3 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 1 3 0 10 0 30 0 0 0 20 

1 1 2 2 2 14 6 42 0 0 4 28 

0 1 1 4 1 2 3 6 0 0 2 4 

0 1 2 3 2 4 6 12 0 0 4 8 

0 2 2 2 4 7 12 21 0 0 8 14 

 

3,4

2 5
5

2 1
N    

= ⋅ =   
   

 which corresponds to groups of substituents A3B3A4, A3B3B4, 

A3B3C4, A3B3D4, 3 3 4A B D′ ; 3,4 0cN = , 3,4

2 3
3

2 1
aN    
= ⋅ =   
   

 which corresponds to 

the groups of substituents A3B3A4, A3B3B4, A3B3C4; 3,4 5 3 2a cN + = − =  which cor-
responds to groups of substituents A3B3D4, 3 3 4A B D′ . 

All those groups of substituents generate heteropolyalkylations of type 

0 1 2 34 m m m mC H X Y Z  such as 0 1 2 3 8m m m m+ + + = ; with the group de substituents 
A3B3C4 for example, we can make the assignment 3X A= , 3Y B= , 4Z C= ; 

3X A= , 4Y C= , 3Z B= ; 3X B= , 3Y A= , 4Z C= ; 3Z B= , 4Y C= , 

3Z A= ; 4X C= , 3Y A= , 3Z B= ; 4X C= , 3Y B= , 3Z A= . 
The numbers of stereoisomers a

aA , a
cA , c

aA , c
cA , a c

aA +  and a c
cA +  are re-

spectively obtained from the following formulas: 

3,4
a a
a aA N A= × , 3,4

a a
c cA N A= × , 3,4

c c
a aA N A= × , 3,4

c c
c cA N A= × , 

3,4
a c a c
a aA N A+ += ×  and 3,4

a c a c
c cA N A+ += ×   

where 3,4 3aN = , 3,4 0cN =  and 3,4 2a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 2 34 m m m mC H X Y Z  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  are 
equivalent to those of the system 

1 2 3 4n m m m mC X Y Z U  which have been calculated in 
our previous paper for n = 4 [21] [22] [25]. They are recalled in the present paper. 

The numbers of stereoisomers of position aA  and cA  of 
0 1 2 34 m m m mC H X Y Z  

having 0 0m = , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  are equivalent to those of the system 

1 2 3n m m mC X Y Z  calculated in our previous paper for n = 4 [21] [22] [25]. 
Using all these data, the inventory of stereoisomers of the heteropolyalkylated 

cyclobutane having heteromorphous radicals propyl (i3 = 2) and butyl (i4 = 1) is 
summarized in Table 9. 

3.7. Number of Stereoisomers of Heteropolyalkylated  
Cyclopropane Having Heteromorphous Radicals Butyl (i4 = 2)  
and Pentyl (i5 = 2) 

We have { }4 4 4 4 4 4, , , ,IR A B C D D′= , { }5 5 5 5 5 5 5 5 5, , , , , , , , ,IR A B C D E E F F G G′ ′ ′= , 

4 5s = ,  4 3p = ,  4 4 2s p− = ,  4 2i = ,  5 11s = ,  5 5p = ,  5 5 6s p− = ,  5 2i = ; 
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Table 9. Number of stereoisomers of the heteropolyalkylated cyclobutane having hete-
romorphous radicals propyl ( 3 2i = ) and butyl ( 4 1i = ). 

m0 m1 m2 m4 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 1 5 6 18 18 54 0 0 12 36 

1 1 2 4 9 48 27 144 0 0 18 56 

1 1 3 3 12 64 36 192 0 0 24 128 

1 2 2 3 14 98 42 294 0 0 28 196 

2 2 2 2 30 150 90 450 0 0 60 300 

0 6 1 1 3 2 9 6 0 0 6 4 

0 5 1 2 5 8 15 24 0 0 10 16 

0 4 2 2 14 23 42 69 0 0 28 46 

0 4 3 1 7 14 21 42 0 0 14 28 

0 3 3 2 10 30 30 90 0 0 20 60 

 

4,5

5 11
550

2 2
N    

= ⋅ =   
   

; 4,5

2 6
15

2 2
cN    
= ⋅ =   
   

 which corresponds to groups of 

substituents 4 4 5 5D D F F′ ′ , 4 4 5 5D D F G′ , 4 4 5 5D D F G′ ′ , 4 4 5 5D D F H′ , 4 4 5 5D D F H′ ′ , 

4 4 5 5D D F G′ ′ , 4 4 5 5D D F G′ ′ ′ , 4 4 5 5D D F H′ ′ ′ , 4 4 5 5D D F H′ ′ ′ , 4 4 5 5D D G G′ ′ , 4 4 5 5D D G H′ , 

4 4 5 5D D G H′ ′ , 4 4 5 5D D G H′ ′ , 4 4 5 5D D G H′ ′ ′ , 4 4 5 5D D G H′ ′ ; 4,5

3 5
30

2 2
aN    
= ⋅ =   
   

;  

4,5 550 30 15 505a cN + = − − = . 

All the groups of substituents generate heteropolyalkylations of type 

0 1 2 3 43 m m m m mC H X Y Z U  such as 0 1 2 3 4 6m m m m m+ + + + = ; with the group de 
substituents A4B4C5D5 for example, we can make the assignment 4X A= , 

4Y B= , 5Z C= , 5U D= ; 4X A= , 5Y C= , 5Z D= , 4U B= ; 4X B= , 

4Y A= , 5Z D= , 5U C=  and so on. The numbers of stereoisomers a
aA , a

cA , 
c
aA , c

cA , a c
aA +  and a c

cA +  are respectively obtained from the following formu-
las: 

4,5
a a
a aA N A= × , 4,5

a a
c cA N A= × , 4,5

c c
a aA N A= × , 4,5

c c
c cA N A= × , 

4,5
a c a c
a aA N A+ += ×  and 4,5

a c a c
c cA N A+ += × ,  

with 4,5 30aN = , 4,5 15cN = , 4,5 505a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 2 3 43 m m m m mC H X Y Z U  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠ , 3 0m ≠ ; 

4 0m ≠  are equivalent to those of the system 
1 2 3 4 5n m m m m mC X Y Z U V  determined 

in our previous paper for n = 3 [21] [22] [25]. 
The numbers of stereoisomers of position aA  and cA  of 

0 1 2 3 43 m m m m mC H X Y Z U  
having 0 0m = , 1 0m ≠ , 2 0m ≠ , 3 0m ≠ , 4 0m ≠  are equivalent to those of 
the system 

1 2 3 4n m m m mC X Y Z U  also derived in our previous paper for n = 3 [21] 
[22] [25]. 

Using all these data, the inventory of stereoisomers of the heteropolyalkylated 
cyclopropane having heteromorphous alkyl trees butyl ( 4 2i = ) and pentyl 
( 5 2i = ) is summarized in Table 10. 
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Table 10. Number of stereoisomers of the heteropolyalkylated cyclopropane having he-
teromorphous alkyl trees butyl ( 4 2i = ) and pentyl ( 5 2i = ). 

m0 m1 m2 m3 m4 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 1 1 2 0 30 0 900 0 450 0 15,150 

0 1 1 1 3 0 10 0 300 0 150 0 5050 

0 1 1 2 2 2 14 60 420 30 210 1010 7070 

3.8. Number of Stereoisomers of Heteropolyalkylated  
Cyclobutane Having Heteromorphous Radicals Butyl (i4 = 2)  
and Pentyl (i5 = 2) 

We have { }4 4 4 4 4 4, , , ,IR A B C D D′= , { }5 5 5 5 5 5 5 5 5, , , , , , , , ,IR A B C D E E F F G G′ ′ ′= , 

4 5s = ,  4 3p = ,  4 4 2s p− = ,  4 2i = ,  5 11s = ,  5 5p = ,  5 5 6s p− = ,  5 2i = ;  

4,5

5 11
550

2 2
N    

= ⋅ =   
   

; 4,5

2 6
15

2 2
cN    
= ⋅ =   
   

 which corresponds to groups of 

substituents 4 4 5 5D D F F′ ′ , 4 4 5 5D D F G′ , 4 4 5 5D D F G′ ′ , 4 4 5 5D D F H′ , 4 4 5 5D D F H′ ′ , 

4 4 5 5D D F G′ ′ , 4 4 5 5D D F G′ ′ ′ , 4 4 5 5D D F H′ ′ , 4 4 5 5D D F H′ ′ ′ , 4 4 5 5D D G G′ ′ , 4 4 5 5D D G H′ , 

4 4 5 5D D G H′ ′ , 4 4 5 5D D G H′ ′ , 4 4 5 5D D G H′ ′ ′ , 4 4 5 5D D H H′ ′ ; 4,5

3 5
30

2 2
aN    
= ⋅ =   
   

; 

4,5 550 30 15 505a cN + = − − = . 

All the groups of substituents generate heteropolyalkylations of type 

0 1 2 3 44 m m m m mC H X Y Z U  such as 0 1 2 3 4 8m m m m m+ + + + = ; with the group de 
substituents A4B4C5D5 for example, we can make the assignment 4X A= , 

4Y B= , 5Z C= , 5U D= ; 4X A= , 5Y C= , 5Z D= , 4U B= ; 4X B= , 

4Y A= , 5Z D= , 5U C=  and so on. The numbers of stereoisomers a
aA , a

cA , 
c
aA , c

cA , a c
aA +  and a c

cA +  are respectively obtained from the following formulas: 

4,5
a a
a aA N A= × , 4,5

a a
c cA N A= × , 4,5

c c
a aA N A= × , 4,5

c c
c cA N A= × , 

4,5
a c a c
a aA N A+ += ×  and 4,5

a c a c
c cA N A+ += × ,  

with 4,5 30aN = , 4,5 15cN = , 4,5 505a cN + = . 

The numbers of stereoisomers corresponding to placements or positions aA  
and cA  of 

0 1 2 3 44 m m m m mC H X Y Z U  having 0 0m ≠ , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  
are equivalent to those of the system 

1 2 3 4 5n m m m m mC X Y Z U V  which have been cal-
culated in our previous paper for n = 4 [21] [22] [25]. They are recalled in the 
present paper. 

The numbers of stereoisomers of position aA  and cA  of 
0 1 2 3 44 m m m m mC H X Y Z U  

having 0 0m = , 1 0m ≠ , 2 0m ≠ , 3 0m ≠  are equivalent to those of the system 

1 2 3 4n m m m mC X Y Z U  calculated in our previous paper for n = 4 [21] [22] [25]. 
Using all these data, the inventory of stereoisomers of the heteropolyalkylated 

cyclobutane having heteromorphous radicals butyl ( 4 2i = ) and pentyl ( 5 2i = ) 
is summarized in Table 11. 

4. Conclusion 

The combinatorial method developed in the present paper makes it possible to  
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Table 11. Number of stereoisomers of heteropolyalkylated cyclobutane having hetero-
morphous radicals butyl ( 4 2i = ) and pentyl ( 5 2i = ). 

m0 m1 m2 m3 m4 aA  cA  a
aA  a

cA  c
aA  c

cA  a c
aA +  a c

cA +  

1 1 1 1 4 6 102 180 3060 90 1530 3030 51,510 

1 1 1 2 3 12 204 360 6120 180 3060 6060 103,020 

1 1 2 2 2 18 306 540 9180 270 4590 9090 154,530 

0 1 1 1 5 6 18 180 540 90 270 3030 9090 

0 1 1 2 4 9 48 270 1440 135 720 4545 24,240 

0 1 1 3 3 12 64 360 1920 180 960 6060 32,320 

0 1 2 2 3 14 98 420 2940 210 1470 7070 49,490 

0 2 2 2 2 30 150 900 4500 450 2250 15,150 75,750 

 
directly enumerate enantiomeric pairs and achiral skeletons of the heteropolyal-
kylated monocyclic cycloalkane 2 1k k kR C H

α α α +=  of which at least two noted 
alkyl groups each has a distinct order ( )1kα α ζ≤ ≤ . mα  is the number of alkyl  

radicals kR
α

 in the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
 satisfying the re-

lationship 0
1

2m m n
ζ

α
α =

+ =∑ . This procedure has already been successfully applied  

by Nemba and Balaban for the case of homomorphic heteropolyalkylation [23] 
and its advantage is to bypass the Polya method [3] which first requires deriving 
the cycle index in accordance with symmetry and permutation group of the mo-
lecular system and then transform the cycle index into a generating function of 
the order 2n before continuing with the composition of the graphs to obtain the  

results of the system ( ) ( ) ( )0 1 1
n m k k km m m

C H R R R
α ζα ζ

 
. In this work, we have  

used the basic concepts of permutation group theory and algebraic combinator-
ics as tools to highlight the chirality and adequacy of achirality induced by com-
position of molecular systems through heteromorphic polyalkylation. The num-
ber of stereoisomers of this family of compounds evolves exponentially as a 
function of the number of asymmetric carbons of the molecular system carried 
not only by the radicals but also by the monocyclic cycloalkane. It is worth re-
membering that the compounds of this family of hydrocarbons serve as starting 
materials for extensive kinetic and mechanistic studies, while others are used 
successfully for important applications such as the manufacture of hydrocarbon 
resins and other chemicals. Hence the interest of the present scientific contribu-
tion. 
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