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Abstract 
The interaction between dehydroeburicoic acid (DeEA), a triterpene purified 
from medicinal fungi and the major transport protein, human serum albumin 
(HSA), were systematically studied by fluorescence spectroscopy, synchron-
ous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy 
and molecular docking approach under simulated physiological conditions. 
The intrinsic fluorescence of HSA was quenched through the combination of 
static and dynamic quenching mechanism. DeEA cannot be stored and car-
ried by HSA in the body at higher temperature. The hydrogen bonding, hy-
drophobic force and van der Waals force were major acting forces. The site II 
was the major binding site. The energy transfer could occur with high proba-
bility and the binding distance was 3.29 nm. The binding process slightly 
changed the conformation and microenvironment of HSA. The DeEA mole-
cule entered the hydrophobic cleft of HSA and formed the hydrogen bonding 
with Glu-492 and Lys-545. 
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1. Introduction 

Dehydroeburicoic acid (DeEA) is a triterpene purified from medicinal fungi 
such as Taiwanofungus camphoratus, Fomitopsis officinalis, Fomitopsis pinicola 
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and Wolfiporia cocos [1] [2]. The molecular structure of DeEA was presented in 
Figure 1. It can protect the liver from CCl4-induced oxidative stress and tissue 
injuries [3]. It possesses analgesic and anti-inflammatory effects [4]. It exhibits 
antitumor activity against the human glioblastoma U87MG [2] [5]. It has an ex-
cellent therapeutic potential for the treatment of type 1 diabetes and type 2 di-
abetes [6] [7]. Human serum albumin (HSA) is significant in the blood circula-
tory system. It contains 585 amino acid residues [8] [9]. It is stabilized by 17 dis-
ulfide bridges [10]. It consists of three homologous domains (domain I-III). And 
each domain contains two subdomains (IA, IB, IIA, IIB, IIIA and IIIB). It has 
two high-affinity binding sites (site I and site II) [11] [12]. The site I is located in 
the subdomain IIA. The site II is located in the subdomain IIIA. The interaction 
between biologically active substances (drugs or natural products) and HSA af-
fects the bioavailability, distribution, free state concentration and metabolism of 
biologically active compounds in the bloodstream [13] [14]. In addition, the in-
teraction between biologically active compounds and HSA changes the structure 
and function of HSA [15]. Therefore, probing the interaction between DeEA 
with HSA is significant to deeply understand the pharmacodynamics and phar-
macokinetics properties of DeEA.  

In summary, we characterized the interaction between DeEA and HSA by fluo-
rescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional 
fluorescence spectroscopy and molecular docking approach. The quenching 
mechanism, the binding constant, the number of binding site, the thermody-
namic parameters and the acting force were estimated according to the fluo-
rescence spectroscopy data. Synchronous fluorescence spectroscopy and three- 
dimensional fluorescence spectroscopy were performed to probe the conforma-
tional and microenvironmental changes of HSA during the binding process. 
Molecular docking was performed to show the interaction between DeEA 
 

 
Figure 1. The molecular structure of dehydroeburicoic acid. 

 

DOI: 10.4236/aim.2019.91003 22 Advances in Microbiology 
 

https://doi.org/10.4236/aim.2019.91003


S. J. Zheng et al. 
 

and amino acid residues of HSA. 

2. Materials and Methods  
2.1. Reagents and Materials 

HSA (A1887; fatty acid and globulin free) was purchased from Sigma-Aldrich. 
DeEA was purchased from Aikon Biopharmaceutical R&D Co. Ltd. (Jiangsu, 
China). Site probes (Warfarin and Ibuprofen) were purchased from Shanghai 
Xiyuan biological technology Co. Ltd. (Shanghai, China). The concentration of 
HSA stock solution is 1.0 × 10−4 M in 1.0 × 10−2 M phosphate buffer solution 
(pH 7.40). The concentration of DeEA stock solution is 1.0 × 10−4 M. The con-
centration of site probes stock solution is 1.0 × 10−4 M. All reagents used are of 
analytical grade. The water used for the experiment was ultrapure water. Stock 
solutions were prepared weekly and stored in the dark at 4˚C. 

2.2. Fluorescence Spectroscopy Measurements 

Fluorescence spectroscopy measurements were performed on the Thermo Scien-
tific Lumina fluorescence spectrophotometer. The excitation wavelength was 
280 nm. The emission wavelength was recorded from 285 to 500 nm. The fixed 
concentration of 3.0 μM HSA (3.5 mL) was continuously titrated with the addi-
tion of DeEA. The photomultiplier tube (PMT) voltage, the excitation slit, the 
emission slit, the response time, the integration time and the scan speed were set 
at 500 V, 2.5 nm, 2.5 nm, 1.0 s, 20 ms and 1200 nm/min, respectively. The expe-
riments were performed at 288, 298 and 308 K.  

2.3. Synchronous Fluorescence Spectroscopy 

Synchronous fluorescence spectroscopy measurements were performed on the 
Thermo Scientific Lumina fluorescence spectrophotometer. Synchronous fluo-
rescence spectroscopy was recorded from 200 to 500 nm. The scanning interval 
between the excitation and emission wavelength (Δλ) was set at 15 and 60 nm, 
respectively. Other parameters are the same as the fluorescence spectroscopy 
measurements. The experiments were performed at 298 K. 

2.4. Three-Dimensional Fluorescence Spectroscopy 

Three-dimensional fluorescence spectroscopy measurements were performed on 
the Thermo Scientific Lumina fluorescence spectrophotometer. The excitation 
wavelength ranged from 200 to 360 nm. The emission wavelength ranged from 
200 to 660 nm. Other parameters are the same as the fluorescence spectroscopy 
measurements. The experiments were performed at 298 K. 

2.5. Site Marker Competitive Experiments 

The site marker competitive experiments were performed on the Thermo Scien-
tific Lumina fluorescence spectrophotometer. Warfarin is marker for site I. Ibu-
profen is marker for site II [12] [16]. The warfarin-HSA system was continuous-
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ly titrated with the addition of DeEA. The ibuprofen-HSA system was conti-
nuously titrated with the addition of DeEA. Other parameters are the same as 
the fluorescence spectroscopy measurements. The experiments were performed 
at 298 K. 

2.6. UV-Visible Absorption Spectroscopy Experiments 

The UV-visible absorption spectroscopy experiments were performed on the 
Shimadzu UV-2550 spectrophotometer. The UV-visible absorption spectroscopy 
was recorded from 200 to 500 nm. The experiments were performed at room 
temperature. 

2.7. Molecular Docking 

Molecular docking was performed using the AutoDock [17]. The 3D structure of 
DeEA was optimized using Gaussian 09 before docking simulations [18]. The 
binding site was defined using one grid of 120 × 120 × 120 points at the subdo-
main IIIA [19]. Lamarckian genetic algorithm was used with a total of 100 runs. 
The DeEA-HSA complex was visualized and analyzed using Chimera [20]. 

3. Results and Discussion 
3.1. Quenching Mechanism 

Fluorescence spectroscopy was performed to probe quenching mechanism of the 
interaction between DeEA and HSA. The fluorescence spectroscopy of HSA in 
the absence and presence of DeEA were presented in Figure 2. The fluorescence 
intensity of HSA obviously decreased with increasing the concentration of  
 

 
Figure 2. The effect of DeEA on the fluorescence of HSA, c (HSA) = 3.0 
μM. Lines 1 - 10: c (DeEA) = 0, 0.143, 0.286, 0.429, 0.572, 0.715, 0.858, 
1.001, 1.144, 1.287 μM, respectively; λex = 280 nm; λem = 345 nm; pH = 7.4; T = 
298 K. Curve x shows the emission spectrum of DeEA only, c (DeEA) = 
0.143 μM. 
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DeEA. However, the fluorescence intensity of DeEA was almost equal to 0. In 
general, for dynamic quenching, the quenching constant increases with increas-
ing the temperature [13]. For static quenching, the quenching constant decreases 
with increasing the temperature [13]. The Stern-Volmer equation was used to 
estimate the possible quenching mechanism [21] [22]. 

[ ] [ ]0
01 1q sv

F
K Q K Q

F
τ= + = +                     (1) 

where F0 is the fluorescence intensity of free HSA, F is the fluorescence inten-
sity of the HSA-DeEA system, KSV is the Stern-Volmer quenching constant, 
[Q] is the concentration of DeEA, Kq is the biomolecule quenching rate con-
stant, 0τ  is the lifetime of the fluorophore in the absence of DeEA and the 
fluorescence lifetime of the biopolymer is 10−8 s [23].  

The Stern-Volmer plots for fluorescence quenching of the DeEA-HSA sys-
tem at different temperatures were presented in Figure 3. The KSV and Kq 
value were collected in Table 1. The value of KSV obviously increased with in-
creasing the temperature, which indicated that the quenching mechanism was 
dynamic quenching [24]. However, the value of Kq was much greater than the 
maximum scatter collision quenching constant (2.0 × 1010 M−1·S−1), which 
showed that the quenching mechanism was static quenching [25]. The results 
demonstrated that DeEA quenched the fluorescence of HSA through the 
combination of static and dynamic quenching mechanism. 

3.2. Binding Constant and Binding Site 

For the binding process, the binding constant (KA) and the number of binding 
sites (n) were estimated according to the following equation [26]. 
 

 
Figure 3. The Stern-Volmer plots for fluorescence quenching of the 
DeEA-HSA system at different temperatures, c (HSA) = 3.0 μM; c 
(DeEA) = 0.143 - 1.287 μM; λex = 280 nm; λem = 345 nm; pH = 7.4; T = 
288, 298 and 308 K. 
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Table 1. The biomolecule quenching rate constant and the Stern-Volmer quenching 
constant for the DeEA-HSA system at different temperatures. 

T (K) Kq (L·mol−1·s−1) KSV (L·mol−1) R 

288 4.690 × 1012 4.690 × 104 0.9588 

298 6.558 × 1012 6.558 × 104 0.9545 

308 6.879 × 1012 6.879 × 104 0.9282 

 

[ ]0log log logA
F F

K n Q
F
−  = + 

 
                  (2) 

where the meanings of F0, F and [Q] are the same as for Equation (1). The 
double-logarithm plots for fluorescence quenching of the DeEA-HSA system 
at different temperatures were presented in Figure 4. The KA and n value 
were collected in Table 2. The KA value obviously decreased with increasing 
the temperature, which revealed that the stability of the DeEA-HSA complex 
was reduced during the binding process [27] [28] [29]. Moreover, the number 
of binding sites approximated to 1 at 288 K, which suggested that there was 
almost one site for the interaction between DeEA and HSA at this tempera-
ture. And the n value obviously decreased with increasing the temperature, 
which showed that DeEA could not bind to HSA at higher temperature. Since 
the stability of the DeEA-HSA complex significantly reduced and the value of 
n was much less than 1 with increasing the temperature during the binding 
process. Therefore, DeEA could bind to HSA at 288 K. However, DeEA could 
not be stored and carried by HSA in the body at higher temperature [30]. 

3.3. Thermodynamic Parameters and Acting Forces 

In order to estimate the acting forces, the thermodynamic parameters enthal-
py change (∆H), entropy change (∆S) and free energy change (∆G) of the 
binding process were calculated according to the Van’t Hoff equation [31] 
[32]. 

ln A
H SK

RT R
∆ ∆

= − +                       (3) 

G H T S∆ = ∆ − ∆                        (4) 

where KA is the binding constant at the corresponding temperature, R is the 
molar gas constant and T is the thermodynamic temperature. 

The thermodynamic parameters were collected in Table 3. The negative 
value of ∆G indicated that the binding process was spontaneous. The negative 
value of ∆H revealed that the binding process was exothermic. According to 
the theory of Ross and Subramanian, we concluded that the hydrogen bond-
ing and the van der Waals force were major acting forces for the interaction 
between DeEA and HSA [31]. Therefore, the hydrogen bonding and the van 
der Waals force were major acting forces. And the binding process were sponta-
neous and exothermic. 
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Figure 4. The double-logarithm plots plot for fluorescence quenching 
of the DeEA-HSA system at different temperatures, c (HSA) = 3.0 μM; 
c (DeEA) = 0.143 - 1.287 μM, respectively; λex = 280 nm; λem = 345 nm; 
pH = 7.4; T = 288, 298 and 308 K. 

 
Table 2. The binding constant and the number of binding site for the DeEA-HSA sys-
tem. 

T (K) n KA (L·mol−1) R 

288 0.858 8407.948 0.9745 

298 0.290 9.022 0.9879 

308 0.229 4.867 0.9706 

 
Table 3. The thermodynamic parameters for the interaction between DeEA and HSA. 

T (K) KA (L·mol−1) ∆G (kJ·mol−1) ∆H (kJ·mol−1) ∆S (J·mol−1·K−1) 

288 8407.948 −19.337 −277.340 −895.847 

298 9.021 −10.378   

308 4.867 −1.420   

3.4. Site Marker Competitive Experiments 

The site marker competitive experiments were performed to locate the major 
binding site for the interaction between DeEA and HSA. HSA has two principal 
sites located in hydrophobic pocket. The sites are located in the hydrophobic 
cavities in subdomains IIA and IIIA, which exhibit similar chemical properties 
[33]. The binding cavities associated with subdomains IIA and IIIA are also re-
ferred to as site I and site II. Warfarin is marker for the site I. Ibuprofen is 
marker for the site II [34] [35]. The warfarin-HSA system and ibuprofen-HSA 
system were continuously titrated with the addition of DeEA, respectively. Then, 
the experiment data were analyzed by Equation (2). The binding constant of the 
DeEA-HSA system before and after addition of site markers were presented in 
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Table 4. The binding constant obviously decreased with the addition of ibupro-
fen, which revealed that warfarin displaced DeEA from the binding site. There-
fore, we concluded that site II might be the major binding site for the interaction 
between DeEA and HSA. 

3.5. Fluorescence Resonance Energy Transfer and Binding  
Distance 

There was obvious overlap between the fluorescence spectrum of HSA and 
the absorption spectrum of DeEA in Figure 5. According to the fluorescence 
resonance energy transfer theory, the binding distance (r) between HSA (do-
nor) to DeEA (acceptor) was calculated [36]. The efficiency of energy transfer 
(E) depends on r and the extent of spectral overlap (J). The value of E can be 
calculated by the following equation: 

6
0

6 6
0 0

1
RFE

F R r
= − =

+
                        (5) 

where F0 is the fluorescence intensity of free HSA, F is the fluorescence inten-
sity of the HSA-DeEA system, R0 is the critical energy transfer distance when 
E = 50% and r is the binding distance between DeEA and HSA. The value of 
R0 can be calculated according to the Forster’s equation. 
 
Table 4. The binding constant of the DeEA-HSA system before and after addition of 
site probes (warfarin and ibuprofen). 

System KA (L·mol−1) 

HSA + DeEA 9.022 

HSA + DeEA + warfarin 3.784 

HSA + DeEA + ibuprofen 3.428 

 

 
Figure 5. The overlap between the fluorescence spectrum of HSA (a) and 
the absorption spectrum of DeEA (b), λex = 280 nm; λem = 345 nm; pH = 
7.4; c (HSA) = c (DeEA) = 3.0 μM. 
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6 25 2 4
0 8.8 10R k N J− −= × Φ                      (6) 

where k2 is spatial orientation factor of the dipole, N is refractive index of the 
medium and Ф is the fluorescence quantum yield of HSA. In the present case, 
k2 = 2/3, N = 1.336 and Ф = 0.118 [37] [38]. The value of J can be calculated 
by the following equation: 

( ) ( )
( )

4F
J

F
λ ε λ λ λ

λ λ
∆

=
∆

∑
∑

                     (7) 

where ( )F λ  is the fluorescence intensity of HSA at wavelength λ  and 
( )ε λ  is the molar absorption coefficient of DeEA at wavelength λ .  
In view of the above, we calculated that E = 0.15, R0 = 2.45 nm and r = 

3.29 nm, r < 7 nm. The value of R0 and r were on the 2 - 8 nm scale and 

0 00.5 1.5R r R< < , which indicated that DeEA could interact with HSA [39]. 
The results revealed that DeEA could interact with HSA and the energy 
transfer could occur with high probability. 

3.6. Conformational Investigation 
3.6.1. Synchronous Fluorescence Spectroscopy 
Synchronous fluorescence spectroscopy was performed to probe the conforma-
tional and microenvironmental changes of HSA during the binding process. The 
effect of DeEA on the synchronous fluorescence of HSA was presented in Figure 
6. When Δλ = 15 nm, the shift of λmax was minor from 300.6 to 301.4 nm, which 
showed that the change of microenvironment around tyrosine residues were tri-
vial [40] [41]. When Δλ = 60 nm, the shift of λmax remained unchanged, which 
indicated that the microenvironment around tryptophan residues remained the 
same [40]. However, the stronger fluorescence quenching of tyrosine residues 
than tryptophan residues was observed with increasing the concentration of 
DeEA, which revealed that the binding site was nearer tyrosine residues. The ty-
rosine residues were mainly located in the subdomain IIIA. Therefore, we con-
cluded that the major binding site was located in the subdomain IIIA (site II). 
These results were consistent with the site marker competitive experiments. 

3.6.2. Three-Dimensional Fluorescence Spectroscopy 
Three-dimensional fluorescence spectroscopy was performed to explore the 
conformational and microenvironmental changes of HSA during the binding 
process. Three-dimensional fluorescence spectroscopy of free HSA and the 
DeEA-HSA system were presented in Figure 7. The corresponding parameters 
were collected in Table 5. Peak a (λex = λem) is the Rayleigh scattering peak [42]. 
Peak b (2λex = λem) is the second-order scattering peak [42]. Peak 1 (λex = 280 nm 
and λem = 331 nm) mainly exhibits the spectrum characteristic of tyrosine and 
tryptophan residues, which can reflect conformational changes of HSA [19] [43]. 
In this study, the fluorescence intensity of peak a and peak b obviously decreased 
with the addition of DeEA due to the formation of the DeEA-HSA complex. The 
fluorescence intensity of peak 1 increased with the addition of DeEA, which  
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Figure 6. The effect of DeEA on the synchronous fluorescence of HSA: (a) 
∆λ = 15 nm; (b) ∆λ = 60 nm. c (HSA) = 3.0 μM. Lines 1 - 10: c (DeEA) = 
0, 0.143, 0.286, 0.429, 0.572, 0.715, 0.858, 1.001, 1.144, 1.287 μM, respec-
tively; pH = 7.4; T = 298 K. 

 
revealed that the hydrophobic microenvironment near tyrosine residues has 
been changed [44]. The results showed that DeEA have interacted with HSA and 
slightly changed the conformation and microenvironment of HSA. 

3.7. Molecular Docking 

In order to show the interaction between DeEA with amino acid residues of 
HSA, molecular docking was performed. The binding mode of the DeEA-HSA 
system was presented in Figure 8. The results revealed that the DeEA molecular  
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Figure 7. The three-dimensional fluorescence of free HSA (A) and the 
DeEA-HSA system (B); pH = 7.4; T = 298 K. 

 
located in the cavity surrounded by the following amino acid residues: Asn-405, 
Val-409, Arg-410, Lys-413, Lys-414, Glu-492, Val-493, Leu-529, Thr-540, 
Leu-544, Lys-545 and Met-548. The Glu-492 formed hydrogen bonding with the 
hydrogen atom of the hydroxyl group of DeEA at the distance of 2.571 Å. In  
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Figure 8. The binding mode of the binding DeEA to HSA, the secondary structure of 
the protein is shown and the important neighboring amino acid residues are labeled. 
The ligand structure is represented in the ball-and-stick model and hydrogen bond is 
indicated by a green dashed line. 
 
Table 5. The three-dimensional fluorescence spectral characteristic parameters of free 
HSA and the DeEA-HSA system. 

System* Peak Peak Position λex/λem (nm/nm) Intensity 

Free HSA a 240/240 → 360/360 13.9 → 1185.9 

 b 300/600 153 

 1 280/331 557.7 

DeEA-HSA a 240/240 → 360/360 10.5 → 350.6 

(DeEA = 1.001 μm) b 300/600 66.3 

 1 280/331 672.9 

*The concentration of HSA was 3.0 μM for each system. 

 
addition, the Lys-545 formed the hydrogen bonding with the oxygen atom of the 
hydroxyl group of DeEA at the distance of 1.970 Å. Hydrophobicity surface of 
amino acid residues within 5 Å around DeEA was presented in Figure 9. As 
color changes from blue to red, surface alters from hydrophilic to hydrophobic 
gradually. The hydroxyl groups of DeEA were in hydrophilic surface and the 
hydrophobic portion was in hydrophobic surface, which decided the reasonable 
interaction between DeEA and HSA. The molecular docking results revealed 
that the hydrogen bonding and hydrophobic force were significant for the inte-
raction between DeEA and HSA, which were consistent with the thermodynam-
ic analysis. The hydroxyl groups of DeEA were important groups during the 
binding process. The Lys-545 and Glu-492 were important amino acid residues 
for the interaction between DeEA and HSA. 
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Figure 9. Hydrophobicity surface of amino acid residues 
within 5 Å around DeEA. 

4. Conclusion 

The interaction between DeEA and HSA was systematically investigated by fluo-
rescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional 
fluorescence spectroscopy and molecular docking approach. The fluorescence 
spectroscopy results suggested that DeEA quenched the intrinsic fluorescence of 
HSA through the combination of static and dynamic quenching mechanism. 
The thermodynamic parameters and molecular docking results indicated that 
the hydrogen bonding, hydrophobic force and van der Waals force were major 
acting forces during the binding process. DeEA could bind to HSA at 288 K. 
However, DeEA could not be stored and carried by HSA in the body at higher 
temperature. The site marker competitive experiments and synchronous fluo-
rescence spectroscopy revealed that the site II was the major binding site. Ac-
cording to the fluorescence resonance energy transfer theory, the energy transfer 
could occur with high probability and the binding distance was 3.29 nm. The 
synchronous fluorescence spectroscopy and three-dimensional fluorescence 
spectroscopy results demonstrated that the binding process slightly changed 
conformation and microenvironment of HSA. The hydroxyl groups of DeEA 
were important groups during the binding process. The Glu-492 and Lys-545 
were important amino acid residues for the interaction between DeEA and HSA. 
The interaction between DeEA and HSA was not characterized so far. Therefore, 
it was of vital significance to study on the interaction between DeEA and HSA. 
These experimental results will provide theoretical support for understanding 
the pharmacodynamics and pharmacokinetics properties of DeEA. 
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