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Abstract 
Hyperspectral remote sensing of submerged aquatic vegetation is a complex 
and difficult process that is affected by unique constraints on the energy flow 
profile near and below the water surface. In addition, shallow, winding, lotic 
systems, such as the Upper Delaware River, present additional remote sensing 
problems in the form of specular reflectance, variable depth and constituents 
in the water column and sometimes extremely weak signal strength due to 
absorption and scattering in the water column that can be statistically over-
whelmed by the reflectance from upland vegetation in any individual image 
scene. Here we test hyperspectral imagery from the Civil Air Patrol’s (CAP), 
Airborne Real-time Cueing Hyperspectral Enhanced Recon (ARCHER) sys-
tem in the scenic waters of two National Parks on the Upper Delaware River. 
A number of unique image processing problems were encountered, including 
specular reflectance from winding lotic systems, variable depth and flow dy-
namics of the riverine environment, and disproportionate signal strength 
from surface reflectance in this riverine environment. These problems were 
solved by applying a specular reflectance removal algorithm, applying field 
data collections to classification results and masking upland vegetation so as 
to not statistically overwhelm the weak reflectance signal from surface and 
near-surface water. Much was learned about conducting imaging spectrosco-
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py in such difficult conditions. Important results include successful mapping 
of Submerged Aquatic Vegetation (SAV) presence/absence, advantages of 
upland masking of the reflectance signal, and a number of processing ap-
proaches that are unique to this environment. In this paper we summarize 
our results and identify unique issues that must be addressed in this envi-
ronment. 
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1. Introduction 

The Delaware River is home to two national parks, the Delaware Water Gap Na-
tional Recreation Area (DEWA) and the Upper Delaware National Scenic and 
Recreation River (UPDE), which are critically important areas for numerous 
species habitats, a major source of drinking water for the New York metro area 
and supporting a variety of recreational activities. The 125 miles of the river that 
run through UPDE and DEWA National Parks are classified as Special Protec-
tion Waters that have “exceptionally high scenic, recreational and ecological 
values.” Under the regulations applicable to this category, “no measurable 
change in existing water quality [is permitted] except towards natural condi-
tions.” [1]. The two parks are located near the common borders of the States of 
Pennsylvania, New Jersey and New York. See Figure 1. 

The Delaware River and its natural resources are of primary importance to 
UPDE and DEWA, whose enabling legislations cite the need to protect the water 
quality and scientific features of the river. Aquatic vegetation plays an integral 
role in the river’s ecosystem. Aquatic vegetation serves as a food source and mi-
crohabitat for stream invertebrates [2] [3], provides critical feeding and cover 
habitat for fish [4], and helps to slow flowing waters, filter sediment, and remove 
nutrients from the water column [5]. Several species of concern in UPDE and 
DEWA, including the dwarf wedge mussel (Alasmidonta heterodon), and bridle 
shiner (Notropis bifrenatus), utilize SAV beds during stages of their lifecycle. 
Furthermore, SAV provide critical habitat and many ecosystem services [6] [7] 
and these include wave attenuation and hydraulic resistance [8] [9], sediment 
stabilization and trapping, biogeochemical cycling, and nutrient uptake [10]. 
SAV beds provide important habitat not only for economically important spe-
cies such as shrimp and scallops in estuarine and coastal areas but also serve as a 
nursery for juvenile species that spend only a portion of their life history in these 
protective beds [11]. Anadromous fish such as American Shad and other alosids 
rely on submerged aquatic vegetation (SAV) beds for shelter and for foraging 
insects and other food sources, as they migrate to the freshwater reaches of 
streams and rivers to spawn [12] [13]. Natural allelopathic properties have led to  
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Figure 1. The Upper Delaware Scenic and Recreational River (UPDE) and Delaware Wa-
ter Gap (DEWA) National Parks. 
 
research that has identified antimicrobial properties in SAV species that may be 
vital to plant and organismal health [14].  

Invasive species are another area of acute concern for national park managers. 
Invasive aquatic plants cause disruptions to native wetland and flood plain eco-
systems, and pose threats to the viability of rare, native species. Both parks have 
noted a number of new invasive aquatic species that have either been docu-
mented in the park [15] or are believed to be nearby. Recently, the nuisance 
freshwater diatom known as Didymo (Didymosphenis geminata) has been do-
cumented in two tributaries and in the mainstem of the Delaware River (New 
York and Pennsylvania). Blooms of Didymo can form dense blanketing growth 
on river bottom substrate that may smother or displace macroinvertebrate pop-
ulations, potentially including the endangered dwarf wedge mussel, and reduce 
habitat available for salmonid and other fish reproduction. Other threats, such as 
climate change, domestic and industrial water use, upland land development, 
and natural gas extraction, may affect water quantity and quality and thereby al-
ter the distribution, abundance, and composition of SAV beds. 

As a result, assessments of aquatic vegetation are important indicators of rive-
rine ecosystem integrity, can alert National Park Service (NPS) managers to wa-
ter quality degradation and eutrophication, and can document the presence of 
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invasive aquatic plants that can cause disruptions to native aquatic ecosystems 
and pose threats to the viability of rare, native species. 

1.1. Remote Sensing of Aquatic Vegetation 

Aerial photography has long been used to map riverine environments, but tradi-
tional systems lack the spectral range necessary to identify SAV species differ-
ences, and multispectral satellite sensors (e.g. Landsat) lack the spatial resolution 
necessary to map narrow riverine environments. Advanced sensors have recently 
become available that now provide the fine spatial and spectral resolution re-
quired to map riverine habitats. Hyperspectral sensors image in tens to hundreds 
of discrete spectral wavelength bands and can be used to identify individual spe-
cies by comparison with characteristic spectral signatures collected with field or 
laboratory spectrometers. Recent investigations have established the theoretical 
basis for spectral mapping of aquatic vegetation [16] and have proven the poten-
tial for mapping riverine habitats using hyperspectral imagery [17] [18] [19] 
[20]. Additionally, advances in bathymetric LiDAR systems are finding applica-
tion in riverine environments for mapping channel depth, form, and physical 
habitat [21] [22]. Combining high resolution hyperspectral imagery with LiDAR 
shows great promise for assessing and monitoring the entire riverine environ-
ment [23]. However, very few studies have been conducted in the heavily vege-
tated rivers of the eastern U.S., and these systems may pose special challenges for 
mapping. More research is needed in eastern U.S. rivers to investigate these ap-
proaches for mapping aquatic macrophytes, algae, and the presence of aquatic 
invasivespecies and to address the influence of sunglint (specular reflectance), 
water depth, clarity, flow and substrate on optical properties of hyperspectral 
and LiDAR imagery. The clear-flowing, relatively shallow Delaware River is un-
iquely well-suited for testing these emerging technologies. The purpose of this 
research is to provide an initial assessment of the feasibility and accuracy of ad-
vanced remote sensing technologies as a monitoring methodology in riverine 
systems. The purpose of this research is focused on the study of the spectral ref-
lectance of submerged aquatic vegetation, including invasive species in the two 
national parks in the Upper Delaware River. 

1.2. Spectroscopic Analysis of SAVs 

Spectroscopy is essentially the science of measuring the interaction of energy 
with matter and is a fundamental form of remote sensing. Spectroscopy has been 
used extensively in chemistry and astronomy for material identification and, 
with the development of new instrumentation, is being increasingly utilized in 
traditional remote sensing investigations. The spectral reflectance of vegetation 
has long been a topic of remote sensing interest and the spectral analysis of ve-
getation stress was the subject of early laboratory spectroscopic and remote 
sensing imaging research [24] [25]. More recent studies have successfully identi-
fied spectral signatures of heavy metal stress and applied these techniques to ap-
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plications involving mineral prospecting and environmental contamination [26]. 
Spectral reflectance of vegetation and other landscape conditions has received 

renewed interest by the remote sensing community since the 1990s because of 
the development of a new class of imaging technology called hyperspectral re-
mote sensing (HRS), also known as imaging spectroscopy. Many of the early and 
definitive studies in spectral reflectance utilized spectroscopic measurement in-
struments in a laboratory setting. These instruments measured reflected energy 
in numerous bandwidths across the electro-magnetic spectrum (EMS) and pro-
duced a plot of energy reflectance versus bandwidth, called spectra, which could 
then be analyzed using standard techniques. HRS not only collects information 
about reflected energy in very narrow bandwidths, but also collects imagery in 
the same part of the solar electromagnetic spectrum as other multispectral re-
mote sensing instruments. The result is a digital file of numerous, usually 50 - 
220 of bands of imagery, sometimes called a “cube”, (Figure 2) that can be ana-
lyzed visually but can also be analyzed with the same spectroscopic methods as 
laboratory spectra and can identify certain compounds, materials and conditions 
based on the interaction of photons with the molecular structure of the target 
material. Spectroscopic analysis techniques can now be employed outside of the 
laboratory through the use of HRS imaging techniques and portable field spec-
trometers. 

Accurate mapping of aquatic resources, such as wetlands and in particular 
SAV species located in fresh water bodies, estuaries and coasts, is now more 
critical than ever [27] [28]. SAV has been identified as a declining aquatic re-
source of global importance [28] [29]. The value, geographical extent, and ecol-
ogy of submerged vascular plants are well documented [30]. While few studies 
have applied hyperspectral remote sensing to investigate submerged aquatic ve-
getation, rarer still is literature pertaining to the study of SAV in lotic systems. 
Williams et al. [31] developed an initial successful mapping application of  
 

 
Figure 2. A hyperspectral image cube of the Delaware River near Hancock, New York. 
The inset shows spectra from the river displaying vegetation features. 
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hyperspectral imagery for two types of SAV in the tidal Potomac River. Bolstater 
et al. [32] used hyperspectral data analysis of SAVs to show that there was a 
“submerged vegetation red edge” that was evident in the 695 - 700 nanometer 
(nm) range in vegetation in shallow waters. Underwood et al. and Hestir et al. 
[33] [34] successfully mapped invasive aquatic vegetation in the Central Valley 
in California, using hyperspectral HyMap imagery and employing a spectral 
mixture analysis classification approach. Markus [18] and Legleiter [17] suc-
cessfully demonstrated the utility of hyperspectral imagery for identifying and 
mapping in-stream morphology and habitat in riverine systems. 

The detection and mapping of aquatic vegetation in these systems presents 
several inherent problems for hyperspectral analysis. First, infrared energy is 
almost completely absorbed by the water column and the reflectance from visi-
ble bands is greatly reduced by light attenuation in the water column so that 
many of the traditional vegetation indices generated from ratios of infrared and 
visible hyperspectral bands are unusable for SAV. Second, silt, sediment, detritus 
and other particulate matter in the water column can be highly variable and in-
terfere with the reflected signal. Third, variable surface characteristics of flowing 
water such as pools, riffles and runs create different reflective surfaces and com-
plicate reflective response. Fourth, variable depth of the water column creates 
different habitat, vegetation, and substrate reflectance profiles. Fifth, specular 
reflection, also known as sunglint, is an inevitable complication in winding riv-
ers where the sun angle, relative to the water column, is constantly changing. 
Finally, low level aircraft acquisition of hyperspectral data, over winding rivers, 
especially with the ARCHER system, is problematic and creates many partial 
subscenes that require additional preliminary processing and run the risk of al-
tering the characteristics of the original reflectance data. 

1.3. Imaging Spectroscopy of Submerged Aquatic Vegetation  
(SAV) in Lotic Systems 

Most remote sensing studies concerned with distinguishing wetland vegetation 
note that wetland vegetation have the greatest variation in spectra in the red 
edge and near infrared parts of the electromagnetic spectrum [35]. Evident by 
the limited literature, many variables exist that make it challenging and limit the 
success of detecting and mapping SAV with the use of imaging spectroscopy. 
These variables can be generalized into two broad categories: technical and en-
vironmental. 

The main technical factors that challenge the successful detection of SAV are 
spatial and spectral resolutions of imaging spectrometers [36] [37]. Specifically, 
identifying key bands out of several tens of bands, and determining the optimal 
pixel size for SAV detection are crucial to eliminating band redundancy and im-
proving target detection, respectively. Becker et al. [36] statistically identified 
eight out of the original 48 spectral band hyperspectral image cube in the 
VIS-NIR, which contained enhanced spectral differentiation power for classifi-
cation of Great Lakes coastal wetland SAV species. In order of importance, these 
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bands are centered at 685.5, 731.5, 939.9, 514.9, 812.3, 835.5, 823.9 and 560.1 nm 
respectively. The 812.3 and 823.9 nm bands are noted as being specifically im-
portant for the identification of the unique spectral reflectance patterns of SAV. 
Becker et al. [37] also investigated few different spatial resolutions in an effort to 
determine the optimal pixel dimension for SAV detection with hyperspectral 
imagery. They reported that pixel dimensions below 5 m2 were crucial for accu-
rately mapping SAV in their study area, because mixed pixels are reduced. Im-
portantly, current imaging spectrometers are limited because the number of 
bands requires reducing the spatial resolution during image acquisition and vice 
versa. The ability to identify SAV with a reduced number of spectral bands al-
lows for investigators of SAV to acquire spectroscopic imagery with finer spatial 
resolution, which in turn improves the accuracy of identifying and mapping 
SAV on a species level.  

Environmental factors, such as ambient water turbidity, water level above the 
plant surface, water depth, channel width, sun and view angle, weather condi-
tions and differing phenological states of the SAV species over different seg-
ments of the image, make the identification and mapping of SAV extremely 
challenging in lotic systems, because they impact their spectra variably over both 
space and time. Underwood et al. [33] in an attempt to map the invasive SAV 
water hyacinth (Eichhornia crassipes) using imaging spectroscopy data reported 
that water variably absorbs infrared radiation, which limits the ability to spec-
trally detect the many invasive SAV species. Moreover, ambient water turbidity, 
especially containing chlorophyll and floating algae, have spectral features in 
certain wavelengths that are similar to SAV, and can lead to SAV classification 
inaccuracy [31] [33] [34]. Williams [31] reported that epiphyte colonization and 
sediment coating of the SAV leaf surface obscures the unique biochemical sig-
natures of SAV, and thus, impedes identification of SAV by their spectra. Un-
derwood et al. [33] specifically noted that a high ratio of water to SAV, turbid 
water, and water level above the plant surface were limiting factors in their ef-
forts to detect SAV. In addition, river channels and waterways, which are usually 
narrow, compared to the resolution of most sensors, limit the ability to investi-
gate SAV in lotic systems, because mixed pixels are introduced (high spatial res-
olution required < 5 m). Furthermore, besides the challenges in mapping SAV in 
a single image, broader ecosystems present more challenges. Such as, changes in 
the sun angle between flight lines (i.e. range of acquisition times), inconsistency 
in water spectra, large tidal differences across ecosystem, water quality differ-
ences (turbid water spectra are similar in many wavelengths to that of SAV), lo-
cal weather conditions, along with potentially differing phenological states of the 
species over different parts of the image (across nutrient, flow, or latitudinal 
gradients). Hestir et al. [34] also noted various factors that limit the mapping of 
SAV using hyperspectral remote sensing such as weather conditions, the sun and 
view angle, and the bidirectional reflectance distribution function (BRDF), 
which limits spectral identification of SAV species.  
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2. Data and Methods 
2.1. Hyperspectral Imagery Acquisition and Processing 

Hyperspectral remote sensing data were collected using the Civil Air Patrol’s 
(CAP) Airborne Realtime Cueing Hyperspectral Enhanced Reconnaissance 
(ARCHER) system between July 2011 and September 2012. ARCHER is a 
hyperspectral data collection, analysis, and visualization system developed for 
the Civil Air Patrol [38]. It combines cutting-edge hyperspectral imaging tech-
nology with advanced real-time data processing capabilities for analyzing an ob-
ject’s reflected light. The system uses a special camera that faces down through a 
quartz glass portal in the belly of the aircraft, which is typically flown at a stan-
dard mission altitude of 2500 feet [800 meters (m)], at 100-knot (50-meters per 
second) ground speed and results in imagery with 1-m spatial resolution. A typ-
ical ARCHER image swath is approximately one meter long and 500 meters 
wide. ARCHER combines a visible and near-infrared hyperspectral imaging sys-
tem, a high-resolution visible panchromatic imaging sensor, and an integrated 
geo-positioning and inertial navigation unit; the navigation unit is capable of 
acquiring and correcting data onboard and in real time, precisely geo-registering 
collected imagery [38]. Although several hyperspectral over-flights were con-
ducted, this paper focuses only on the mission that was flown on July 23, 2011 
because it coincided with a peak in the Didymo bloom that year. One of the les-
sons learned from this exercise is that collecting low-level imagery of a winding 
riverine system is very difficult and several re-flights had to be accomplished be-
cause of missed sections of the river. 

Raw radiance imagery was downloaded from the ARCHER system and con-
sisted of two simultaneously collected image segments, one high spatial resolu-
tion (0.5 m) panchromatic image and one 52-band (1.0 m) hyperspectral image. 
Imagery was converted from radiance to apparent reflectance using proprietary 
ARCHER mission processing software called GeoRegARCHER, developed by 
the Space Computer Corporation (Los Angeles, California). This software also 
uses location data from on-board GPS and navigational systems to geo-register 
each imagery segment to a UTM coordinate system. Imagery was then processed 
to correct for atmospheric effects using the Quick Atmospheric Correction 
module (QUAC) [39] in the Environment for Visualizing Imagery (ENVI) (Ex-
elis Visual Information Solutions, Boulder, Colorado). Reflectance units for each 
image were divided by 10,000 using a band math expression in order to create 
float images in percent reflectance units.  

2.2. Field Data Collection 

A project map of UPDE and DEWA was developed using ArcGIS ArcMap 10.2 
that included river information (boundaries, mileage, and depth), park bounda-
ries, public lands, public river recreational access areas, and SAV polygons 
created from Kunsman’s survey efforts in 1994 [6]. Given that field sampling 
would occur during generally low flow conditions in UPDE and DEWA and that 
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much of this portion of the Delaware River is bordered by private lands, it was 
important to examine the distribution of previously defined SAV beds and their 
relationship to public access points. Based on this analysis, we developed a list of 
SAV beds and their associated access points that could be reached either by 
wading or with a shallow bottom boat. River access points were visited in June 
2012 to verify accessibility and finalize the list of potential SAV bed targets. 

Protocols for vegetation sampling were developed following NatureServe’s 
accepted natural heritage sampling methodology for the quantitative characteri-
zation of plant communities [40]. The main difference was the plot size used. 
Instead of the standard 5 m × 5 m plot for herbaceous species, a 1 m × 1 m sam-
pling quadrat was employed. The quadrat size corresponded to the pixel size of 
the hyperspectral imagery collected so that vegetation data could be used to both 
document and characterize SAV beds and train and interpret imagery. This size 
quadrat was also easier to transport and deploy in potentially swift river current. 
The quadrat was constructed from PVC pipes and fitted with foam so that it 
could float on the water surface while the surveyors looked down into it to col-
lect data.  

Depending on the size of the SAV bed and accessibility, the boundaries of the 
bed were first identified prior to vegetation sampling. Once the area of the bed 
was defined, multiple plots were sampled that represented the variation in vege-
tation found in each bed. Within each plot, the vegetation was visually divided 
into six strata to account for the variable growth of species in the water column: 
benthic, rooted submersed, non-rooted submersed, rooted floating-leaved, 
non-rooted floating-leaved, and emergent. The percent cover was estimated for 
each species in each stratum using modified Braun-Blanquet cover classes [40] 
[41]. (Cover classes included 1 or few, occasional, <5%, 5% - 12%, 13% - 25%, 
26% - 50%, 51% - 75%, and 76+). Specimens of species not identified in the field 
were collected for later identification and destroyed after identification. In addi-
tion to floristic information, the following environmental variables were rec-
orded in each plot: water depth (cm), water velocity (m/sec), turbidity (cm), and 
percent substrate composition. Site and survey information was also recorded 
such as date, time, and names of surveyors, locationcode, plot code, and plot lo-
cation. A sub-meter GPS unit was used to record both the location of the center 
of plot and all survey data in a database created for the project. Figure 3 shows 
an example of the SAV bed plots in the Delaware River used in this project. 

2.3. Specular Reflection and Sunglint Removal 

After some initial data processing attempts with standard hyperspectral tools, it 
became apparent that there were specular artifacts in the data set. Sunglint or 
specular reflection is the solar radiation from the water surface that is directly 
reflected toward the sensor that can subdue or obscure the weak radiance leaving 
the water column [42] [43] [44] [45]. Sunglint was confirmed by visually ex-
amining some of the infrared bands individually. Since these bands should be  
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Figure 3. Map of a portion of the Upper Delaware River near Hancock, New York, 
showing SAV sampling points and polygons that were used for reference in the hyper-
spectral imagery analysis. 
 
nearly completely black from the water surface, absorbing the infrared energy, 
any positive reflection is either an above water object, or, specular reflectance. 
Sunglint is demonstrated in Figure 4, which is ARCHER band 44 with a band 
center at 1006.594 nm. The bright areas are specular reflectance artifacts that 
must be removed. 

Several sunglint correction algorithms have been developed [42] [43] [44] 
[46]. Kay et al. [47] and Streher et al. [48] provide an in-depth review of these 
techniques. In general, these techniques have been developed for multispectral 
imagery and assume that: 1) Water leaving radiance is near zero in a near infra-
red (NIR) band, and any remnant brightness of atmospherically corrected data is 
due to sunglint, and 2) the level of sunglint estimated from the NIR band is li-
nearly related to the glint contribution in the visible (VIS) bands. The algorithms 
use the signal response of a NIR spectral band from a deep-water part of an im-
age to estimate sunglint contribution, which is then used to subtract from the 
visible bands [42] [43] [47]. Other sunglint correction methods developed for 
hyperspectral imagery are more relevant to this study. Kutser [44] developed an 
algorithm based on the 763 nm oxygen absorption band. The reflectance in this 
band is zero if atmospheric correction is effective, and any remnant signal is 
considered contribution from sunglint. However, this method is often too sensi-
tive to atmospheric correction. Goodman et al. [46] developed a sunglint correc-
tion technique based on Lee et al. [49] that assumes reflectance approaches zero 
at 750 nm. The algorithm permits greater than zero reflectance in shallow areas 
based on the reflectance measured at 640 nm. Streher et al. [48] successfully ap-
plied the Goodman et al. [46] sunglint correction method to remove the noise 
from hyperspectral images in a lotic system. 

This study also uses the Goodman et al. [46] sunglint correction technique to  
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Figure 4. ARCHER band of a section of the Upper Delaware River at 1006 nm with the 
upland masked out, showing a substantial level of specular reflectance as indicated by the 
bright pixels. 
 
remove the noise from the surface of the Delaware River and improve the radi-
ometric quality of the ARCHER hyperspectral imagery for the detection of the 
SAV, because the technique was developed for use with hyperspectral imagery, is 
sensor-independent, and was successfully implemented in a lotic system [46].  

The sunglint correction technique was applied after radiometric calibration of 
the ARCHER hyperspectral data from at sensor radiance to Top of Atmosphere 
(ToA) reflectance, and post QUAC atmospheric correction algorithm in ENVI 
software, which was applied to calibrate the data from ToA reflectance to surface 
reflectance. The input to the algorithm requires estimation of the above water 
remote sensing reflectance (Rrsraw (sr)-1) [48], which was calculated by multip-
lying the image cube by π using ENVI Band Math syntax. Streher et al. [48] note 
that the sunglint correction is not wavelength dependent and is calculated as a 
constant offset for all wavelengths that is determined by the difference between 
Rrs at 640 and 750 nm, based on the Goodman et al. [46] equations (Equation 
(1) and Equation (2)).  

Rrs (λ) = Rrsraw (λ) − Rrsraw (750) + ∆              (1) 

∆ = 0.000019 + 0.1 [Rrsraw (640) − Rrsraw (750)]          (2) 

where Rrs (λ) is the sunglint corrected remote sensing reflectance image cube; 
Rrsraw (λ) is the above water remote sensing reflectance image cube; Rrsraw 
(750) is the above water remote sensing reflectance at 750 nm; Rrsraw (640) is 
the above water remote sensing reflectance at 640 nm; and ∆ is the offset calcu-
lated using Equation (1) that is added to each wavelength; and 0.000019 and 0.1 
are the constants. Once the sunglint correction is applied, the deglinted image 
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cube Rrs (λ) is divided by π to convert it back to surface reflectance [46]. The 
ARCHER hyperspectral imagery acquired for this study did not contain bands 
centered on 640 and 750 nm. Thus, two alternate bands, 644.73 and 749.79 nm, 
respectively, were used to correct the sunglint on the Delaware River present in 
the imagery.  

The spectral profile of several of the common SAV species, and Didymo, were 
collected with an Analytical Spectral Devices (ASD), (ASDI, Boulder, Colorado) 
field spectrometer during the several field visits. Spectral collection was accom-
plished on species immediately after they were extracted from the water column 
and some spectra were collected in situ, although this proved to be difficult and 
often not successful due to the logistics of moving the spectrometer on a floating 
platform through flowing water and the inherent difficulties collecting spectra in 
the water column. Examples of SAV and Didymo spectra are shown in Figure 5 
below. 
 

 
(A) 

 
(B) 

Figure 5. (A) An example of field spectral data of the invasive algae Didymosphenis ge-
minate both in (red) the water column and out (white) showing the reduction in features 
caused by light attenuation and scattering caused by 3 inches of water; (B) SAV spectra 
(Elodea canadensis) collected with a field spectrometer; white - OUT of the water column 
and, red -IN the water column showing the inherent problems with reduced reflectance 
profile of light through the flowing water. 
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3. Analysis and Preliminary Results 
3.1. Sunglint Removal 

The sunglint removal algorithm from Goodman et al. [46] and described in Sec-
tion 3.2.1 resulted in a vastly Improved image data set. Figure 6 shows a portion 
of the river with the original imagery, the sunglint demonstrated in the infrared, 
and the color image after sunglint removal. 

3.2. Upland Vegetation Masking 

A number of conventional hyperspectral image processing strategies were first 
attempted. Laboratory derived spectra of SAV from the UPDE were averaged 
(~10 for each of the 13 species), compiled into a spectral library, and then, the 
spectral range of the laboratory spectra was resampled to match the spectral 
range of the ARCHER data (500 - 1000 nm). A series of standard hyperspectral 
image processing techniques were attempted, including the Spectral Hourglass 
Wizard (SHW), Spectral Angle Mapper (SAM), Spectral Mixture Analysis 
(SMA), and Spectral Feature Fitting (SFF) along with a K-means unsupervised 
clustering algorithm. None of these methods returned viable classification re-
sults within the river reach. The relatively weak reflectance signatures of sub-
merged vegetation were likely overwhelmed statistically by the strong upland 
reflectance features. Subsequently, all upland areas were masked and classifica-
tion was again attempted on water column pixels only, without the confusion of 
upland endmembers. This method returned viable results that are demonstrated 
in Figure 7. 

3.3. Hyperspectral Image Processing and Classification 

Several image analysis techniques were applied to the ARCHER hyperspectral  
 

 
Figure 6. ARCHER hyperspectral imagery showing part of the Upper Delaware River: 
(A) Color composite image shows sunglint; (B) the brighter tones in the near infrared 
band 44 (1006.594 nm) illustrate sunglint; and (C) sunglint has been corrected by using 
the sunglint correction algorithm [44]. 
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Figure 7. Automated classification results in the river with (left) and without (right) upl-
and vegetation in the classification scheme. The strong upland vegetation reflectance fea-
tures overwhelm the relatively weak submerged vegetation reflectance and return almost 
no in-stream results (left), but when the upland reflectance features are masked, 
in-stream classification results can be reliably obtained (right). 
 
imagery in an effort to detect and map SAV in parts of the Delaware River. The 
image analysis techniques consisted of visual or manual interpretation combined 
with supervised classification, unsupervised classification and data transforma-
tion. Species level identification of the SAV, however, could not be consistently 
accomplished. Largely due to the variability of the water surface, the water col-
umn and constituents (e.g. silt, sediment, and detritus), and the river bottom. 
The best results were achieved by using reference SAV polygons collected by 
field personnel to train the Maximum Likelihood supervised classification. 

Spectral Angle Mapper (SAM) supervised classification, which directly com-
pares image spectra to known reference spectra, was unsuccessful in classifying 
the SAV species. Reference SAV spectra that were sampled at selected random 
locations in the field and those measured in the laboratory could not be matched 
to image pixel spectra. Furthermore, image-based sample areas of SAV (i.e. re-
gions of interest) based on the GPS locations of field samples did not produce 
any results using SAM. 

Although many image analysis techniques were applied to map the SAV in a 
part of the Delaware River, the best results were achieved by using a simple 
presence/absence classification strategy using the image endmembers of the SAV 
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to train the Maximum Likelihood supervised classification. Of these results, in-
dividual macrophyte species identification could not be accomplished with any 
degree of statistical confidence. This likely due to a number of factors including 
the lack of unique spectral signatures between species, the greatly reduced ref-
lectance intensity of light in the water column, and the variability of signatures 
caused by differing water depths, sediment, detritus and other constituents of 
water in a flowing system. However, the presence and absence of SAVs was 
mapped successfully using the Maximum Likelihood algorithm.  

The automated SHW in the ENVI software was applied to map the SAV. First, 
the Minimum Noise Fraction Transform (MNF) was used to reduce imagery 
noise and data redundancy. Second, the Pure Pixel Index (PPI) was applied to 
locate and iteratively derive the most spectrally pure pixels or endmembers from 
the image. And finally, the SAM algorithm was employed to classify pixels in the 
image that contain each of the PPI selected endmembers. Very few pixels, which 
minimally coincided with the area of the reference samples, were produced as 
classification results by the SHW, but spectral or visual affirmation of the results 
was not possible. The SHW process was conducted on all bands initially. Then, it 
was applied to bands ranging from 505 - 689 nm (all visible bands). Additional-
ly, using SHW with all the bands and only the visible bands, both the field and 
lab spectra were employed instead of the image-based PPI endmembers. The 
IsoData and K-means unsupervised classification techniques were also used in 
an effort to map SAV. All of these methods produced nearly identical spectrally 
similar clusters or classes but were of only limited value. 

A PCA approach, which also reduces data noise and redundancy, was also ap-
plied to shortest blue band (504.655 nm) and the longest green band (598.039 
nm) of the ARCHER image to map the SAV. The logic for the use of the PCA on 
these two visible (VIS) bands is simple: 1) Vegetation strongly reflects incident 
radiation in the near infrared (NIR) part of the spectrum, and conversely, water 
absorbs that region of the spectrum. Thus, the characteristic red edge, which is 
used by image analysts to detect vegetation, is subdued by the water above vege-
tation, confounding the strong vegetation NIR reflectance; 2) the shorter VIS 
wavelengths penetrate water relatively more than the NIR; and 3) the blue part 
of the spectrum is absorbed by vegetation for photosynthesis and the green part 
of the spectrum is reflected by the plant. The PCA analysis did produce favorable 
visual results; however, species level classification was problematic.  

3.4. Identification of Didymo germinata 

One of the main objectives of this study was the identification of the invasive al-
gae, Didymo germinata. Using the reference Didymo spectra collected at a se-
lected location in the Upper Delaware River, the SAM algorithm was applied to 
map the areal extent of Didymo from an ARCHER hyperspectral image at three 
varying processing levels (Figure 8): (A) An at sensor reflectance image, (B) an 
atmospherically corrected image, and (C) a sunglint removed or deglinted im-
age. SAM did not produce a classification result for any of the three images with  
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Figure 8. Spectral Angle Mapper (SAM) algorithm rule images produced from the same 
ARCHER hyperspectral image at three different processing levels. These rule images illu-
strate the similarity or radian angle value between the reference Didymo spectrum and 
the spectrum of the imaging spectroscopy data. (A) Rule image calculated from an at 
sensor reflectance image; (B) rule image computed from an atmospherically corrected 
image, and (C) rule image calculated from a sunglint removed image. Analysis of the rule 
images from A to B, and B to C, reveal that the radian angle values between the reference 
Didymo and image spectrums increase at each processing level.   
 
the standard 0.10 radian angle value threshold. Analysis of the rule images pro-
duced by SAM, which represent the similarity or radian angle values between the 
reference Didymo spectrum and the spectrum of each of the three uniquely 
processed imaging spectroscopy data, revealed a distinct pattern. Specifically, the 
assumption is that as the image cube is, calibrated to at sensor reflectance, at-
mospherically corrected, and finally, the sunglint is removed from the wa-
ter-surface; instrumental, atmospheric and water surface distortions are mini-
mized or rectified. Under these assumptions, SAM should produce a closer 
match between the reference Didymo spectra and the image spectrum at each 
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progressive processing level. In contrast, with each advance in processing of the 
image cube, the radian angle value calculated by SAM between the reference and 
the image spectrum increased (Figure 8).  

These results indicate that at each additional processing level, the reference 
and image spectrum became more dissimilar, where the two spectrums were ex-
pected to match more closely after each image processing level. Furthermore, a 
change in radian angle values is observed in the SAM output rule images of both 
the QUAC atmospherically corrected and the sunglint corrected images (Figure 
9). Specifically, pixels that were a closer match to the reference Didymo spec-
trum in the at sensor reflectance rule image, changed to less similar matches; 
and pixels that were less similar became more similar to the reference spectrum. 
 

 
Figure 9. Maps showing Didymo classification interpreted from SAM rule images (i.e. 
similarity between reference Didymo and image spectrums calculated from: (A) an at 
sensor reflectance image, (B) an atmospherically corrected image, and (C) a sunglint re-
moved image. Field observations by U.S. Geological Survey and the National Park Service 
scientists confirm that the Didymo map produced from A provides the best approxima-
tion of the location and extent of the Didymo in this section of Upper Delaware River. 
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Nevertheless, there is potential for the identification and mapping of Didymo 
via imaging spectroscopy. While the above-mentioned increase and change in 
the radian angle values between the reference Didymo and the three image spec-
trums, are not readily explainable and require further investigation; field obser-
vations by U.S. Geological Survey and the National Park Service scientists con-
firm that the Didymo map produced from the at sensor reflectance rule image 
provides the best approximation of the location and extent of the Didymo in the 
Upper Delaware River (Figure 8). Furthermore, rule images B and C, show pix-
els that were a closer match to the reference Didymo spectrum in the A rule im-
age, changed to less similar matches; and pixels that were less similar became 
more similar to the reference spectrum. 

3.5. Preliminary Accuracy Assessment 

In spite of the many operational problems with SAV mapping in this applica-
tion, an accuracy assessment of a subset of the river was accomplished in order 
to establish a rough level of accuracy that one might expect in these conditions. 
Ground truth was provided by the in-situ surveys conducted by the authors. The 
most basic of assessments was conducted to assess presence or absence of SAV 
in a particular stretch of the river. 

Overall Accuracy = (11009/24231) 45.4335% 

Kappa Coefficient = 0.2929 

 
Ground Truth (Pixels) 

Class Non_SAV SAV Total 

Unclassified 7482 5735 13217 

Non_SAV 5775 1 5776 

SAV 4 5234 5238 

Total 13261 10970 24231 

Ground Truth (Percent) 

Class Non_SAV SAV Total 

Unclassified 56.42 52.28 54.55 

Non_SAV 43.55 0.01 23.84 

SAV 0.03 47.71 21.62 

Total 100.00 100.00 100.00 

4. Conclusions and Discussion 

Attempting to utilize hyperspectral imagery to map SAVs in shallow, flowing, 
winding riverine systems presents a number of unique problems, not only for 
imagery analysis but also for acquisition, logistics and field work. This study has 
identified some of those unique problems and, to some extent, provided a 
workable solution, although more research needs to be done. 

Important results of this study include: 
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1) Masking upland vegetation. Reflectance of vegetation below the water sur-
face is measurable but often very weak because of the absorption and attenuation 
of light in the water column. Relative to upland materials that are directly re-
flecting sunlight, subsurface water targets only reflect a small portion of incom-
ing energy. More importantly, most image processing and classification ap-
proaches use parametric statistics that treat the entire scene as the statistical 
“universe” and therefore weak, under water features are overwhelmed or com-
pletely omitted because of their weak signal. 

2) Spectral profiles above and below water surface. Similarly, spectral profiles 
of underwater targets are altered and cannot be simply replaced by spectra taken 
by samples removed from the water column. Spectra collected just above the 
water surface or spectra collected underwater with special attachments may be 
required to determine an accurate relationship between local and overhead 
spectral relationships. 

3) Species identification was not possible in this study but reasonable results 
for the presence or absence of SAVs was accomplished using a supervised max-
imum likelihood classifier. 

4) Spectral identification of Didymo was promising but needs more testing 
and validation as results can also be attributed to the morphological characteris-
tics of the river channel where Didymo was predominantly detected. It is unclear 
how much spectral information (as opposed to spatial information) contributed 
to this identification. 

5) Hyperspectral data collection over winding lotic systems is problematic and 
inevitably introduces specular reflection issues. Removal of specular reflection 
artifacts, also known as “sunglint” is an absolute requirement for processing in 
such imagery acquisition scenarios but also comes at a cost of sometimes 
over-correcting the spectral signal in riffles and rapids. 

6) Standard hyperspectral processing may not always be the best approach in 
some situations. The images that were processed to at-sensor reflectance and the 
de-glinting algorithm were clearly not as good as the basic rule image from the 
Spectral Angle Mapper process. It is clear that, in special situations such as Di-
dymo in riffles and rapids, the actual spectral signature can be lost by 
over-processing of the image data. 

7) A better understanding of the above, near-surface and underwater spectral 
signals would be a great enhancement to hyperspectral analysis of SAVs in lotic 
shallow systems. 

Future research in this area should place a premium on the viewing geometry 
and sun angle of hyperspectral collections. The emergence of unmanned aerial 
system (UAS) technology has the promise of providing a much more suitable 
collection environment for all the problems that can be encountered in winding 
lotic environments.  
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