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Abstract 
Pestivirus are responsible for cosmopolitan diseases affecting cattle, pigs and 
other ruminants, presenting a wide range of clinical manifestations, with re-
levant impact on zootechnic production. Understanding genomic characte-
ristic and virus taxonomy is fundamental in order to sustain control and 
prophylactic programs. Given the recent various studies reporting a relatively 
high number of new strains, in particular from Asian countries, in the present 
study, six hundred-fifty-one genomic sequences have been considered apply-
ing the palindromic nucleotide substitutions method for genotyping. Based 
on the secondary structure analysis of the 5’ untranslated region of RNA, se-
quence characteristics among Asian genomic clusters within the different 
Pestivirus species suggested geographic segregation and occurrence of mi-
cro-evolutive steps in the genus evolutionary history. This aspect was partic-
ularly evident in atypical sequences originated from China or Turkey, indi-
cating risk of diffusion by animals and products trade or contamination of 
biological products as bovine calf serum, with potential diagnostic and con-
trol difficulties. 
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1. Introduction 

Species of the genus Pestivirus of the family Flaviviridae [1] are responsible for 
cosmopolitan disease affecting cattle pig and other ruminants, presenting a wide 
range of clinical manifestations, with relevant impact on zootechnic production. 
Different reports described atypical variants within the bovine viral diarrhoea 
virus type 1 (BVDV-1) (Pestivirus A), characterized by genetic traits different 
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from most common previously reported strains, in particular from Asian coun-
tries [2]-[10]. Similarly, Asian atypical sequences have been reported in other 
Pestivirus species as BVDV-3 (Pestivirus H) and Classical swine fever virus 
(CSFV) (Pestivirus C) [11] [12] [13]. Taking into account that a certain confu-
sion in the nomenclature of the increasing number of Pestivirus genetic variants 
was evident and it is still a matter of concern, indicating that the need for har-
monization [14] [15] [16], and the utility to have an alternative evaluation me-
thod are always interesting in any discipline, the palindromic nucleotide substi-
tutions (PNS) method [17] [18] was proposed for an analytical procedure not 
limited to primary structure analysis but extended to secondary structure, fo-
cusing on strategic genomic sequences corresponding to the internal ribosome 
entry site (IRES), in the 5’ untranslated region (UTR), responsible for transla-
tional, transcriptional and replication events in pestiviruses [19]. In order to 
evaluate more exhaustively the taxonomical segregation of the genus Pestivirus 
in Asian countries, the 5’-UTR genomic sequences of the BVDV-1, BVDV-2 
(Pestivirus B), BVDV-3, Border Disease virus (BDV) (Pestivirus D) and CSFV 
species were analyzed and compared applying the PNS genotyping method, en-
compassing all Pestivirus species circulating in domestic animals in Asia and ex-
cluding the pestiviruses from chiropters. 

2. Material and Methods 

In order to determine genotypic variations in the BVDV-1, BVDV-2, BVDV-3, 
BDV and CSFV species, the 5’-UTR genomic region of six hundred-fifty-one 
Pestivirus strains, have been analyzed for numerical taxonomy. The virus nuc-
leotide sequences, with different geographical origin, primarily of Asian origin, 
from different host species or contaminants of biological products, were ob-
tained from the DDBL/EMBL/GenBank DNA database or provided by authors 
(Table 1). Strains from Europe and Americas have been considered as reference 
of genetic variants and complete comparison of strain sequences of BVDV-2, 
BVDV-3 and CSFV species. The majority of the tested virus sequences were ori-
ginated from strains isolated from cattle (Bos taurus) from China (n 131). Other 
bovine strains originated from various other countries from Middle East, Indian 
subcontinent, Far East and Austral Asia (Turkey, Iran, Bangladesh, India, 
Thailand, Japan, South Korea, Australia and New Zealand) (n 69), and 89 were 
from Europe and Americas. Sixteen strains were isolated from buffalo (Bubalus 
bubalis) in China. Strains isolated from domestic Bactrian camels (Camelus 
bactrianus) and yaks (Bos grunniens) have also been reported from China (n 60). 
Seventeen strains were reported from Zebu (Bos indicus) in India, 116 strains were 
isolated from domestic and wild suids, pigs (Sus scrofa domesticus) and wild boar 
(Sus scrofa), 63 were from small ruminants, sheep (Ovis aries), goat (Capra hircus) 
and black goat (Capra aegagrus hircus). Three strains were from Alpine chamois 
(Rupicapra rupicapra), Pyrenean chamois (Rupicapra pyrenaica) and Reindeer 
(Rangifer tarandus), and 3 from Japanese serow (Capricornis crispus). A single 
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Table 1. List of Pestivirus strains of BVDV-1 (n = 296), BVDV-2 (n = 128), BVDV-3 (n = 62), BDV (n = 37), Pestivirus I (n = 2) 
and CSFV (n = 126) species evaluated according to palindromic secondary structure characteristics at the RNA 5’-UTR (PNS me-
thod). Nomenclature of identified genotypes is based on divergence in the genus. Clustering according to primary structure analy-
sis by depositors is indicated under parenthesis. ND: not determined. 

Species/Genotype Strain Origin Country Accession Reference 

BVDV-1a 
BVDV-1a 
BVDV-1a 
BVDV-1a 

BVDV-1a (A) 
BVDV-1a (A) 

BVDV-1a 
BVDV-1a (A) 

BVDV-1a 
BVDV-1a (A) 

BVDV-1a 
BVDV-1a 
BVDV-1a 
BVDV-1a 
BVDV-1a 

BVDV-1a (A) 
BVDV-1a 

BVDV-1a (A) 
BVDV-1a (A) 

BVDV-1a 
BVDV-1a 
BVDV-1a 

BVDV-1a (J) 
BVDV-1a 
BVDV-1a 
BVDV-1a 

BVDV-1a (A) 
BVDV-1a (A) 

BVDV-1a 
BVDV-1a (C) 

BVDV-1a 
BVDV-1.b1 (B) 

BVDV-1b1 
BVDV-1b1 
BVDV-1b1 

BVDV-1.b1 (B) 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 

0192 
12 

2L91 
A014 

B2-175/AU 
BJ1308 
C009T 

E3-177/NZ 
FU411 

H1-181/AU 
H503 

HC725 
HE726 
HE728 

HH 
HN01 
IQ19A 

isolate 1 
isolate 2 

JE 
KQ25A 
KQ25B 

KS86-1cp 
L1305 
LQ28A 

MMR-K 
Nose 

SH1060 
TK-87-2 

Trangie Y546 
TY CP/91 
BJ09_04 

CV-1 
FS720 
HeLa 

JS-05059 
MDBK 
MDCK 

MOLT-4 
Mumps 

U937 
Vero 

Wi-38 
WiDr 

Ind 446 
IndS1166 
IndS1168 

Contaminant 
Cattle 

Contaminant 
Contaminant 
Contaminant 

Cattle 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 

Cattle 
Contaminant 

Bactrian camel 
Bactrian camel 
Contaminant 
Contaminant 
Contaminant 

Cattle 
Cattle 

Contaminant 
Contaminant 

Cattle 
Pig 

Cattle 
Cattle 
Cattle 
Cattle 

Contaminant 
Contaminant 
Contaminant 

Cattle 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 
Contaminant 

Cattle 
Cattle 
Cattle 

Japan 
Japan 
Japan 
Japan 

Australia 
China 
Japan 

New Zealand 
Japan 

Australia 
Japan 
Japan 
Japan 
Japan 
Japan 
China 
Japan 
China 
China 
Japan 
Japan 
Japan 
Japan 

New Zealand 
Japan 
Japan 
Japan 
China 
Japan 

Australia 
Japan 
China 
Japan 
Japan 
Japan 
China 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
India 
India 
India 

D31799 
D26051 
D31800 
D31801 

JN967708 
KF925517 
D31802 

JN967722 
D31804 

JN967730 
AB008841 

D31805 
D31806 
D31808 
D50818 

JX878887 
D31812 

JX276538 
JX276539 
D26611 
D31809 
D31810 

AB078952 
AF026781 

D31811 
D26050 

AB019670 
JN248741 
AB019669 
AF049222 
AB042670 
HQ116537 

D50815 
D31803 
D50819 

KJ578849 
D50820 
D50821 
D50822 
D26049 
D50823 
D50824 
D50825 
D50826 

AY279087 
AY278460 
AY279086 

[118] 
[117] 
[118] 
[118] 
[29] 
[154] 
[118] 
[29] 
[115] 
[29] 
[112] 
[118] 
[118] 
[118] 
[30] 
[5] 

[118] 
[31] 
[31] 
[115] 
[118] 
[118] 
[138] 

Vilcek et al., unpublish 
[118] 
[117] 
[44] 
[32] 
[44] 

Gu et al., unpublish 
[90] 

Zhang et al., unpublish 
[30] 
[118] 
[30] 
[2] 
[30] 
[30] 
[30] 
[117] 
[30] 
[30] 
[30] 
[30] 
[131] 
[131] 
[131] 
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Continued 

BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b1 
BVDV-1b2 

BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1b2 (B) 

BVDV-1b2 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.b2 (B) 
BVDV-1.3 (D) 
BVDV-1.3 (D) 
BVDV-1.3 (D) 

IndS1170 
IndS1171 
IndS1181 
IndS1222 
IndS1455 

IndMDV18697/12 
HB-0134 
HB-0258 
HB-0288 

HB-060085 
HB-0899 

HB-090219 
isolate 12 

KA-91 
LN311-15 
LN311-17 
LN311-25 
LN311-27 
LN311-34 
LN313-15 
LN314-19 
QHHY-21 
QHMY-N5 
QHMY-N6 
QHQL-126 
QHQL-219 
QHQL-271 
QHQL-292 
QHQL-295 
QHQL-297 
QHQL-299 
QHQL-311 
QHQL-313 
QHQL-321 
QHQL-328 
QHQL-336 
QHQL-337 
QHQL-340 
QHQL-345 
QHQL-385 
QHQL-405 
QHTJ-17 
QHTJ-291 

QHTJ-L332 
QHTJ-N303868 
QHTJ-N304810 

XZ-117 
XZ-70 

10JJ-SKR 
B1-1/AU 
BJ1023 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Zebu 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 

Cattle 
Contaminant 

Cattle 

India 
India 
India 
India 
India 
India 
China 
China 
China 
China 
China 
China 
China 
Japan 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 

South Korea 
Australia 

China 

AY279526 
AY279527 
AY279528 
AY278459 
AY278461 
KM201317 
KJ578829 
KJ578827 
KJ578826 
KJ578825 
KJ578833 
KJ578828 
JX276549 
AB019684 
KJ578799 
KJ578798 
KJ578797 
KJ578796 
KJ578795 
KJ578800 
KJ578801 
KJ578902 
KJ578900 
KJ578901 
KJ578880 
KJ578890 
KJ578891 
KJ578883 
KJ578886 
KJ578892 
KJ578893 
KJ578873 
KJ578874 
KJ578877 
KJ578875 
KJ578887 
KJ578876 
KJ578878 
KJ578879 
KJ578888 
KJ578889 
KJ578896 
KJ578894 
KJ578895 
KJ578897 
KJ578898 
KJ578904 
KJ578911 
KC757383 
JN967745 
KF925509 

[131] 
[131] 
[131] 
[131] 
[131] 
[13] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[31] 
[44] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 

[123] 
[29] 
[154] 
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Continued 

BVDV-1.3 (D) 
BVDV-1.3 (D) 

BVDV-1.3 
BVDV-1.3 (D) 
BVDV-1.3 (D) 
BVDV-1.3 (D) 

BVDV-1.3 
BVDV-1.3 
BVDV-1.3 
BVDV-1.4 
BVDV-1.5 

BVDV-1.6 (N) 
BVDV-1.6 (N) 
BVDV-1.6 (N) 
BVDV-1.6 (M) 
BVDV-1.6 (N) 
BVDV-1.6 (N) 
BVDV-1.6 (M) 
BVDV-1.7 (O) 
BVDV-1.7 (M) 
BVDV-1.7 (O) 
BVDV-1.7 (O) 
BVDV-1.7 (M) 
BVDV-1.7 (O) 
BVDV-1.7 (M) 
BVDV-1.7 (M) 

BVDV-1.8 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 

BVDV-1.8 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 
BVDV-1.8 (C) 

BVDV-1.9 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1-10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (M) 
BVDV-1.10 (M) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 
BVDV-1.10 (Q) 

BJ1120 
BJ1201 

BRU*0615 
cell-con-1 

IR-Isfahan-10 
OK1(CA)NCP03 

Kamoshika-3 
Kamoshika-22 
Kamoshika-29 

438/02 
23-15 
06z71 
06z127 
KB01 
S133 

Shitara/02/06 
so CP/75 

TY05 
AQGN96BI5 

BJ09_24 
IS25CP/01 
IS26/01ncp 

isolate 9 
JS10116 

S121 
S43 

A1-114/AU 
AQMZ02AI21/2 

Bega 
Bega-like 

CRFK 
isolate 3 
isolate 4 
Letuyi 
Manasi 

S183 
Shitara/01/05 
Shihezi 148 

KM 
11N36 
BJ1022 
BJ1123 
BJ1301 
Camel6 
FJ1003 
JL1001 

isolate 6 
isolate 7 

S53 
S83 

SD0803 
ZJ1003 

Cattle 
Cattle 

Contaminant 
Cattle 
Cattle 
Cattle 
Serow 
Serow 
Serow 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Pig 

Cattle 
Cattle 

Contaminant 
Cattle 
Cattle 
Cattle 

Contaminant 
Bactrian camel 
Bactrian camel 

Cattle 
Cattle 

Contaminant 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Pig 
Pig 

Bactrian camel 
Bactrian camel 

Cattle 
Cattle 

Pig 
Pig 

China 
China 
Japan 
China 
Iran 

Japan 
Japan 
Japan 
Japan 
Spain 
UK 

South Korea 
South Korea 
South Korea 

China 
Japan 
Japan 
China 
Japan 
China 
Japan 
Japan 
China 
China 
China 
China 

Australia 
Australia 
Australia 
Australia 

Japan 
China 
China 
China 
China 
China 
Japan 
China 

Slovakia 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 

KF925510 
KF925513 
AB008837 
KC695816 
LC053999 
AB359927 
AB259693 
AB259694 
AB259695 
AY159540 
AF298059 
DQ973181 
DQ973182 
GQ495676 
KJ690689 
LC089876 
AB042661 
GU120242 
AB300691 
HQ116550 
AB359931 
AB359932 
JX276546 
JN248734 
KF006960 
KF006959 
JN967700 
AB300687 
AF049221 
KF896608 
D50814 

JX276540 
JX276541 
EU159701 
EU159702 
KF006968 
AB359926 
EU159700 
AF298068 
JX437156 
KF925508 
KF925506 
KF925503 
KC695810 
JN248728 
JN248733 
JX276543 
JX276544 
KF006962 
KF006963 
JN400273 
JN248744 

[154] 
[154] 
[112] 

Gao et al., unpublish 
Shapouri et al., unpublish 

[28] 
[63] 
[63] 
[63] 
[70] 
[165] 

Yang and Kweon, unpublish 
Yang and Kweon, unpublish 

Oem et al., unpublish 
[8] 
[91] 
[90] 
[7] 

[168] 
[8] 
[28] 
[28] 
[31] 
[32] 
[8] 
[8] 
[29] 
[168] 

Mackintosh et al., unpublish 
Gao et al., unpublish 

[30] 
[31] 
[31] 
[9] 
[9] 
[8] 
[28] 
[9] 

[165] 
[4] 

[154] 
[154] 
[154] 
[3] 
[32] 
[32] 
[31] 
[31] 
[8] 
[8] 

[107] 
[32] 
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BVDV-1.10 (Q) 
BVDV-1.11 (E) 
BVDV-1.12.2 
BVDV-1.13 

BVDV-1.14 (R) 
BVDV-1.14 (R) 

BVDV-1.15.1 
BVDV-1.15.1 (M) 

BVDV-1.15.1 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1(M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 

ZJ1005 
S182 

11207/98 
KS86-1ncp 

TR70 
TR75 

BJ10_10 
BJ1020 

BJ11_01 
BJ1125 
BJ1202 
BJ1302 
BJ1303 
BJ1305 
DG07 

GXBH-EB20 
GXBH-EB33 
GXBS-LB3 

GXHZ-JB24 
GXLZ-BB13 
GXLZ-BB5 
GXLZ-BB6 

GXYL-KB22 
GXYL-KB53 

HB-0244 
HB-0273 
HB-0275 

HB-050030 
HB-050057 
HB-090913 

HZ05 
HZ0601 
HZ0602 

isolate 11 
JS-01159 
JS-03105 
JS-04198 
JS-3094 
LN-1 

LN317-6 
LZ05 

NMG311-2 
NMG311-3 
NMG312-26 
NMG312-32 
NMG313-28 
NMG313-35 
NMG313-55 
NMG314-22 
NMG314-51 
NMG314-65 

Pig 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

China 
China 

Germany 
Japan 

Turkey 
Turkey 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 

JN248745 
KF006965 
AJ304390 
AB042713 
MG670547 
MG670549 
HQ879791 
KF925511 
JN542505 
KF925519 
KF925514 
KF925520 
KF925518 
KF925505 
GU120250 
KJ578811 
KJ578812 
KJ578818 
KJ578810 
KJ578817 
KJ578815 
KJ578816 
KJ578820 
KJ578821 
KJ578837 
KJ578831 
KJ578834 
KJ578835 
KJ578841 
KJ578824 
GU120240 
GU120244 
GU120245 
JX276548 
KJ578843 
KJ578845 
KJ578844 
KJ578842 
KT896495 
KJ578795 
GU120241 
KJ578867 
KJ578865 
KJ578864 
KJ578863 
KJ578870 
KJ578869 
KJ578868 
KJ578858 
KJ578860 
KJ578872 

[32] 
[8] 

[154] 
[90] 
[15] 
[15] 

Zhang et al., unpublish 
[6] 

Zhang et al., unpublish 
[6] 

[154] 
[154] 
[154] 
[154] 
[7] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[7] 
[7] 
[7] 
[31] 
[2] 
[2] 
[2] 
[2] 

Zhang, unpublish 
[2] 
[7] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
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BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.1 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2(M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 

NMG315-1 
NX0801 
NX0802 
NX0803 

QHQL-216 
QHQL-225 
QHQL-268 

S101 
S102 
S12 

S122 
S123 
S13 

S21-China 
S22 
S41 
S52 
S62 
S71 
S73 
S81 

SD-15 
SH1051 
TJ0801 
W4-1 
XA08 

XZ-141 
ZM-95 
ZD05 

HB-0105 
HB-050062 
HB-060111 
HB-080141 
HB-080146 
HB-080147 
HB-090268 
isolate 10 
JS-03140 
LN309-9 
LN314-21 

NMG313-1 
NMG314-60 
QHHY-22 

QHTJ-303887 
S72 

XZ-103 
XZ-109 
XZ-133 
XZ-176 
XZ-24 

Cattle 
Cattle 
Cattle 
Cattle 
Yak 
Yak 
Yak 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Pig 
Cattle 

Pig 
Cattle 
Yak 
Pig 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Yak 
Yak 

Cattle 
Yak 
Yak 
Yak 
Yak 
Yak 

China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 

KJ578861 
GU120252 
GU120253 
GU120254 
KJ578881 
KJ578882 
KJ578885 
KJ690686 
KJ690687 
KJ690679 
KJ690688 
KF006958 
KJ690680 
KF006961 
KF006955 
KJ690681 
KJ690682 
KJ690683 
KF006956 
KJ690684 
KJ690685 
KR866116 
JN248740 
GU120255 

Not deposited 
GU120257 
KJ578907 
AF526381 
GU120243 
KJ578830 
KJ578838 
KJ578822 
KJ578823 
KJ578839 
KJ578840 
KJ578832 
JX276547 
KJ578846 
KJ578804 
KJ578802 
KJ578871 
KJ578859 
KJ578903 
KJ578899 
KF006957 
KJ578916 
KJ578917 
KJ578906 
KJ578905 
KJ578918 

[2] 
[7] 
[7] 
[7] 
[2] 
[2] 
[2] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[8] 
[10] 
[32] 
[7] 

Zhang, unpublish 
[7] 
[2] 
[49] 
[7] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[31] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[8] 
[2] 
[2] 
[2] 
[2] 
[2] 
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BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.15.2 (M) 
BVDV-1.16 (L) 
BVDV-1.16 (L) 
BVDV-1.16 (L) 
BVDV-1.16 (L) 
BVDV-1.17 (F) 
BVDV-1.18 (P) 
BVDV-1.18 (P) 
BVDV-1.18 (P) 
BVDV-1.18 (M) 
BVDV-1.18 (M) 
BVDV-1.18 (P) 
BVDV-1.19 (G) 

BVDV-1.20.1 (X) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.21.2 (U) 
BVDV-1.22 (K) 
BVDV-1.23 (P) 

BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 

XZ-25 
XZ-48 
XZ-69 
XZ-71 
XZ-84 
XZ-86 
XZ-92 
TR16 
TR72 

TR-2007-A-2368MS 
TR-2007-Gu-175454-4695 

J 
BJ0701 
BJ0702 
BJ0703 
isolate 5 
isolate 8 

TJ06 
A 

CH-01-08 
GXBH-EB34 
GXBS-LB8 
GXCZ-FB7 

GXCZ-FB22 
GXCZ-FB25 
GXHZ-JB11 
GXLZ-BB4 
HB-090166 

JS-00108 
JS-0197 
JS-02007 
JS-03148 
JS-03198 
JS-04119 
JS-04138 
JS-05002 
JS-99054 

JS-X02126 
LN309-5 
M31182 

NMG311-20 
NMG315-5 
QHQL-252 

Rebe 
S153 

167 237 
168 149 
173 157 
175 375 
BSE921 

CPA 

Yak 
Yak 
Yak 
Yak 
Yak 
Yak 
Yak 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Bactrian camel 
Bactrian camel 

Cattle 
Cattle 
Cattle 

Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Buffalo 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Yak 

Cattle 
Cattle 
Yak 

Cattle 
Cattle 
Sheep 
Sheep 
Sheep 
Sheep 
Cattle 

Contaminant 

China 
China 
China 
China 
China 
China 
China 
Turkey 
Turkey 
Turkey 
Turkey 
Austria 
China 
China 
China 
China 
China 
China 

Austria 
Switzerland 

China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 

Switzerland 
China 

UK 
UK 
UK 
UK 

Belgium 
Japan 

KJ578908 
KJ578909 
KJ578910 
KJ578912 
KJ578913 
KJ578914 
KJ578915 

MG670548 
MG670546 
EU716148 
EU716150 
AF298067 
GU120247 
GU120248 
GU120249 
JX276542 
JX276545 
GU120246 
AF298064 
EU180024 
KJ578813 
KJ578819 
KJ578806 
KJ578807 
KJ578808 
KJ578809 
KJ578814 
KJ578836 
KJ578848 
KJ578853 
KJ578854 
KJ578850 
KJ578851 
KJ578855 
KJ578852 
KJ578857 
KJ578847 
KJ578856 
KJ578803 
JQ799141 
KJ578866 
KJ578862 
KJ578884 
AF299317 
KF006964 
U65055 
U65056 
U65058 
U65059 

ALIGN_000012 
D50812 

[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[15] 
[15] 
[33] 
[33] 
[165] 
[7] 
[7] 
[7] 
[31] 
[31] 
[7] 

[165] 
[54] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 
[2] 

Sun et al., unpublish 
[2] 
[2] 
[2] 

[152] 
[165] 
[164] 
[164] 
[164] 
[164] 
[104] 
[30] 
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BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.1 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 

BVDV-2a1.2 (a) 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 

BVDV-2a1.2 (a) 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.2 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 
BVDV-2a1.3 

BVDV-2a1.4 (a) 
BVDV-2a1.4 
BVDV-2a1.4 
BVDV-2a1.4 
BVDV-2a1.4 
BVDV-2a1.4 

BVDV-2a1.4 (a) 
BVDV-2a1.4 (a) 

BVDV-2a1.4 

CPAE 
EBTr 

HE727 
Lees 

MMR-T 
MP 

Parvo 
Rubella 
15-103 

17583-97 
23025 
37Gr 
7937 

A4-124/US 
AZ Spl 

BSE1239 
BSE341 
CH515 
CH649 
CH693 
CH809 

E5-160/US 
IT-1732 
JZ05-1 
Kosice 

MAD Spl 
MN Fetus 

NY93 
Q126 
SD-06 

WG4622 
WVD829 

V-FLL 
104/98 
4-5174 
B52-2 
CD87 
i4083 
i61380 
i628 

Munich 1 
Munich 2 
11-Mi-97 
5521-95 
713-2 
97/730 

BM01 isolate 11 
D1-152/US 
HB-1511 
HLJ-10 
XJ-04 

Contaminant 
Contaminant 
Contaminant 

Sheep 
Contaminant 
Contaminant 
Contaminant 
Contaminant 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Contaminant 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Contaminant 
Contaminant 

Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 

Contaminant 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Cattle 
Sheep 

Contaminant 
Cattle 

Contaminant 
Cattle 

Japan 
Japan 
Japan 
UK 

Japan 
Belgium 

Japan 
Japan 
France 
USA 
USA 

Austria 
USA 
USA 
USA 

Belgium 
Belgium 

Chile 
Chile 
Chile 
Chile 
USA 
Italy 

China 
Slovakia 

USA 
USA 
USA 

Canada 
China 

Netherland 
Belgium 

Japan 
Germany 

France 
Germany 
Canada 

Argentina 
Argentina 
Argentina 
Germany 
Germany 

Italy 
USA 
USA 

NewZealand 
Tunisia 

USA 
China 
China 
China 

D50813 
D50817 
D31807 
U65051 
D26052 

ALIGN_000012 
D26614 
D26048 

AF298055 
AF039176 
AF039172 
EU327594 
AF039175 
JN967705 

Not deposited 
ALIGN_000012 
ALIGN_000012 

AY671985 
AY671986 
AF356505 
AY671987 
JN967726 
AJ416018 
GQ888686 
EU360934 

Not deposited 
Not deposited 

AF039173 
L32890 

FJ795044 
ALIGN_000012 
ALIGN_000012 

AB019687 
AJ304381 
AF298063 

Not deposited 
L32887 

AF417995 
AF417986 
AF417985 

Not deposited 
Not deposited 

AJ293603 
AF039174 
AF039177 
AF026770 
AF462006 
JN967717 
KX096718 
JF714967 
FJ527854 

[30] 
[116] 
[30] 
[164] 
[117] 
[104] 
[20] 
[20] 
[165] 
[158] 
[158] 
[163] 
[158] 
[29] 
[147] 
[104] 
[104] 
[144] 
[144] 
[144] 
[144] 
[29] 

Muscillo, unpublish 
Li et al., unpublish 

[162] 
[147] 
[147] 
[158] 
[143] 

Zhu et al., unpublish 
[104] 
[104] 
[44] 
[154] 
[165] 
[101] 
[143] 
[122] 
[122] 
[122] 
[101] 
[101] 
[130] 
[158] 
[158] 

Vilcek et al., unpublish 
Thabti et al., unpublish 

[29] 
Li and Wu, unpublish 

[128] 
Zhu et al., unpublish 
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BVDV-2a1.4 
BVDV-2a1.4 
BVDV-2a1.5 
BVDV-2a1.5 
BVDV-2a1.5 
BVDV-2a1.6 

BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 

BVDV-2a2.1.1 (a) 
BVDV-2a2.1.1 
BVDV-2a2.1.1 
BVDV-2a2.1.1 

BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 
BVDV-2a2.1.1 (c) 

BVDV-2a2.1.2 
BVDV-2a2.2 

BVDV-2a3  (c) 
BVDV-2b1.1 
BVDV-2b1.1 
BVDV-2b1.2 
BVDV-2b1.3 
BVDV-2b1.3 

BVDV-2b1.4 (b) 
BVDV-2b1.4 (b) 
BVDV-2b1.4 (b) 

BVDV-2b1.5 
BVDV-2b1.5 
BVDV-2b1.5 
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CSFV/2.3/dp/CSF857/Borken 

CSFV/2.3/dp/CSF864/BG/Jambul 
CSFV/2.3/wb/XXX0609/Uelzen 

CSFV/2.3/SRB/1264/2005 
CSFV/2.3/SRB/6168/2006 

CSF/wb/FR57/2004/0964-03 
CSF/wb/FR67/2003/0647-19 
CSF/wb/FR67/2005/0018-06 
CSF/wb/FR67/2005/0125-05 
CSF/wb/FR67/2005/0238-02 
CSF/wb/FR67/2006/0199-01 

CSF/wb/FR67/2006/060003-06 

Pig 
Pig 

Contaminant 
Pig 

Vaccine 
Vaccine 

Contaminant 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

Vaccine 
Vaccine 

Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

Vaccine 
Vaccine 

Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

Wild boar 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

China 
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Germany 
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India 
India 
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Japan 
Japan 
Japan 
Japan 
Japan 
India 
India 
India 
India 
India 
India 
India 
China 
Russia 
Russia 
Japan 
Japan 
Japan 
India 
India 
India 
USA 
USA 

China 
China 
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Japan 

Poland 
France 
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Croatia 
Germany 
Bulgaria 
Germany 

Serbia 
Serbia 

Germany 
Germany 
Germany 
Germany 
Germany 
Germany 
Germany 

HQ380231 
KM262189 
KC503764 
AF326963 
AB019152 
AF091507 
U606028 

AB019154 
AB019156 
AB019158 
AB019160 
AB019162 
AB019164 
FJ183444 
FJ183445 
FJ183446 
FJ183447 
FJ183449 
FJ183452 
FJ183456 
EU497410 
AF099102 
KM522833 
AB019655 
AB019168 
AB019170 
KC617749 
KC617761 
KC617750 
KJ873238 
AY578688 
AF092448 
DQ127910 

L42435 
AB019182 

L42413 
J04358 

AB019659 
HQ148061 
GU233731 
HQ148062 
GU324242 
KY849593 
KY849594 
LT158404 
LT158502 
LT158405 
LT158406 
LT158407 
LT158409 
LT158408 

[150] 
[124] 
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[133] 
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Desai et al., unpublish 

[43] 
[43] 
[43] 
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CSFV-a2 
CSFV-a2 (2.1g) 

CSFV-a2 
CSFV-a2 (2.1) 
CSFV-a2 (2.1) 

CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 

CSFV-a2 (2.1) 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
CSFV-a2 
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CSFV-a4 (2.2) 
CSFV-a4 (2.2) 
CSFV-a4 (2.2) 
CSFV-a4 (2.2) 
CSFV-a4 (2.2) 
CSFV-a4 (2.2) 
CSFV-a4 (2) 

CSFV-a4 
CSFV-a5 
CSFV-a6 
CSFV-a6 
CSFV-b 

CSFV-c (3) 
CSFV-c (3.4) 

CSFV-c 
CSFV-c 

CSFV-c (3) 
CSFV-d 

CSFV nd (2.2) 
CSFV nd (1.3) 

CSF/wb/FR67/2007/0192-01 
GD19/2011 

HEN03 
HNLY-2011 
HNSD-2012 

Osaka/51 
Osaka/71 

Pader 
Paderborn 

S112 
S173 

Shizuoka/73 
SKCDK 

Sp01 
Switzerland 1/93 
Switzerland 2/93’ 

Switzerland 3/93/1’ 
Switzerland 3/93/2’ 
Switzerland 4/93’ 

Venhorst 
VRI4762 
Wingene 

Saitama/81 
179/MIB/2014 
181/MIB/2014 
211/MIB/2014 
23/MIB/2014 
322/MIB/2013 
99/MIB/2014 

CSFV-UP-BR-757-09 
Parambi 

IND/AS/GHY/G4 
Fukuoka/72 
Honduras 
5440/99 

94.4/IL/94/TWN 
Kanagawa/74 
Okinawa/86 

Okinawa-86-2 
P97 
S171 

Sch180 
VRI 4167 

Pig 
Pig 

Cattle 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

Contaminant 
Contaminant 

Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 
Pig 

Wild boar 
Pig 
Pig 
Pig 
Pig 

Wild boar 
Pig 
Pig 
Pig 

Sheep 
Pig 
Pig 
Pig 
Pig 
Pig 

Contaminant 
Pig 
Pig 

Germany 
China 
China 
China 
China 
Japan 
Japan 

Garmany 
Garmany 

China 
China 
Japan 
China 
Spain 

Switzerland 
Switzerland 
Switzerland 
Switzerland 
Switzerland 
Netherlands 

Malaysia 
Belgium 

Japan 
India 
India 
India 
India 
India 
India 
India 
India 
India 
Japan 

Honduras 
Spain 

Taiwan 
Japan 
Japan 
Japan 

Taiwan 
China 

Germany 
Malaysia 

LT158410 
KU504339 
KC176778 
JX262391 
JX218094 
AB019174 
AB019176 
AY072924 
GQ902941 
MK118725 
KF006975 
AB019180 
GQ923951 
FJ265020 
AF045068 
AF045069 
AF045070 
AF045071 
AF045072 
AF084049 

L42437 
JQ595295 
AB019178 
KR350485 
KR350486 
KR350487 
KR149284 
KR350488 
KR350483 
KC533785 
KT239105 
KM362426 
AB019150 

L42426 
AY159514 
AY646427 
AB019166 
AB019172 
AB019663 

L49347 
KF006974 
JQ411560 
JQ411570 

Hoeper, unpublish 
[113] 

Zhang et al., unpublish 
[120] 
[120] 
[43] 
[43] 
[159] 
[145] 
[8] 
[8] 
[43] 

Li et al., unpublish 
Mena et al, unpublish 

[119] 
[119] 
[119] 
[119] 
[119] 
[166] 
[151] 

Haegeman et al., unpublish 
[43] 
[42] 
[42] 

Ravishankar et al., unpublish 
[42] 
[42] 
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Chandramohan et al., unpublish 
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[43] 
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[41] 
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[43] 
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[8] 
[80] 
[80] 

Alpine chamois (Rupicapra rupicapra); Bactrian camel (Camelus bactrianus); Black Goat (Capra aegagrus hircus); Buffalo (Bubalus bubalis); Cattle (Bos 
taurus); Goat (Capra hircus); Human (Homo sapiens); Pig (Sus scrofa domesticus); Pyrenean chamois (Rupicapra pyrenaica); Reindeer (Rangifer tarandus); 
Serow (Capricornis crispus); Sheep (Ovis aries); Wild boar (Sus scrofa); Yak (Bos grunniens), Zebu (Bos indicus). 
 

sequence was identified from a human pathological sample in Brazil. Seven se-
quences were CSFV vaccinal strains. Eighty-three strains were contaminants of 
biological products, mainly detected in fetal bovine serum (FBS) samples for la-
boratory use, but also cell lines, interferon for human use, vaccines for veterinary 
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and human use. Most of the samples were from Japan (n 37). Other contaminats 
were reported from China, India, Australia, New Zealand, United Kingdom, Ita-
ly, Belgium, Netherland, Tunisia, USA, Canada, Mexico, Brazil and Argentina. 
Sequences were compared to previously evaluated strain, reaching a total num-
ber of 1426 observations obtained with PNS procedure (Table 2). Qualitative 
and quantitative evaluation of genomic sequence divergence, in terms of palin-
dromic nucleotide base pairings variations, has been applied for taxonomical se-
gregation, through the evaluation of relevant secondary structure regions in the 
5’-UTR of the viral RNA, the three variable regions, V1, V2 and V3 genomic se-
quences (Table 3), according to the genotyping based on the PNS method [17] 
[18]. As described by Deng and Brock [19] and Harasawa [20], the 5’-UTR is 
characterized by a series of secondary sequence stem-loop structures which are 
divided into 4 domains: A, B, C and D. The most significant is Domain D which 
corresponds to the IRES and it covers two thirds of the 5’-UTR sequence from 
nucleotides 139 to 361 and it is conserved among NADL, Osloss, SD-1, Alfort 
and Brescia Pestivirus reference strains [19]. The predicted Domain D complex 
palindromic stem-loop structures D2, D3 and D4 [19], or as recently renamed as 
IRES domains IIIb, IIId1 and IIId2 [21], correspond to PNS V1, V2 and V3 varia-
ble loci, respectively. Within the genus, the palindromic structures identifiable in 
linear sequences were generally characterized by the absence of nucleotides in po-
sition 22 of V1 and V2 locus composed by a constant number of 23 nucleotides. 

 
Table 2. Summary of Pestivirus strains (n = 1426) evaluated according to the Palindromic nucleotide substitution (PNS) method 
at the 5’ untranslated region of RNA. *Tentative species. 

Species Number of strains Host Geographical origin 

BVDV-1 887 Cattle, Alpaca, Alpine chamois, 
Bactrian camel, Buffalo, Contaminant, 
Deer, Goat, Human, Mousedeer, Pig, 
Roe deer, Serow, Sheep, Yak, Zebu. 

Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, 
Colombia, Denmark, Dominican Republic, Egypt, France, Germany, 
India, Ireland, Italy, Japan, Mexico, New Zealand, Poland, Portugal, 
Slovakia, South Africa, South Korea, Spain, Sweden, Switzerland, 
Tunisia, Turkey, UK, USA 

BVDV-2 130 Cattle, Contaminant, Human, Sheep. Argentina, Austria, Belgium, Brazil, Canada, Chile, China, France, 
Germany, Italy, Japan, Mexico, Netherland, New Zealand, Portugal, 
Slovakia, Spain, Tunisia, UK, USA 

BVDV-3 62 Cattle, Buffalo, Contaminant, Goat, 
Sheep, Zebu. 

Australia, Bangladesh, Brazil, Canada, China, India, Italy, Mexico, 
Thailand, USA 

BDV 210 Sheep, Alpine chamois, Black goat, 
Cattle, Goat, Pig, Pyrenean chamois, 
Reindeer, Wisent. 

Andorra, Australia, Austria, China, France, Germany, Italy, Japan, 
New Zealand, Slovakia, Spain, South Korea, Switzerland, Tunisia, 
Turkey, UK, USA 

BDV-2* 5 Sheep, Goat. Italy 

Pestivirus I 2 Sheep. Turkey 

CSFV 126 Pig, Cattle, Contaminant, Sheep. China, France, Germany, Honduras, India, Italy, Japan, Malaysia, 
Netherlands, Poland, Russia, Spain, Switzerland, Taiwan, USA 

Pronghorn 1 Pronghorn. USA 

Giraffe 2 Cattle, Giraffe. Kenya 

Bungowannah 1 Pig. Australia 
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Table 3. Palindromic structures V1, V2 and V3 variable loci positions in linear sequences 
of Pestivirus BVDV-1, BVDV-2, BVDV-3, BDV and CSFV species reference strains for 
the evaluation according to secondary structure characteristics at the RNA 5’-UTR (PNS 
method). 

Reference strains 
Variable loci 

Reference 
V1 V2 V3 

BVDV-1 Osloss 197 - 235 267 - 289 293 - 311 [143] 

BVDV-1 NADL 198 - 236 268 - 290 294 - 313 [103] 

BVDV-2 890 75 - 116 148 - 170 174 - 191 [106] 

BVDV-3 Hobi/Brazil/200/2002 37 - 76 106 - 128 134 - 152 [98] 

BDV X818 186 - 224 256 - 278 282 - 297 [100] 

CSFV Alfort/Tübingen 187 - 225 257 - 279 283 - 297 [132] 

 
The variation of loops in V1 and V3 loci determined difference in size of pa-
lindromes. Secondary structures were obtained for the entire 5’-UTR sequence 
of each strain. Palindromic sequences corresponding to the IRES three variable 
loci were identified in the predicted secondary structure and considered out of 
the rest of the nucleotide sequence. Nucleotide sequence secondary structures 
were predicted according to the algorithm of Zuker and Stiegler [22] using the 
Genetyx-Mac version 14 program package (Software Development Co., Ltd., 
Tokyo, Japan). The minimum free energy was calculated by the method of Freier 
et al. [23]. The PNS software version 2.0 [24], prepared for the application on the 
genotyping procedures with the keys for Pestivirus identification of genomic 
sequences, using the C# programming language, was also applied for the con-
struction of secondary structure sequence alignment, in order to compute ge-
netic distance among strains. Segregation of Pestivirus species strains into geno-
types and relatedness among genotypes within the species was evaluated ac-
cording to changes in nucleotide base pairs at the level of the secondary palin-
dromic structure of the three variable loci. Genotypes have been defined apply-
ing a nomenclature reflecting the level of divergence within the species, and 
ranked according to increasing divergence expressed in number of divergent 
base pair (bp), with reference to most common observed sequence combinations 
in the genus. Genotype roots, base-pair (bp) combinations at the level of 
low-variable positions (LVP), also defined determinative LVP [14] [17], were 
identified to support genetic clustering of strain sequences and characterize spe-
cies genotypes, varying for each species (LVP V1/14, V2/7 and V3/4 for 
BVDV-1; V1/9, V1/12, V1/16, V1/17 and V1/18 for BVDV-2 or V1/9, V2/1, 
V2/5 and V3/8 for BDV). Among genotypes, homology was evaluated in terms 
of shared base pairs in the three variable loci. Cross comparison between types 
within the genus has been evaluated by computing the divergence percentage, 
identifying strains showing multiple relation (sequences sharing base pairings 
specific to different genomic groups, and scoring low divergence values) or bor-
derlines (sequences showing qualitative similarities with a genomic group, but 
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with high divergence values, candidates for reallocation as separate groups in the 
genus), and indicating divergence within groups and among groups quantifying 
the heterogeneity of a genotype and the genetic distance between groups. Phylo-
genetic trees based on the 5’-UTR were constructed following sequence align-
ment of representative species strains with Clustal X [25] by using the neigh-
bour-joining method [26] and visualized with Newick tree format option (Mega 
version 7.0.26) [27]. 

3. Results 

The observation made on the nucleotide sequences of the three variable loci at 
the level of the 5’-UTR genomic region of Pestivirus strains, according to the 
PNS genotyping method, allowed the identification of consensus motifs shared 
by all the Pestivirus species, genus specific base-pairings, and characteristic spe-
cies and genotype specific PNS, respectively (Table 4). Ten PNS positioned in 
the V1 and V2 loci were characteristic for the genus. PNS consensus motifs 
shared by all species in the genus, as the bulge formed by two cytosine nucleo-
tides in the V1 stem position eleven, are presented in Table 4 and schematically 
shown in Figure 1. Based on the divergence limit value of 9 bp for genotype de-
termination [17], twenty-three genotypes within the BVDV-1 species have been 
identified, from 1a to 1.23. BVDV-2 accounted for six genotypes, from 2a to 2f. 
BDV was clustered into ten genotypes, from a to j. BVDV-3 and CSFV were less 
heterogeneous with four genotypes. 

Secondary sequence construction, efficiently obtained by both available soft-
ware, Genetyx and PNS [24], revealed a conserved palindromic structure in the 
genus species (Figure 1). Only in few cases the elaboration of secondary 
structure resulted slightly problematic. Some difficulties have been encoun-
tered due to atypical sequences, showing insertions in the variable loci, as the 
Chinese BVDV-3 ovine strains HN1559 [KU053497], HN1507 [KU563155], 
HN1568 [KU053499] and HN1564 [KU053498] (Shi et al., unpublished) with 
U U, A A, G G or C C bulge insertion in the V1 locus. Similarly, BVDV-3 strains 
IndMDV18963/12 [KM201318] and IndBHA6604/12 [KM201307] showed dele-
tions in V3 locus positions 5 and 6. The predicted secondary structures of the 
three variable loci were aligned for comparison of base pairings in the different 
positions (Table 5). Different base pairing combinations were identified for ge-
notype characterization (BVDV-1 n 416; BVDV-2 n 66; BVDV-3 n 33, BDV n 
99 and CSFV n 37), and considered for identification marker definition. Strains 
showing sequence identity at the level of the three variable loci or sharing 
non-relevant variations as G*U or G-C (G:Y) were excluded (Table 6). The 
summary of strains clustering into genotypes of Pestivirus species is presented in 
Table 7. At the species level, the observed taxonomic status of the examined 
strains corresponded to the estimation obtained by phylogenetic trees con-
structed from the alignment with the representative strains from the identified 
genogroups (Figures 2-4). Different species genotypes, showing peculiar genetic  
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Table 4. Palindromic nucleotide substitutions (PNS) characteristic to the genus Pestivirus and the BVDV-1, BVDV-2, BVDV-3, 
BDV, Pestivirus I and CSFV species with related genotypes. The position of base pairings is defined by numbering from the bot-
tom of the variable locus. BVDV-1 genotypes Locus Characteristic PNS markers. Determinative low variable positions (LVP) se-
lected for sequence clustering into genotypes. PP: prevalent position; HVP: highly variable position. R = A or G; Y = C or U. Ge-
notype name according Vilcek et al. [165] and subsequent authors in parenthesis. 

Genus Locus Characteristic PNS markers 

 V1 Absence in position 22—size of V1 21 bp (exception U); 
C C bulge in position 11; 
A-U in position 10 (exceptions A C, U U, G A and G G bulges); 
Y:G (U*G or C-G) in position 8 (exceptions U-A, G*U, C A, C C, A G and G G bulges, insertion A 
in correspondence of 8r); 
U-A in position 7 (exception G:Y, U*G, G A and A A bulges, insertion A in correspondence of 
7r); 
A in position 6 (exception G); 
Y:G in position 5; 
U in position 5 right nucleotide (exceptions U-A, C, U C and U U bulges, insertion A in 
correspondence of 5r); 
G:Y in position 4 (exception G A and A C bulges) 

V2 GGGGY loop (V2 positions 10-12: V2/10 G:Y; V2/11 GG; V2/12 G) (exceptions V2/12: 
GG-GGGGGGG-insertion G in V2 loop, absence-GGGY-deletion of G in V2 loop; V2/11: 
CG-GCGGY; V2/10: GG-GGGGG, AG-AGGGG, UU-UGGGU); 
Y:G in position 8 (exception A G and C A bulges, insertion A) 

Species Locus Characteristic PNS markers 

BVDV-1 V1 V1/21 Absence; U-A in position 15 (exception Y:G-U*G or C-G, A A, C A and U U bulges) 

V2 G:Y in position 5 (exceptions A-U, U-A) 

V3 G:Y in position 5 (exception Y:G, G A bulge) 
A in position 10 (exceptions G, U, A-U, U-A, G:Y, C-G or A C, A A, G A, U U, C C and G G 
bulges or absence) 

BVDV-2 V1 A-U or A C bulge in position 20 (exceptions G:Y, C C or A A bulges, absence); A, G or U in 
position 21 (exception G G, absence); absence in V1/20 and 21 is limited to strain A3-118/US is 
not considered in software parameters due to confusion with BVDV1 definition 

V2 U-A or Y:G in position 6 (exception C A bulge) 

V3 A-U or A C bulge in position 7 (exception G:Y and AA bulge Chinese strains) 

BVDV-3 
(HoBi group)  

V1 U-A in position 15 (exception CA BGD/ZS1 and BGD/ZS5) 

V3 G-C or G*U in position 3 (exception A-U or GA bulge BGDZS1); A-U in position 7 (exception 
G-C or A G, C U, U U and U C bulges); A in position 10 (exception UA, G) 

BDV V1 C-G or U*G in position 13; A-U in position 14 (exceptions U-A, G:Y and A A bulge); G:Y or A-U 
in position 15 (exceptions C U and A C bulges) 

V2 U-A, Y:G or A-U in position 5 

V3 U C and U U bulges or Y:G in position 7 (exceptions A-U, U-A, G:Y and C C, A C, C U and C A 
bulges) 

BDV-2 (Italian ovine 
isolates) tentative 
species  

V1 C-G or U*G in position 13; U-A or C A bulge in position 15 

V3 G:Y or G G bulge in position 8 

Pestivirus I V1 C-G or U*G in position 13; C-G in position 14; G:Y or A-U in position 15 (exceptions C U and A 
C bulges) 

V2 G:Y in position 5 

V3 Y:G in position 7; U Uor C U bulge in position 10 
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Continued 

CSFV V1 U-A in position 13 (exception U*G or C-G; C A bulge) 

V3 U-A in position 2; C A or U-A in position 7; U or C in position 8 (exception A) 

BVDV-1 genotypes Determinative 
LVP (V1/14; 
V2/7; V3/4) 
Genotype 
markers 

Additional markers 
(PP, LVP, HVP) 

BVDV-1a YG, GY, AU V1/12 GY/AU; V2/5 GC; V2/7 (exception C C bulge) 

BVDV-1b UA, RY, GC 
(b.1V2/7 AU; 
b.2V2/7 GY) 

b.1 V1/14 (exception G A bulge) 
V2/7 (exception A C bulge) 
V3/4 (exception AU) 
b.2 V1/14 (exception A A ; C A and G A bulges) 

BVDV-1.3 (D) CG, AC, AU (V1/14 exception C A and A G bulges) 

BVDV-1.4 CG, AU, GC V1/12 GY/AU 
V3/6 UA 
V3/4 (exception AU) 

BVDV-1.5 (I) CG, GY, GC V3/2 AC 

BVDV-1.6 (N, T) CG, GC, GU V1/16 AU/UU; 
V2/2 CG; V2/6 GY; 
V3/3 CG; V3/6 UA; V3/8 UC/AC/GC 

BVDV-1.7 (O) CG, GY, GC V2/2 UA; V3/9 AU/AA/GC 

BVDV-1.8 (C) CG, GC, AU 
(Root A non A) 

V1/12 AC (exception C C bulge) 
V2/7 (exception AU)  
V3/4 (exception AC) 

BVDV-1.9 (H)  CG, GC, GC V1/20 GA; V2/6 CU/UU 

BVDV-1.10 (Q) CG, GC, GC V1/15 AA or CA (exception species marker); V2/2 UA; V2/5 GC;  
V3/9 UC/UU 

BVDV-1.11 (E) CG, GY, GC V1/17 GA/GG/AG (exception A A bulge and GU);  
V2/6 AU/AC/UU; 
V3/6 UA; 
V3/8 AA/GA (exception A G bulge) 

BVDV-1.12 (F, R, S) 12.1 
CG, GY, GC 

12.1 
V3/6 GC V3/8 AU/AC 

12.2 
CG, AU/GC, GC 

12.2 
V3/6 GA;V2/7 (exception GC) 

BVDV-1.13 (C, J) CG, GY, GC (V1/14 exception C A bulge); 
V1/16 CR (C-G or C A bulge) V1/17 GA (exception G*U); V2/6 AU (exception A C bulge) 

BVDV-1.14 (R) YG, GY, AU 
(Root A non A) 

V2/5 AU (exception species marker) 

BVDV-1.15 (M) 15.1 
CG, GC/AC, 
GY/AU (Also 
Root A non A) 

15.1 
V1/19 GY/GG; V2/2 CG/UA; V2/4 CG/CA (exception G G bulge); V2/5 GC;  
V3/9 CC/UC/UU (exception U) V3/4 (exception UA) 

15.2 
CG, GC, GY/AU 
(Also Root A non 
A) 

15.2 
V1/19 GY/CU; 
V2/4 CG; V2/5 AU (exception species marker); 
V3/9 CC/UC 
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Continued 

BVDV-1.16 (L) CG, GC, GC V2/6 UA 

BVDV-1.17 (F) CG, GC, GC V3/6 AA (exception G A bulge); V3/8 A A bulge 

BVDV-1.18 (P) CG, GC/AC, GC V1/17 AU/CA 
V2/6 GC; V3/3 UA; V3/8 AA 

BVDV-1.19 (G) CG, GY, GC V1/15 CG; V2/5 AU (exception species marker) 

BVDV-1.20 (L, X) BVDV-1.20.1 
YG, GY, AU 
(Root A non A) 

BVDV-1.20.1 
V1/15 CG; V2/5 AU (exception species marker) 

BVDV-1.20.2 
YG, GY, GC 

BVDV-1.20.2 
V1/15 CA; V2/5 AU (exception species marker) 

BVDV-1.21 (U) 
 

UA, GC, UA 
(origine B, 
unique) 

BVDV-1.21.1 
V1/15 CG (exception species marker); V3/4 exception G A bulge; V3/5 CG (exception species 
marker); V3 loop position 10 CG (exception species marker) (exception C C bulge); V3 size longer 
(11bp - 21n) (exception 10bp - 20n); V3/2 AU 

BVDV-1.21.2 
V3/4 exception G A bulge; V3/5 CG (exception species marker); V3 loop position 10 CG 
(exception species marker) (exception C C bulge); V3 size longer (11 bp - 21n) (exception 10 bp – 
20n) 
V3/2 GU 

BVDV-1.22 (K) BVDV-1.22.1 
CG, AC, GC 

BVDV-1.22.1 
V2/3 UA; V2/5 GC 

BVDV-1.22.2 
CG, GC, GC 

BVDV-1.22.2 
V2/3 UA; V2/5 UA (exception species marker) 

BVDV-1.23 (P) CG, AC, GC V3/5 GA 

BVDV-2 genotypes Locus Characteristic PNS markers 

BVDV-2a V1 C-G in position 16; U*G, C-G or U-A in position 18 (exceptions U C and C A bulges) 

BVDV-2b V1 G-C or G*U in position 12; U-A in position 16 (exception CA bulge); G A, G G or A C bulges or 
G-C in position 17; G G or G A bulges in position 18 

V3 higher V3 loop, U in position 10 (exceptions G*U, UA and A) 

BVDV-2c V1 U-A in position 8; G A bulge in position 17; G A bulge in position 18; C C bulge in position 20 

V3 G-C in position 7 

BVDV-2d V1 Shorter V1 loop-size of V1 19 bp; U-A in position 15; GA bulge in position 17; G A bulge in 
position 18 

BVDV-2e V1 G-C in position 12; C-G in position 14; C-G in position 16; G A bulge in position 17; G A bulge in 
position 18. 

V3 higher V3 loop, C in position 10 

BVDV-2f V1 A-U or A C bulge in position 9; A-U in position 12; U-A in position 16 (exception GA bulge); G A 
bulge in position 17; G A bulge in position 18 

V3 higher V3 loop, U or U-A in position 10 

BVDV-3 genotypes Locus Characteristic PNS markers 

BVDV-3.1 V1 A-U in position 1 (exception G:Y, U U or C U bulges); Y:G in position 8; U-A or C A bulge in 
position 15; A G, A A, U U or G A bulges, A-U or G:Y in position 18 

V2 Y:G in position 3 

V3 G:Y (exception G G bulge) in position 4; Y:G, A G or U-A in position 8 
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Continued 
BVDV-3.2 V1 G:Y in position 1; A-U in position 8; U-A in position 15; A G bulge in position 18 

V2 C A bulge in position 3 

V3 A C bulge in position 4; Y:G in position 8 

BVDV-3.3 V1 A-U in position 1; Y:G in position 8; C A bulge in position 15; A A bulge in position 18 

V2 Y:G in position 3 

V3 U-A in position 4; G:Y in position 8 

BVDV-3.4 V1 C C bulge in position 1; Y:G in position 8; U-A in position 15; C U bulge in position 18 

V2 Y:G in position 3 

V3 A-U in position 4; Y:G in position 8 

BDV genotypes Locus Characteristic PNS markers 

BDV-a (1) V1 A-U or C U bulge in position 9; A A or A G bulges in position 18 (exception A-U and G G bulge) 

V2 A-U in position 1; A-U, Y:G or U-A in position 5 

V3 A A, G A or A C bulges in position 8 (exceptions G:Y, A) 

BDV-b (2) V1 A-U in position 9 (exception G:Y); U-A, Y:G in position 16 

V2 A-U in position 1; U-A in position 5 

V3 C U bulge in position 1; G:Y or U U bulge in position 2; A A bulge in position 8 (exception A-U) 

BDV-c (6, 8, SW) V1 G:Y in position 9; A-U, A G or A C bulges in position 16 

V2 A-U or A C bulge in position 1; U-A in position 5 

V3 A A bulge in position 8 

BDV-d (3) V1 AU in position 3; G:Y in position 9; A-U in position 12; A-U in position 14; U-A in position 16; C 
A, C U or U U bulges in position 19 

V2 G:Y in position 1; U-A in position 5 

V3 A G or A A bulges in position 8 

BDV-e (4) V1 G:Y in position 9; G:Y or G G bulge in position 18; G:Y or G G bulge in position 20 

V2 G:Y in position 1; Y:G in position 5 (shared with A only) 

V3 U-A or C A bulge in position 8 

BDV-f (4, 5, 7) V1 G:Y in position 9 (exception A-U); A-U in position 16 (exception G*U); Y:G, G:Y or G G bulge in 
position 18 (exception A G bulge) 

V2 G:Y in position 1 (exceptions A-U and C U or G G bulges); Y:G in position 5 (shared with A only) 

V3 U-A, Y:G, A A or C A bulges in position 8 (exception U C bulge) 

BDV-g (TU) V1 G:Y or A-U in position 9 

V2 A-U in position 1; A-U in position 5 (exception G:Y) 

V3 U-A in position 2 (g1 V3/2 CG—strains TU ITA sicily—Shared only with v60-bd-b); Y:G in 
position 7 (exception U-A—shared with a1 and e1); U or C in position 8 

BDV-h (3) V1 AU in position 3; G:Y in position 9; U-A in position 12; A-U in position 14; U-A in position 16; 
CC in position 19 

V2 G:Y or A-U in position 1; U-A in position 5 

V3 G:Y in position 4; A-U or A A bulge in position 8 

BDV-i V1 V1/8 CC/AG; G:Y in position 9 (exception GA bulge); Y:G in position 16; A-U or A G bulge in 
position 19 

https://doi.org/10.4236/aim.2019.93019


M. Giangaspero et al. 
 

 

DOI: 10.4236/aim.2019.93019 288 Advances in Microbiology 
 

Continued 

 V2 A-U in position 1; U-A in position 5 

V3 G:Y in position 4; A A or C A bulges in position 8. 

BDV-j (3) V1 G:Y in position 3 (exception A-U); G:Y in position 9; G:Y in position 14 (exception A-U); U-A or 
Y:G in position 16; C C, U C bulges, U-A or Y:G in position 19 

V2 A-U in position 1; U-A in position 5 

V3 G:Y in position 4; Y:G, G:Y, U C or A A bulges in position 8 

BDV sub-genotypes Locus Characteristic PNS markers 

BDV-a1 (1) V1 U right nucleotide in position 7; A-U in position 12; A-U or CU in position 15; AA or AG in 
position 18 

BDV-a2 (1) V1 G right nucleotide in position 7; G:Y or CC in posizion 12; G:Y in position 15; AG or GG in 
position 18 

BDV-a3 (1) V1 A right nucleotide in position 7; G:Y in position 12; AC in position 15; AG in position 18 

BDV-a4 (1) V1 G right nucleotide in position 7; G:Y in posizion 12; G:Y in position 15; A-U in position 18 

BDV-c1.1 (Sw) V1 A-U in position 16 

V2 A-U in position 1 

V3 G:Y in position 4 

BDV-c1.2 (8) V1 A-U in position 16 

V2 A-U in position 1 

V3 A-U in position 4 

BDV-c1.3 (8) V1 A C bulge in position 16; G:Y in position 21 

V2 A-U in position 1 

V3 G:Y in position 4 

BDV-c2 (6) V1 G:Y or U C and U U bulges in position 20; U or U U bulge in position 21 

V2 A C bulge in position 1 

V3 C C bulge in position 7 (exception U C bulge) 

BDV-d1 (3) V1 CU or UU in position 19 

V3 A-U in position 4; A G bulge in position 8 

BDV-d2 (3) V1 CA in position 19 

V3 G:Y in position 4; A A bulge in position 8 

BDV-e1 (4) V1 G:Y in position 16 

V3 U-A in position 8 

BDV-e2 (4) V1 A-U in position 16; G in position 21 

V3 CA in position 8 

BDV-f1 (4, 5) 
 

V1 G right nucleotide in position 7; CU in position 17; GG in position 18 

V2 G:Y or Y:G in position 2 

V3 UU or UC in position 7 

BDV-f2 (4) V1 U right nucleotide in position 7; Y:G in position 17; G:Y in position 18 

V2 UA in position 2 

V3 A-U or AC in position 7 
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BDV-f3 (4) V1 G right nucleotide in position 7; CU or A-U in position 17; G:Y, GG or AG in position 18 

V2 UA in position 2 

V3 UU or UC in position 7 

BDV-f4 (4, 7) V1 G right nucleotide in position 7; CU or CC in position 17; Y:G in position 18 

V2 Y:G or C U bulge in position 2 

V3 U U or U C bulges in position 7 

BDV-g1 (TU) V1 G:Y in position 1 

V2 U-A, C-G or U*G in position 3 

V3 A-U or CU in position 6 (CU all strains from Sicily; shared only with B V60 and D2 AV only) 

BDV-g2 (TU) V1 A-U in position 1 

V2 A-U or AC in position 3 

V3 AC, UU or CC in position 6 

BDV-i1 V1 C C bulge in position 8; A-U in position 19 

V3 C A bulge in position 8 

BDV-i2 V1 A G bulge in position 8; A G bulge in position 19 

V3 A A bulge in position 8 

BDV-j1 (3) V1 A-U in position 3; A-U in position 14; CC in position 19 

V3 Y:G in position 8 

BDV-j2 (3) V1 G:Y in position 3; GC in position 14; UA or UG in position 19 

V3 G:Y, U C or A A bulges in position 8 

BDV-j3 (3) V1 G:Y in position 3; GC in position 14; UC in position 19 

V3 Y:G in position 8; V3/9 A 

CSFV genotypes Locus Characteristic PNS markers 

CSFV-a V1 A C bulge in position 15 (exception G:Y and A-U) 

V2 U-A in position 5; G:Y in position 7 

V3 A-U in position 1 (exception A G bulge) 

CSFV-b V1 G:Y in position 15; A G bulge in position 19; U-A in position 20 

V2 A-U in position 5; A C bulge in position 7 

V3 A-U in position 1; U C bulge in position 6 

CSFV-c V1 A-U in position 15 

V2 U-A in position 5; G:Y in position 7 

V3 A G bulge in position 1 

CSFV-d V1 A C bulge in position 15 

V2 U-A in position 5; G:Y in position 7 

V3 U U bulge in position 1 

CSFV genotype variants Locus Characteristic PNS markers 

CSFV-a1 V1 AC in position 15 

V2 A-U in position 1; A-U in position 6 
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 V3 C or U in position 8 

CSFV-a2 V1 AC in position 15 (exception G-C) 

V2 A-U in position 1; G:Y in position 6 

V3 A-U in position 6; U or C in position 8 

CSFV-a3 V1 AC in position 15 

V2 AC in position 1; G:Y in position 6 

V3 A in position 8 

CSFV-a4 V1 G:Y in position 15 

V2 A-U in position 1; G:Y in position 6 

V3 AC or UC in position 6; A in position 8 (exception C) 

CSFV-a5 V1 A-U in position 15 

V2 AC in position 1; A-U in position 6 

V3 U in position 8 

CSFV-a6 V1 G:Y in position 15 

V2 A-U in position 1; A-U in position 6 

V3 C in position 8 

 
characteristics, were restricted to specific geographic areas as in Turkey, China 
and other Asian countries (Figure 5). 

The BVDV-1 species was heterogeneous. Some Asian strains showed excep-
tion at the level of BVDV-1 species markers. For example, Chinese strains of the 
genotype BVDV-1.10 showed divergence in V1/15 with A A or C A bulges, in-
stead of species marker U-A pairing. In sub genotype 1.15.2, all strains showed 
species marker exception in V2/5, with A-U instead of G-C. Similarly, strain 
S153 [8], genotype 1.23, showed an atypical G A bulge at the level of species 
marker position in V3/5. The Asian clusters 1.8 and 1.15 shared a root characte-
ristic of genotype BVDV-1a (V1/14 C-G, V2/7 G-C and V3/4 A-U). All the 
strains belonging to the group 1.8 showed an A C bulge in position 12 in V1 lo-
cus, a base pairing not present in any member in the genotype 1a. In this group 
have been included bovine strains from Australia, China and Japan as Bega 
(Mackintosh et al., unpublished), Shitara/01/05 [28], Manasi [9], the Australian 
contaminant strain A1-114/AU [29] and the contaminant strain CRFK reported 
from Japan [30]. Among Chinese strains of the genotype 1.15, reported as geno-
type M [2] [7], root A was present in only the strain LZ05 of the sub genotype 
15.1. In the sub genotype 15.2, characterized also by an exception at the level of 
species marker in V2/5 (A-U instead of G-C), root A was present in the majority 
of the strains. The genotype 1.21 showed a new and atypical U-A/G-C/U-A root 
associated to the genotype b (sub genotype 2). BVDV-1b, characterized by a 
variation of base pairing at the level of position 7 in V2 (b.1 V2/7 A-U; b.2 V2/7 
G*U or G-C), was the only other BVDV-1 genotype showing U-A pairing in 
LVP V1/14. The V1/14 U-A was shared exclusively with BVDV-1b and BVDV-1.21  

https://doi.org/10.4236/aim.2019.93019


M. Giangaspero et al. 
 

 

DOI: 10.4236/aim.2019.93019 291 Advances in Microbiology 
 

 
Figure 1. Secondary structure of the entire 5’-UTR sequence of BVDV-3 strain Hobi/315/2004 [98] (a) predicted according to the 
algorithm of Zuker and Stiegler [22], using the Genetyx-Mac version 10.1 program package (Software Development Co., Ltd., 
Tokyo, Japan). The minimum free energy was calculated by the method of Freier et al. [23]. Minimum free energy: −88.51 
Kcal/mol. V1-V3 palindromic loci are identified in the 5’-UTR sequence. Variable loci starting base pairs (position 1) referred to 
PNS procedure are indicated by blue arrows. (b): Schematic presentation of V1-V3 palindromic loci in the 5’-UTR of the tentative 
species BVDV-3 strain Hobi/315/2004. Base pairings characteristic to the genus (PNS genus specific) are shown in violet. The 
characteristic base pairings of the species BVDV-3 (PNS species specific) are represented in blue. Distance of V3 from V2: 5 nuc-
leotides. The position of base-pairings is defined by numbering from the bottom of the secondary structures. Watson-Crick base 
pairings are indicated by a dash (-); tolerated pairings in secondary structure are indicated by an asterisk (*). 
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in which was characteristic, and in all the BVDV-2 species strains. 
Among BVDV-1 genotypes, only BVDV-1a, 1b, 1.3 and 1.13 were widely dis-

tributed. The geographic distribution of genotypes varied considerably, and in 
certain countries as China, over the half of the 23 genotypes described in the 
species, 12 could be identified: BVDV-1a, 1b1 and 1b2, 1.3, 1.6, 1.7, 1.8, 1.10, 1.11, 
1.15, 1.18, 1.21 and 1.23. BVDV-1a (n = 4) was reported in two bovines [6], two 
Bactrian camels [31] and one pig [32]. Despite belonging to the same BVDV-1a 
genotype, strains NH01 (bovine) and SH1060 (pig) were low related, showing 
89.2% homology and a divergence of 11 bp in the IRES. Among BVDV-1b geno-
type, only two BVDV-b1 have been reported in cattle (Zhang et al., unpublished) 
[2], while the large majority (n = 41) were BVDV-1b2, 13 in cattle, 27 in yaks [2] 
and one in a Bactrian camel (Camelus bactrianus) [31]. Four bovine strains (Gao 
et al., unpublished) [6] belonged to genotype BVDV-1.3. Two other bovine strains 
(S133 and TY05), reported as M [7] [8] resulted BVDV-1.6. One pig strain, re-
ported as genotype O by Deng et al. [32] was clustered in the genotype 
BVDV-1.7, with four other strains all reported as genotype M, three from cattle, 
S43, S121 and BJ0924 [8] and one from camel, isolate 9 [31]. BVDV-1.8 (n = 5) 
was reported in three bovines [9] and two camels [31]. Genotype BVDV-1.10, 
reported as Q, resulted circulating in cattle (n= 6), pigs (n = 5) and camels (n = 
3) [3] [4] [6] [8] [31] [32]. Two of the strains from camel, isolate 6 and isolate 7, 
have been reported as M by Gao et al. [31]. Only one bovine strain [8] resulted 
BVDV-1.11. BVDV-1.15.1 (clustered as M) were isolated in 56 bovines, 9 buffa-
loes, 4 Yaks, [2] [6] [7] [8] [10] 2 pigs [32] and one in a Bactrian camel [31]. 
BVDV-1.15.2 (28 strains) was reported as M in 13 cattle and 14 yaks [2] [8] and 
one in a Bactrian camel [31]. Six strains were BVDV-1.18, four cattle isolates 
reported as P [7] and two from Bactrian camel, isolate 5 and isolate 8, reported 
as M [31]. Genotype BVDV-1.21 (U) was reported in 14 bovines, 7 buffaloes and 
in two yaks (Sun et al., unpublished) [2]. The BVDV-1.23 strain S153 [8] was 
isolated in cattle. In Japan most of the strains isolated from cattle and contami-
nant of biological products belonged to BVDV-1 genotypes 1a and 1b1. Geno-
types 1.3, 1.6, 1.7, 1.8 and 1.13 were also reported. 

Some genetic variants appeared to be restricted in certain areas, as certain ge-
notypes circulating only in Turkey or China, suggesting geographic isolation [7]. 
Most of BVDV-1 genotypes were related to specific geographic distribution, 
showing two main populations circulating in Asian and European countries, re-
spectively. Apart few exceptions, a very limited number of strains isolated in Italy 
belonging to 1.6, 1.8 and 1.21, some genotypes were characteristic from Asia. Ge-
notypes 1.10, 1.15, 1.18 and 1.23 were circulating exclusively in China, and also 
genotype 1.21 has been reported almost exclusively in China. Other genotypes 
(1.6, 1.7 and 1.8) appear to be restricted to Asian or Austral Asian countries. 
U-A pairing in V2/2 was present only among certain Asian genotypes (1.7, 1.10 
and 1.15.1). Other genotypes were rare and present only in few countries, 
BVDV-1.16 bovine strains reported by as genotype L [33], and strains TR70, 
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Figure 2. Phylogenetic tree based on the 5’-UTR comparison, suggesting a taxonomic position of the BVDV-1 strains in the genus 
Pestivirus. Strain NADL [M31182] is the reference for the BVDV-1a genotype, strains Draper [L32880] and NY-1 [L32879] are the 
references for the BVDV-1b genotype, sub genotypes 1b1 and 1b2, and strain Europa [AB000898] is the reference for the 
BVDV-1.3 genotype. Strains 438/02 [AY159540], 23-15 [AF298059], CRFK [D50814], IS25CP/01 [AB359931], so CP/75 
[AB042661], KM [AF298068], SD0803 [JN400273], 10-84 [AF298054], 22146/81 [AJ304376], 11207/98 [AJ304390], 17P 
[AF244954], TR70 [MG670547], ZM-95 [AF526381], TR-2007-Gu-175454-4695 [EU716150], J [AF298067], TJ06 [GU120246], A 
[AF298064], CH-01-08 [EU180024], M31182 (Yak) [JQ799141], Rebe [AF299317] and S153 [KF006964] are references for the 
BVDV-1.4 to BVDV-1.23 genotypes. Scale bar indicates 10 nucleotide substitutions per 100 nucleotides. Genotypes present in 
Asian countries are indicated in circles. Genotypes circulating exclusively in China are indicated in red circles. Genotypes re-
stricted to Turkey are indicated in orange circles. Those restricted to Far East Asia and Austral Asia (Japan, South Korea, China 
and Australia) are indicated in brown circles. A very limited number of strains isolated in Italy belonging to 1.6, 1.8 and 1.21 
represented exceptions. Nomenclature of identified genotypes is based on divergence in the genus. Clustering according to pri-
mary structure analysis by depositors is indicated under parenthesis. 
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Figure 3. Phylogenetic tree based on the 5’-UTR comparison, suggesting a taxonomic position of the BDV strains in the genus 
Pestivirus. Strains 137/4 [U65052], X818 [AF037405], Bd31 [U70263], Casimir [AB122085] and Rentier [AB122086] are references 
for the genotypes BDV-a sub genotypes 1, 2 and 3 and genotype BDV-b. Strains CH-BD3 [JQ994199], CH-BD4 [JQ994200], Ita-
ly-58987 [KX573913], Italy-103761 [KT072634] and ChamoisVdA2 [MG725337] are references for the genotype BDV-c sub ge-
notypes 1 and 3 and the strains 92-F-7119 [EF693994], 92-F-7014 [EF693993], 90-F-6335 [EF693990], 06-F-0299/357 [EF694000], 
10F03356 [KC859384] and RUPI-05 [KC859383] are references for the genotype BDV-c sub genotype 2. The Chinese strains 
AH12-01 [JQ946320] and AH12-02 [JX437132] are reference for the genotype BDV-d sub genotype 1, and strain 297 [KC484999] 
is reference for the BDV-d sub genotype 2. Strains C27 [DQ275623] and ZA11115 [DQ361070] are references for the BDV-e sub 
genotypes 1 and 2. Strains AV [EF693984], 0501209-052GI [DQ679902] and 93-F-7289 [EF693995] are references for the BDV-f 
sub genotype 1. Strains 2112/99 [AY159513], BU-1CRA22 [DQ275622], LE31C2 [DQ361072] and Chamois1 [AY738080] are ref-
erences for the BDV-f sub genotypes 2, 3 and 4. The strain 91-F-6731 [EF988632], 33S [AF462002] and SN1T [AF461997] are 
reference for the genotype BDV-g (Tunisian type). The Chinese strains JS12/04 [KC537789], JSLS12-01 [KC963426] and JSYZ15 
[KT327869] represent the genotype BDV-h. The Indian strain Ind830-09 [KT934377] is reference for the genotype BDV-j sub 
genotype 1, the strains 90-F-6338 [EF693991], 90F6227 [EF693989], LA/64421/10 [LM999989], Gifhorn [EU636997], B30006 
[EU224227] and CH-BD2 [JQ994198] are reference for the genotype BDV-j sub genotypes 2 and 3. The Turkish strains TR13 
[JF489888] and TR14 [JF489889] are references for the genotype BDV-i. The bovine strains NADL [M31182], the Chinese bovine 
strains JZ05-1 [GQ888686], JS1201 [JX469119] and S171 [KF006974] represents the BVDV-1, BVDV-2, BVDV-3 and CSFV spe-
cies. The ovine Turkish strains Aydin [AM418427] and Burdur [AM418428] represents the Pestivirus I species. Scale bar indicates 
10 nucleotide substitutions per 100 nucleotides. Genotypes present only in Asian countries are indicated in circles (red: China; 
green: India; orange: Turkey). Nomenclature of identified genotypes is based on divergence in the genus. Clustering according to 
primary structure analysis by depositors is indicated under parenthesis. 
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Figure 4. Phylogenetic tree based on the 5’-UTR comparison, suggesting a taxonomic position of the CSFV strains in the genus 
Pestivirus. Strains Brescia [M31768], 39 [AF407339], Eystrup [AF326963], Alfort/187 [X87939], HCLV [AF091507], Shimen 
[AF092448] and the bovine strain 8 India [MG813566] are references for the genotype CSFV-a variant 1. Strains Alfort/Tuebingen 
[J04358], Chiba-80 [AB019659], Osaka/51 [AB019174], Paderborn [AY072924] and the Chinese bovine strains S173 [KF006975], 
HEN03 [KC176778] and S112 [MK118725] are references for the genotype CSFV-a variant 2. Strain Saitama/81 [AB019178] is 
reference for the CSFV-a variant 3, and strains Parambi [KT239105] and Honduras [L42426] are reference for the CSFV-a vari-
ants 4 and 6. The Spanish ovine strain 5440/99 [AY159514] is reference for the genotype CSFV-b. The Japanese strains Kana-
gawa/74 [AB019166] and Okinawa/86 [AB019172] are references for the genotype CSFV-c. The Chinese bovine strain S171 
[KF006974] represents the genotype CSFV-d. Scale bar indicates 10 nucleotide substitutions per 100 nucleotides. Genotypes 
present only in Asian countries are indicated in circles (red: China; green: India; brown: Japan and Taiwan). Nomenclature of 
identified genotypes is based on divergence in the genus. Clustering according to primary structure analysis by depositors is indi-
cated under parenthesis. 
 

 
Figure 5. Schematic representation of geographic distribution of Asian Pestivirus species genotypes circulating in restricted areas. 
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TR73 and TR75 belonging to the BVDV-1.14, reported by Yesilbag et al. [34] as 
genotype R, were restricted to Turkey. 

In the BVDV-2 species, while BVDV-2a showed cosmopolitan diffusion and 
2b and other related genotypes were more frequently distributed in South 
America, only one group appeared specific to Asia. The genotype b variant 4 
(BVDV-2b4) included only Chinese isolates: the bovine strain SD-1301 [5] and 
the contaminants S143, S172 and S51 [8]. BVDV-3 species showed low hetero-
geneity with four different genotypes. Out of four, three (BVDV-3.2, BVDV-3.3 
and BVDV-3.4) were specific to zebu and bovine isolates from India and Ban-
gladesh, respectively [12] [13]. Strains IndMDV18963/12 and IndBHA6604/12, 
representative for BVDV-3.2 genotype, were divergent in the species, scoring di-
vergence 96.66% when compared with other BVDV-3 strains. Similarly, with diver-
gence values of 82.14% for BGD/ZS5 and 100% for BGD/ZS3, respectively, bovine 
strains from Bangladesh were divergent from genotypes 1 and 2, constituting a sep-
arate genotype in the BVDV-3 species. In the BVDV-3 genotype 1, subgenotype 1 
variants 2 (contaminant strain JS12/01) [35] and 3 (bovine strain Th/04_KhonKaen) 
[36] were reported from China and Thailand. BVDV-3 genotype 1 subgenotype 2 
was specific to small ruminants from China (Shi et al., unpublished), with diver-
gence 27.27%, divergence mean value 6.82 from other BVDV-3.1 genotype strains. 
BVDV-3 genotype 1 subgenotypes 3 and 4 were specific to zebu and bovine isolates 
from India and Bangladesh, respectively [12] [13]. Strains IndABI16023/12 and 
IndABI16020/12, representative for BVDV-3.1.3, showed a divergence of 23.33% 
from strains of other genotype variants. BVDV-3.1.4 strain BGDZS1 showed a di-
vergence of 40%. 

BDV species sequence characteristics of Chinese and Turkish strains were 
highly divergent from other genogroups, indicating geographic segregation. Chi-
nese strains AH12-01, AH12-02 and AHHX15, reported as genotype BDV-3 
(Ghiforn type—PNS BDV-j) [37], have been clustered as genotype BDV-d, sub 
genotype d1. These strains showed high homology with strain 297, also reported as 
BDV-3 [38], clustered in the same genotype, but as separate sub genotype 
BDV-d2. Similarly, other Chinese strains JS12/04, JSLS12-01 and JSYZ15, reported 
as genotype BDV-3 [37] have been clustered as genotype BDV-h. Both genotypes 
resulted partially related with BDV-j. However, qualitative non correspondence at 
root LVP level (BDV-d GC/GU/UA-AA-AG; BDV-h GC/GU-AU/UA-AA-AU; 
BDV-j GC/AU/UA-UG-GC-UC) (exception AA in V3/8 of strain BDV-j2 
CH-BD1, discriminated from BDV-h with additional identification marker 
V1/3: BDV-j2 G-C; BDV-h A-U) and quantitative evaluation of divergence val-
ues justified separate clustering. Strains of sub genotype BDV-d1 were related 
only with BDV-j1 (India type) (no divergence values exceeding genotype limit 
value 9; divergence mean value 8.5) and divergent from sub genotypes BDV-j2 
(divergence 92.85%, divergence mean value 10.78) and BDV-j3 (divergence 
100%, divergence mean value 11.83). Strain 297 (sub genotype BDV-d2) resulted 
divergent from BDV-j3 (Ghiforn type) (divergence 100%, divergence mean value 
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11) and related with BDV-j1 and BDV-j2 (divergence mean values 8 and 8.14, 
respectively), but showing lowest divergence value mean of 6.5 with BDV-d1 
strains. BDV-h resulted related only with BDV-j1 (homology 33.33%; divergence 
mean value 8.67) and divergent from other BDV-j sub genotypes (BDV-j2: di-
vergence 61.9%, divergence mean value 9.67; BDV-j3: divergence 100%, diver-
gence mean value 12.33). 

Turkish strains TR-13 and TR-14, reported as distinct group in the BDV spe-
cies [39], have been clustered as genotype BDV-i. Due to the divergence value of 
9, obtained comparing their respective sequences, related to nucleotide varia-
tions particularly in the V1 stem, but maintaining clear base pairing homology 
in the rest of the secondary structure, they have been considered as two separate 
sub genotypes. BDV-i1 strain TR-13 showed bulges in V1/8 C C and V1/9 G A 
and BDV-i2 strain TR-14 showed V1/4 G A bulge, V2/12 insertion U and V1/8 
A G bulge as characteristic bp in the sequence. Comparison with the other BDV 
sequences, applying species determination limit value 13, resulted related to the 
majority of BDV genotypes, showing a divergence percentage of 36.08, with di-
vergence value range from 7 to 19 (mean 12.91). High divergence values have 
been observed with genotype BDV-f (including Aveyron and Pyrenean Chamois 
types) (values up to 17 - 19), BDV-g (Tunisian type), sub genotype 2 (values 15 - 
16). High divergence values (16-19) have been obtained also with Pestivirus I 
(Turkish type Aydin—Burdur). However, strains TR-13 and TR-14 shared all 
BDV species markers. Comparison with the other BDV sequences, applying ge-
notype determination limit value 9, resulted divergent from all other BDV ge-
notypes, despite the partial relation scored with some members of genotype 
BDV-a, sub genotype 2, BDV-c, sub genotype 1, and BVD-j, which, however, did 
not correspond to relatedness when considering the entire group to determine 
overall homology (out of 192 comparisons, only 19 values were 7 - 9 and 13 cor-
responded to the limit value). Also BDV-j1 included the Indian ovine strain Ind 
830-09 [40]. 
In the CSFV species, secondary structure analysis revealed corresponding main 
genomic groups, defined by phylogenetic analysis, dividing CSFVs into three 
major lineages (Brescia, Alfort and Kanagawa/Okinawa types) and their subli-
neages [41]. Three genetic clusters referred specifically to Asian countries. The 
CSFV genotype a variant 4 (type Parambi) included only pig and wild boar 
strains from India (Ravishankar et al., Tomar et al., Chandramohan et al., unpub-
lished) [42]. CSFV pig strains clustered into genotype C (type Okinawa) were re-
ported only from Japan and Taiwan (Liu, unpublished) [41] [43] [44]. The Chi-
nese strain S171 [8], isolated from bovine serum, was clustered as CSFV-d. The 
strain S171 showed affinity with genotype CSFV-a2, but the difference was 
marked at the level of the V3 locus nucleotide base pairings. Exception made for 
a partial relation with CSFV-a2, S171 was divergent from all other CSFV types 
showing divergence values from 10 to 15. Divergence percentage with CSFV-a2 
was 62.5%, with a divergence mean value of 9.87, resulting related, but belonging 
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to a separate cluster. In addition, it was significantly less related to BDV species, 
a known characteristic of other CSFV strains (Figure 6 & Figure 7). Base pair-
ings comparison between strain S171 and strains of the different BDV genotypes 
scored high divergence values, ranging from 17 to 25, with a mean value of 
20.31. These values were very high in confront of the mean divergence value of 
14.57 obtained comparing the other CSFV strains with BDV strains. Divergence 
from BDV-2 tentative species resulted also higher with CSFV-d (divergence val-
ues ranging from 21 to 22; mean divergence value 21.33), in confront of scores 
obtained with other CSFV genotypes CSFV-a, CSFV-b and CSFV-c (divergence 
values ranging from 15 to 20; mean divergence value 17.06). No relation was ob-
served between CFSV and any other Pestivirus species (Figure 7). Other CSFV 
bovine strains have been reported from India and China, contaminants or asso-
ciated to natural infection with clinical signs [8] [11] [45]. Indian strains, re-
ported from the states of Tamil Nadu and Meghalaya, were genetically closely 
related to CSFV genotype a1 and a5 strains, respectively. However, a G*U pair-
ing in V1/3 was peculiar only in the Indian bovine strains from Tamil Nadu. In 
other CSFV strains this position is characterized by a conserved A-U pairing, 
while G-C or G*U is conserved among BVDV-1, BVDV-2 and BVDV-3 strains 
(only 5 strains show exceptions, out of 1073 considered sequences). 

4. Discussion 

Different genetic characteristics were specific to Asian clusters in different  
 

 

Figure 6. Graphical representation of PNS quantitative evaluation. Genotype CSFV-d is not related with BDV or BDV-2. 
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Figure 7. Graphical representation of PNS quantitative evaluation. CSFV is more related with BDV, showing higher rela-
tion with BDV than with BDV-2. 

 
Pestivirus species, showing great potential in the evolution of the genus. Until 
1997, only two BVDV-1 genotypes were known, 1a and 1b. Thanks to the de-
velopment of virologic procedures and the increased interest in the pathogen, 
different new genomic types have been described. However, the heterogeneity of 
the species become even more evident in particular by the contribution of scien-
tists from China and other Asian countries. BVDV-1 is known to have a cos-
mopolitan diffusion, but genotype geographic distribution may vary considera-
bly. For example, while predominant in UK [46], in China, BVDV-1a genotype 
is rare, first reported in cattle in 2010 [5] and in pigs in 2012 [32], and shows al-
so heterogeneity, suggesting that the virus have the great variation in evolution 
between the different host species [5]. BVDV-1 species resulted heterogeneous 
especially in China. The number of different BVDV-1 genotypes increased pro-
gressively. BVDV-1b and 1m (PNS 1.15) are predominant [7]. Currently, 
BVDV-1 is represented by 12 types. Only in Italy, genetic diversity of BVDV-1 is 
higher, accounting for 14 different types [15]. Despite, the first description of the 
species in 1980 was related to 1b infected cattle imported from Europe [10] [47], 
some of the genetic variants further described appeared to be restricted to China. 
For example, the phylogenetic reconstructions indicated that the clustering of 
the Chinese BVDV-1m genotype in the phylogenetic tree is a result of geo-
graphic isolation [7]. The Chinese strain ZM-95 for many years was the only 
representative of a separate cluster in the species, suggesting the circulation of a 
rare Pestivirus restricted in pigs. The strain was the first BVD virus isolated in 
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China (Inner Mongolia) from pigs showing clinical symptoms and pathological 
lesions resembling mild classical swine fever [48], and characterized as genotype 
M [49] (PNS BVDV-1.15). Zhu et al. [10] reported a noncytopathic strain, ge-
netically closely related to the pig strain ZM-95, associated with a disease cha-
racterized by high morbidity and mortality, a first BVDV-1m virus originated 
from cattle. In the present study, many other closely related strains have been 
considered from recent reports from China. Only the bovine strains BJ11_01 and 
S73 isolated in China in 2011 and 2013, 16 - 18 years later (Zhang et al., unpub-
lished) [8], shared all the nucleotide characteristics of ZM-95, and all the other 
newly reported strains clarified genotype identification parameters. The geno-
type 1.15 resulted the most commonly diffused in China, and not restricted in 
pigs but circulating in cattle, buffaloes, yaks and Bactrian camels. The yak strain 
M31182 (Sun et al., unpublished) showed also characteristic nucleotide base 
pairs indicating radical sequence variations generating new genotype in the 
BVDV-1 species. Reported as genotype U, PNS 1.21, the genotype was identified 
also in other Chinese bovine and buffalo sequences. 

The heterogeneity revealed in the BDV species was among the highest ob-
served among pestiviruses. Only BVDV-1 accounted for more genotypic va-
riants [14]. Sequence characteristics of Turkish and Chinese strains were highly 
divergent from other genogroups, indicating geographic segregation. HoBi-like 
pestiviruses (BVDV-3) was less heterogenous, but characterized by three Asian 
lineages. Strains from India and Bangladesh [12] [13] showed genetic diversity 
and molecular characteristics clearly distinct from those previously reported 
circulating globally, from bovine fetal serum or naturally infected cattle and 
buffaloes in America, Europe, Thailand and Australia, highlighting the inde-
pendent evolution of the species in the Indian subcontinent. Similarly, the CSFV 
species showed low heterogeneity. However, two Asian genotypes were highly 
divergent. According to primary sequence analysis, the strain Kanagawa/74 
(PNS genotype CSFV-c) was divergent in the species [50] [51], and proposed as 
harmonized outgroup strain for phylogenetic analyses [52]. This suggests that 
strain S171 (PNS genotype CSFV-d) should be considered as another outgroup 
of the species with even more enhanced divergence, with atypical characteristics, 
possibly related to host species adaptation or a result of geographic isolation, 
occurrences suggested also for BVDV-1 isolates in China [5] [7]. During a sur-
vey for the detection and genetic characterization of 5’-UTR and E2 gene of 
CSFV from bovine population of the northeastern region of Indian state of 
Meghalaya, out of 134 cattle serum samples tested, all were positive in reverse 
transcription-polymerase chain reaction (RT-PCR) for 5’-UTR region and 10 
samples were positive for CSFV antigen by a commercial antigen capture en-
zyme linked immunosorbent assay (Ag-ELISA) [45]. Full length E2 region of 
CSFV were amplified from two positive samples, CS/ML/911/IDP/13 [KY860532] 
and CS/ML/AF/Umiam/14 [KY860531]. Phylogenetic analysis showed similarity 
with isolates reported from the neighboring state of Assam, as the pig strain 
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IND/AS/GHY/G4 [KM362426] [53]. According to E2 region primary se-
quence analysis, these strains were clustered in the CSFV sub-genogroup 2.1 
[45] [53]. The E2 regions of the bovine strains CS/ML/911/IDP/13 [KY860532] 
and CS/ML/AF/Umiam/14 [KY860531] showed 99% nucleotide identity with 
IND/AS/GHY/G4 (PNS CSFV-a5) and 92% with strain Paderborn [GQ902941] 
(PNS CSFV-a2). 5’-UTR evaluation by PNS from complete genome of Pader-
born and IND/AS/GHY/G4 suggested the appurtenance of both bovine 
strains CS/ML/911/IDP/13 and CS/ML/AF/Umiam/14 to PNS CSFV-a5. As PNS 
CSFV-a4 (type Parambi), also this cluster was characteristic to India. 

The high level of heterogeneity was reflected also in a certain confusion in the 
nomenclature of types. For example, the Chinese camel isolate 9, clustered as M 
[31], diverged of only 2 bp from the strain AQGN96BI5 of genotype 1.7 (O), and 
4 bp from the 1.7 reference strain IS25CP/01 [28], thus justifying the reallocation 
in this BVDV group. Similarly, the Chinese camel isolate 5, reported as M [31] 
was reclustered in the present study, showing relation with genotype 1.17 (P) 
reference strain TJ06 [7] (divergence 6 bp). Confusion was also due to the use 
of same names to define different genetic clusters, as in the case of strains 
TR-2007-A-2368MS, TR-2007-Gu-175454-4695 [33], TR1, TR16 and TR72 [34], 
clustered as genotype L, reported from cattle in Turkey, genetically distant from 
homonymous isolates from continental Europe [54] [55] [56]. 

It is unlikely that geographic specificity of some types might be due to sam-
pling bias, taking into account that strains have been reported from qualified la-
boratories, often identifying in the same epidemiological survey typical isolates. 
In certain cases, observations have been further validated at the level of the In-
ternational Committee on Taxonomy of Viruses. For example, atypical ovine 
Turkish isolates BDV/Aydin/04-TR and BDV/Burdur/05-TR [57], previously 
considered a separate Pestivirus species [58], a new BDV subgroup [57] or BDV 
borderline candidate for reclustering as new species [59], have been recently 
classified as new genus Pestivirus member species (Pestivirus I) [1]. Further-
more, it is highly probable that future investigations will reveal the existence of 
new types in the genus since most of routinely conducted diagnostic work is 
based on serology and only few isolates are reported from certain regions. Simi-
larly, despite evidence of Pestivirus seropositive animals in a large number of 
wild animal species [60], the number of reported isolates is very limited and re-
lated to few species as deer (Cervus elaphus) and roe deer (Capreolus capreolus) 
[61] [62], or the Japanese serow (Capricornis crispus) [63], Pyrenean chamois 
(Rupicapra pyrenaica) [64], Alpine chamois (Rupicapra rupicapra) [65], and 
captive mousedeer (Tragulus javanicus) [66], wisent (Bison bonasus) and rein-
deer (Rangifer tarandus) [67]. 

Also investigations in man, may reveal new aspects of Pestivirus epidemiolo-
gy. Using mass spectrometry proteomics to analyze protein extracts from three 
Zika positive brains of deceased babies with severe brain lesions and arthrogry-
posis, peptides from the polyprotein of a Bovine-like viral diarrhea virus have 
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been detected, suggesting that Zika virus may not be the only etiological agent 
responsible for microcephaly [68]. During the outbreak in Paraíba, in 2015, 
BVDV RNA was also found in the amniotic fluid collected from four mothers 
with babies affected by Zika and microcephaly. Two 5’-UTR RNA genomic se-
quences, have been provided by Prof Tanuri, Federal University of Rio de Janei-
ro, for further secondary structure analysis. The strain 4p, considered in the 
present study, belonged to genotype BVDV-2b, typical genotype circulating in 
South America, genetically close to Brazilian strains LV56-1013 [69] and LVPa-
tol0209 (Silveira et al., unpublished), but showing unreported variants in the 
IRES. The second isolate (12p) was a BVDV-1b1, genotype of cosmopolitan dif-
fusion, very similar to bovine strains UEL9-BR/11 (Rodrigues et al., unpub-
lished), isolated in Brazil in 2011, about 10 years later than the three other close-
ly genetically related strains 133/02, 4092/00 and 3310/01 [70] previously identi-
fied in Spain in 2002. The human strain 12p showed also homology (98% nuc-
leotide identity) with four contaminant strains isolated in Mexico in 2012, the 
BVDV-1b1 NGR2, NGR3, NGR11 and NGR12 (Gomez-Romero et al., unpub-
lished). The only strain previously reported in humans belonged to genotype 
BVDV-1.3 [71], another cluster with cosmopolitan diffusion. 

Observed heterogeneity in the Pestivirus species has to be considered for po-
tential implications on diagnostic tests, control and preventive measures, since 
commonly available tests and vaccines are based on viral antigenic substrate 
[72]. Due to possible geographical segregation, recognition of the molecular 
characteristics of field strains present in a population is fundamental for the 
control or eradication programs design, vaccine development or retracing infec-
tion sources in case of outbreaks [46] [73]. Laboratory testing difficulties may be 
due to serological cross-reactivity or divergence among pestiviruses. Serological 
surveillance of BVDV by ELISA does not distinguish between BVDV and BDV 
as source of infection. During routine genetic typing of pestiviruses in India, 
BDV was detected in sheep by real time RT-PCR [40]. All the samples yielded 
positive virus isolates in cell culture but were found negative by a BVDV antigen 
ELISA, suggesting that for diagnosis of BDV infection, the commercial BVDV 
Ag-ELISA should be used with caution. For adequate differentiation between 
BVDV and BDV, cross-serum neutralization test procedure has been recently 
developed [74]. Current BVDV diagnostic tests may fail to detect HoBi-like vi-
ruses or to differentiate between BVDV and HoBi-like viruses [75]. Further-
more, available commercial serological tests for BVDV do not reliably detect 
HoBi-like virus exposure, and cross protection against HoBi-like viruses con-
ferred by current BVDV vaccines is likely limited [75]. Therefore, accurate ge-
netic analysises are necessary for epidemiological studies, traceability and cha-
racterization of atypical strains. 

The PNS method allowed an exhaustive representation of genomic variants in 
the genus, based on the comparative evaluation of about 1,400 Pestivirus strain 
sequences. The particularity of the PNS method is the exclusive consideration of 
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strategic genomic sequences corresponding to the 5’-UTR IRES. Thus, at this 
level stable nucleotide variations assume high importance in terms of virus evo-
lutionary history. Theoretically, applicable for the evaluation of all positive po-
larity RNA viruses, the PNS method was used for the determination of geno-
types of the human hepatitis C virus [76], considering the unambiguous func-
tional and genomic similitude between the two genera [77]. PNS sequence cha-
racterization easily discriminated species as Giraffe, Pronghorn or Bungowan-
nah [78] [79]. Even if E2 glycoprotein gene is preferred in recent taxonomy of 
the species [80], CSFV was evaluated with 5’-UTR, and otherwise not compara-
ble with 5’-UTR sequences of the other different species. Despite a limiting fac-
tor for differentiation of closely related isolates [80], short length target frag-
ments in other regions of the viral genome as 5’-UTR or NS5B have been largely 
applied for genotyping purposes and molecular epidemiology [50] [52] [81]. In 
addition, according to the Terrestrial Manual of the World Organization for 
Animal Health (Chapter 2.8.3 CSFV; Paragraph 1.1.5.) [82], the 5’-UTR of the 
CSFV genome (150 nucleotides) is also foreseen for genetic typing and molecu-
lar epidemiology of CSF. However, in light of the movement towards whole ge-
nome sequencing and recent species typing [1], the routine work performed in 
veterinary laboratories in the future will possibly be based on full-length genome 
comparison to delineate Pestivirus genogroups and species, despite still proble-
matic due to lack of a sufficient number of sequences representing existing ge-
netic variants. For example, current classification of BVDV isolates is generated 
using short genome fragments, giving that 97.7% of deposited sequences are re-
stricted to 5’-UTR or Npro, mainly [16]. 

In addition to accurate virologic investigations, it is important to understand 
ways of diffusion and in particular prevent spread of atypical genetic clusters. 
The major concern is represented by the fact that if genetically related types in-
duce effective cross immunity, at the contrary, divergent genetically atypical 
types might pose problems in terms of diagnostic reliable detection or vaccine 
conferred cross protection against such viruses. In addition, even non-naïve lo-
cal animal populations might be more exposed in case of heterogeneous strains 
due to non-sufficient cross immunity. Trade of live animals is generally consi-
dered the main route of pathogen diffusion. For example, in UK, only three 
BVDV-1 types were detected in 1999. In 2013, phylogenetic analysis demon-
strated the existence of six genotypes of BVDV-1 circulating in the country. This 
indicated that restocking of cattle from continental Europe has increased the 
genetic diversity [46]. Unless illegal animal movements occur, trade is the rela-
tively easier controllable and preventable among ways of introduction of the vi-
rus in free herds or free areas. Contamination of biological products and iatro-
genic infection are probably also relevant aspects of the virus epidemiology. This 
recalls also the risk of spreading exotic strains, requiring not only controls on 
live animals, animal products, semen, ova and embryos, but also potentially 
contaminated biological products. Eighty-three strains contaminant of biological 

https://doi.org/10.4236/aim.2019.93019


M. Giangaspero et al. 
 

 

DOI: 10.4236/aim.2019.93019 328 Advances in Microbiology 
 

products, considered in the present study, were reported mainly from Asian 
countries. Commercialized batches of BVDV-1 contaminated bovine serum have 
been reported also in China [8]. The contamination of fetal bovine serum (FBS) 
as a vehicle for the rapid spread of the pathogen is a known and not really infre-
quent phenomenon [29] [83]. This might be the source of introduction of 
BVDV-3 in Italy, first identified in Europe in FBS imported from Brazil [84], 
and further reported in Italian cattle herds with respiratory distress and repro-
ductive failures [85] [86] [87]. A similar hypothesis could be formulated for the 
BVDV-1 genotype 1.21. Some characteristic Asian strains of the genotype 1.21 
have been shown to circulate also in southern Italy [88], suggesting ways of dif-
fusion other than direct contact among animals. Being unlikely the direct import 
of live animals from China, other factors were implicated. The strain 441/09, 
isolated in 2009 in Puglia region, showed high similarity with the originally re-
ported Chinese yak strain. The other two strains, 130/15-4215 and 130/15-5364, 
have been isolated six years later in 2015 in Sicily. Their sequences were very 
similar to each other. When compared to other BVDV-1 genotypes, both strains 
resulted divergent from most of other types, with high divergence values as 20 
bp with the European genotype 1.22. However, the lowest divergence values 
were obtained with strains belonging to genotype 1.21, justifying allocation in 
the cluster, but in a separate sub genotype 1.21.1. These observed genomic 
variations were coherent with virus evolutionary adaptation related to spatial 
temporal factors. Strain 441/09 may represent the evidence of the introduction 
of an exotic Pestivirus variant in the animal population in Italy, while strains 
130/15-4215 and 130/15-5364 may represent the result of the virus adaptational 
evolution in the new environment, after an adequate period of time. This suggest 
the introduction of genotype 1.21 from China in 2009 and the potential risk of 
the endemic status of the virus in the area, supported by evidence of genomic 
characteristics mutations, possibly related to geographical situation or contact 
with virus populations circulating in the region. Interestingly, the Italian bovine 
strain SI/207/12 [89], reported as genotype T, was clustered in the genotype 1.6, 
scoring low divergence values with most of the strains in the group, all reported 
as genotype BVDV-1n, essentially of Asian origin, including the Japanese strains 
so CP/75 [90] and Shitara/02/06 [91] or the South Korean strains 06z71, 06z127 
(Yang and Kweon, unpublished) and KB01 (Oem et al., unpublished). 

Other ways of diffusion may be revealed by the unusual circulation of CSFV 
in animal host different from suids. CSFV is generally considered to be restricted 
to domestic and wild suids. Current knowledge indicates that experimental in-
fections without clinical signs have been reported in cattle, sheep, goats and 
deer, but there is no evidence that these species become infected in nature [92] 
[93] [94] [95]. Only in one case, hog cholera virus has been identified in sheep 
[70]. In Spain, the reported 5440/99 ovine strain showed sequence similarities 
with CSFV vaccine strains used in pigs, suggesting spillovers from prophylactic 
campaigns. Another ovine isolate (strain 12 Ovine liver 113nt) [96], reported 
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from United Arab Emirates in the framework of investigations for pestiviruses, 
was suspected as CSFV. CSFV bovine strains detected in China might find their 
origin from vaccine prophylaxis performed in domestic animal populations [11]. 
Anti BVDV killed virus vaccines are available in China. However, for long time 
there were no commercial BVDV vaccines in the Chinese market. In cattle and 
yaks, BVDV was prevented by the wide application of triple dose of the live at-
tenuated hog cholera lapinized vaccine (HCLV) strain in different areas of Chi-
na, and especially in Tibet and Qinghai provinces. Since previous experimental 
studies conducted by Yuan Qingzhi in 1957 on HCLV, the only one CSFV au-
thorized vaccine in China, efficacy and safety of the prophylactic use for BVDV 
in lactating and pregnant cows, calves and yaks have been demonstrated [97]. In 
Tibet, the immunization with HCLV of bovine species resulted beneficial in re-
ducing losses due to BVDV infection. However, long-term use of live attenuated 
HCLV gave the opportunity for vaccinal strains adaptation in cattle, with further 
natural diffusion as possible consequence. 

5. Conclusion 

In the present study, according to secondary structure analysis, the genus Pesti-
virus resulted heterogeneous. Sequence characteristics among Asian genomic 
clusters within the different Pestivirus species suggested geographic segregation 
and occurrence of micro-evolutive steps in the genus evolutionary history. This 
aspect was particularly evident in atypical sequences originated from China or 
Turkey, indicating risk of diffusion by animals and products trade or contami-
nation of biological products as bovine calf serum, with potential diagnostic and 
control difficulties. Determination of species heterogeneity is important for di-
agnostic efficiency and prophylactic purposes, taking into account possible wid-
er animal host range by different Pestivirus species, causing overlapping clinical 
features, potential influence on eradication programs, and eventual regulatory 
measures. 
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