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Abstract 
Many supervised classification algorithms have been proposed, however, they 
are rarely evaluated for specific application. This research examines the per-
formance of machine learning classifiers support vector machine (SVM), 
neural network (NN), Random Forest (RF) against maximum classifier 
(MLC) (traditional supervised classifier) in forest resources and land cover 
categorization, based on combination of Advanced Land Observing Satellite 
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) and 
Landsat Thematic Mapper (TM) data, in Northern Tanzania. Various data 
categories based on Landsat TM surface reflectance, ALOS PALSAR back-
scattering and their derivatives were generated for various classification sce-
narios. Then a separate and joint processing of Landsat and ALOS PALSAR 
data were executed using SVM, NN, RF and ML classifiers. The overall classi-
fication accuracy (OA), kappa coefficient (KC) and F1 score index values were 
computed. The result proves the robustness of SVM and RF in classification of 
forest resource and land cover using mere Landsat data and integration of 
Landsat and PALSAR (average OA = 92% and F1 = 0.7 to 1). A two sample 
t-statistics was utilized to evaluate the performance of the classifiers using dif-
ferent data categories. SVM and RF indicate there is no significance difference 
at 5% significance level. SVM and RF show a significant difference when 
compared to NN and ML. Generally, the study suggests that parametric clas-
sifiers indicate better performance compared to parametric classifier. 
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1. Introduction 

Classification of satellite image is a very significant part of remote sensing image 
analysis, object and pattern recognition, mapping and monitoring of forest cov-
ers and natural resources. The process is commonly utilized for generation of 
thematic maps like forest, land cover/use maps and spatial pattern maps. Forest 
and land cover types classification using satellite data has been adopted exten-
sively. Many supervised image classification algorithms have been developed and 
utilized for forest and land cover mapping, ranging from machine learning algo-
rithms to traditional classifiers [1] [2]. Most of the algorithms have been re-
ported to perform reasonably and to enhance the classification accuracy [1] [2] 
[3]. However, it is difficult to identify the best image classification algorithm 
which suits a particular environment. This is simply because numerous factors 
tend to affect the results: scheme of classification, satellite data in use, image 
pre-processing, training and validation sample selection and collection, learning 
algorithm and post processing approaches and validation techniques [4]. For 
that reason, evaluation of commonly applied machine learning algorithms is es-
sential using same satellite dataset and scheme of classification to aid the selec-
tion of suitable algorithm for a particular application. With the advancement of 
the remote sensing technology, new classification algorithms are developed and 
invented rapidly. Consequently, it is very important to assess their performance 
in various kinds of environment using various types of remote sensing datasets 
[2] 

The main objective of this study therefore, is to evaluate the capability of the 
widely applied parametric and non-parametric supervised machine learning al-
gorithms for forest resource and land cover mapping in tropical environment 
using SAR and optical datasets. Specifically to assess which classification algo-
rithm gives better results using independent and integrated Landsat TM and 
ALOS POLSAR datasets for categorization of forest resource and land cover 
mapping. 

2. Study Area 

The satellite image utilized for this study is of Bereko and Duru-Haitemba forest 
reserve in Babati, Tanzania. Lying between latitude 4˚15' and 4˚30' South, and 
between longitude 35˚35' and 35˚50' East (Figure 1). The area is categorized into 
six main land cover/use types: water (e.g. lakes), shrubs, natural dense forest and 
moderate forests [5] (Figure 1). 

3. Dataset and Methods 
3.1. Dataset and Training Samples 

Both Optical and SAR satellite images has been utilized. Landsat 5 Thematic 
Mapper (TM) 30 m spatial resolution of November 4th, 2009 and ALOS PALSAR 
L band [6] of September 13th, 2009. The Shuttle Radar Topographic Mission 
(SRTM) Digital Elevation Model (DEM) 90 m resolution [7] [8] has been applied  
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Figure 1. Study area: (a) Duru-Haitemba and Bereko forest reserve classified image; (b) Landsat 5TM RGB:432. 
 

for image preprocessing. In addition, a set of points based on Global Positioning 
System (GPS) and knowledge-based information acquired in October 2009, 
Normalized Difference Vegetation Index (NDVI) [9] and Google Earth images 
were used for ground truthing.  

Training and validation samples for all land cover classes (i.e. water, shrubs, 
natural dense forest and moderate forests were) selected based on ground truth 
data, GPS based point locations and knowledge based information acquired on 
the site. The collected samples were divided into two groups, first as test sample 
(70% of the collected sample) and as second validation sample (30% of the col-
lected sample).  

3.2. Data Processing 

ALOS PALSAR HH and HV polarization images were collected in slant range 
single look complex format. The images were transformed from slant range to 
ground range resolution using a multi-looking procedure of 9 × 2 (i.e., nine 
looks in azimuth and two looks in range) [10] [11] [12]. Resulting images were 
of 29.9 m × 27.7 m resolution in range and azimuth consecutively. This proce-
dure improves radiometric resolution and squares the pixels in ground range 
geometry, which is same as Landsat TM spatial resolution (e.g. 30 m). For 
speckle reduction a refined Lee spatial filter [13] with a 7 × 7 window size was 
adapted. The topographic effects on the ALOS PALSAR backscattering was ac-
counted by applying a radiometric terrain correction to convert backscattering 
in sigma-nought σ˚ value to the improved backscattering in gamma-nought γ˚ 
[1] [14] [15]. Landsat-5 TM digital numbers were converted to surface reflec-
tance (SR) and normalized using Atmospheric and Topographic Correction 3 
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[16].  

3.2.1. Landsat TM and ALOS PALSAR Derivatives 
Several ALOS PALSAR and Landsat TM derivatives were extracted. Especially 
vegetation indices (VI), Principal Component Analysis (PCA), SAR quotient 
bands HH/HV and HV/HH [17] and Radar Forest Deforestation Index (RFDI) 
[18] and the Grey-Level Co-Occurrence Matrix (GLCM) [19] textural feature 
measures. Normalized Vegetation Index (NDVI), (IR − R)/(IR + R) [9], and Soil 
leaf Area Vegetation Index (SLAVI ( )NIR Red MIR2+ ) [20] (Table 1).  

3.2.2. Integration of ALOS PALSAR and Landsat TM data 
Various input bands were prepared ready for image classification. A multi-sensor 
integration image fusion approach was adapted [1] [5]. The multi-sensor inte-
gration approach combines n images in n different layers algorithmically, with-
out creating a new set of images [21] [22] [23]  

3.2.3. Classifiers under Study 
For classification of forest covers and land cover mapping of the independent 
bands and integrated ALOS PALSAR/Landsat data and their derivatives Three 
non-parametric and one-parametric classifiers were tested on their ability. Ran-
dom Forest [24], Support Vector Machine (SVM) [1] [12] [25] [26] and Neural 
Network (NN) [27] supervised classifiers. Maximum likelihood (ML) [28] para-
metric classifier was used for comparison purpose. The ML is a conventional  

 
Table 1. Data categorization for various classification set-ups adapted from Deus [5]; SR = Surface Reflectance, AP = ALOS 
PALSAR, mea = mean, cor = correlation, var = variance, con = contrast, and sec = second moment are GLCM texture derivatives. 

Subgroup Datasets Selected Input Data or Combination 

A A1 TM surface reflectance TM bands (234) 

 A2 VI and TM GLCM texture SLAVI, mea_b1, cor_b3, var_b4, cor_b4, con_b4 

 A3 SR and TM derivatives TM bands (234), SLAVI, cor_b3, var_b4, cor_b4, con_b4 

B 

B1 AP bands HH, HV 

B2 AP derivatives RFDI, HH/HV, HV/HH, HH-HV, cor_HH, cor_HV, mea_HH, var_HH, sec_HH, sec_HV 

B3 AP bands, VI and quontient bands HH, RFDI, HH/HV, HV/HH, HH-HV 

B4 AP bands, AP GLCM textures HH, cor_HH, cor_HV, mea_HH, var_HH, se_HH, sec_HV 

B5 AP bands and their derivatives HH, HH/HV, HV/HH, cor_HH, cor_HV, mea_HH, var_HH, sec_HH, sec_HV 

C C1 SR and AP bands TM bands(2,3,4), HH, HV 

 C2 TM derivatives and AP Bands SLAVI, mea_b1, cor_b3, var_b4, cor_b4, con_b4, HH, HV 

 C3 
TM derivatives and GLCM textures 
of AP bands 

SLAVI, mea_b1, cor_b3, var_b4, cor_b4, con_b4, cor_HH, cor_HV, mea_HH, var_HH, 
sec_HH, sec_HV 

 C4 TM and AP derivatives 
SLAVI, cor_b3, var_b4, cor_b4, con_b4, HH/HV, HV/HH, HH-HV, cor_HH, cor_HV, 
mea_HH, var_HH, sec_HH, sec_HV 

 C5 
SR, AP backscattering and their 
derivatives 

TM bands(2,3,4), HH, HV, SLAVI, cor_b3, var_b4, cor_b4, con_b4, cor_HH, cor_HV, 
mea_HH, var_HH, sec_HH, sec_HV 
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classification algorithm that uses Gaussian distribution principle for data seg-
mentation. The technique is robust and well-known for general classification 
problems. However, it may have some difficulties in classifying data coming 
from different sources, such as optical and SAR data. MLC is one of the exten-
sively utilized classifier in the field.  

The SVM is basically a binary class classification method based on machine 
learning and using support vector in the data classification. [12] [25]. Linear, 
polynomial, radial basis function and sigmoid are the four common kernels 
available in remote sensing packages. A careful selection of parameter setting 
can improve the performance of the SVM [29]. The Gaussian radial basis kernel 
function and a penalty parameter of 100 were selected based on trial and error. 
However, the kernel and penalty parameter selected are recommended to be the 
best for land cover classification [29]. 

NN classifier has arbitrary decision boundary abilities and could adapt to var-
ious data types and input structures easily, fuzzy output values and suitable ge-
neralization for use when integrating manifold images [27]. The classifier bene-
fits from parallel computation, the capability to estimate the non-linear rela-
tionship between the input data and desired outputs, and fast generalization 
ability [1] [30] [31]. The NN parameter setting was adapted based on trial and 
errors. As an activation function a logistic function was chosen, one hidden layer 
and 1000 training iterations were also designated. 

RF is a machine ensemble approach based on classification and regression 
trees and can be used for both image classification and regression analysis [1] 
[24] [32] It makes use of multiple self-learning decision trees to parameterize 
models and use them for estimating categorical or continuous variables [33] 
[34]. The number of trees is a user-defined parameter. RF normally gives higher 
overall cross-validation accuracies compared to other classification approaches 
[33] Generally, Non-parametric classifiers yield higher classification accuracy 
compared to parametric classifiers [1] [30] [31]. To run the classification process 
and assess the potential of parametric and non-parametric classifiers. The data 
are grouped into three major groups A-C (Table 2), Group A, consists of surface 
reflectance bands from Landsat 5 TM image and its derivatives (i.e. Vegetation 
index, GLCM textures and PCA). Group B, comprises of individual ALOS 
PALSAR backscattering and derivatives. Group C, involve the integration of 
surface reflectance, backscattering and their derivatives. However, to maximize 
the overall classification accuracy the best blend of textures, indices and features 
were identified. The selection of relevant integration bands was carried out based 
on trial and error classification.  

3.2.4. Classification Accuracy Assessment 
To test the capability of parametric and non-parametric classifiers a validation 
dataset was used for accuracy assessment. Three terms that describe the classifi-
cation accuracy were utilized (i.e. overall accuracy (OA), kappa coefficient (κ)) 
[35] and F1 score index [36]. The overall classification accuracy is the percentage 
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of the pixels that have been classified correctly in the validation dataset [35]. The 
Kappa coefficient is a metric that compares an observed Accuracy with an ex-
pected accuracy. It is used not only to assess a single classifier, but also to assess 
classifiers amongst themselves. F1 score index merges producer’s and user’s ac-
curacy into a fused quantity was computed (Equation (1)) [36]. Producer’s ac-
curacy is used to estimate the omission error to a certain class and it is the 
probability that a reference site has been classified correctly. User’s accuracy is 
used to estimate the commission error and it is the probability that a pixel classi-
fied on the image signifies the actual class on the ground. F1 score enables a bet-
ter evaluation of the land cover class-wise accuracies. The score varies between 0 
and 1 where by 0 signifies the worst results, and 1 is the best accuracy achieved. 

1
precision recall user's accuracy producer's accuracyF score 2 2
precision recall user's accuracy producer's accuracy

 × ×
= × = ×

+ +
  (1) 

To compare the capability of the four classifiers under study, a two-sample 
t-test [37] was applied on the overall classification accuracy obtained using dif-
ferent data categories (Table 1). The influence of surface reflectance and back-
scattering derivatives on the classification accuracy the two-sample t-test was 
utilized. The two-sample t-test assesses whether two sample means unrelated. A 
difference in mean indicates that the two samples are dissimilar. The test is 
normally applied when the test makes use of a small sample size, the variances of 
two normal distributions are unknown and the experimentation involve a small 
sample size. 

4. Results 
4.1. Classification Results Based on the Four Classifiers 

The classification results attained based on different data groups (A-C) (Table 1) 
and tested classifiers are presented in Figure 2 for Overall accuracy, Figure 3 for 
Kappa coefficients and Table 2 for F1 score attained for every land cover type. 
Using maximum likelihood classifier, data group A, group A1 surface reflectance 
and derivatives depicts higher overall classification accuracy (average OA = 
93.35%) and higher F1 score index values (F1 = 0.95 - 1) for all land cover types. 
Group B, backscattering values and derivatives, depicts lower overall classifica-
tion accuracy (average OA = 53.92) and lower F1 score index (F1 = 0.18 - 0.53) 
values for dense forest, moderate forest and bare soil land cover classes. Group 
C, integration of surface reflectance, backscattering and derivatives provides 
good overall classification accuracy (average OA = 87.25%) and higher F1 score 
index values (F1 = 0.77 - 1) for all land cover classes (Figure 2 and Table 2). Us-
ing, support vector machine, both category A and C provides the best classifica-
tion accuracy in terms of overall classification accuracy (average OA = 95.82% and 
97.20% respectively) and F1 score index values varied between 0.94 and 1 for all 
land cover types. Category B indicates poor lower overall classification accuracy 
(average OA = 57.9%) and lower F1 score index values are obtained for dense for-
est, moderate forest and bare soil covers ranging from 0.07 to 0.68 (Table 2). 
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Figure 2. Comparison of the overall classification accuracy achieved on different data 
categories (Table 1), for MLC, NN, SVM and RF classifiers based on the validation samples. 

 
Table 2. F1 score accuracy comparison of land cover classification results for different 
data groups achieved for the tested classification algorithms; (a) SVM (b) RF (c) NN (d) 
MLC. Results are based on the validation dataset. 

Class 
Data Group 

A1 A2 A3 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 

SV
M

 

DF 1.00 0.98 0.98 0.48 0.43 0.07 0.22 0.52 1.00 1.00 1.00 0.98 0.98 

MF 0.97 0.95 0.97 0.63 0.46 0.68 0.37 0.53 0.96 0.97 0.98 0.97 0.97 

SH 0.98 0.96 0.98 0.61 0.76 0.58 0.76 0.69 0.98 0.97 0.97 0.96 0.98 

WA 0.96 0.96 0.98 0.82 0.89 0.83 0.86 0.84 0.98 0.96 0.98 0.98 0.98 

BS 0.98 0.96 0.98 0.43 0.48 0.39 0.53 0.56 0.94 0.96 0.96 0.95 0.98 

RF
 

DF 1.00 1.00 1.00 0.38 0.58 0.52 0.50 0.60 1.00 1.00 0.98 0.98 0.98 

MF 0.97 0.93 0.96 0.47 0.53 0.52 0.53 0.61 0.96 0.94 0.94 0.94 0.97 

SH 0.96 0.92 0.96 0.53 0.73 0.64 0.74 0.77 0.96 0.94 0.93 0.94 0.97 

WA 0.98 0.96 0.96 0.82 0.89 0.84 0.86 0.91 0.96 0.96 0.98 0.98 0.98 

BS 0.96 0.95 0.96 0.38 0.53 0.46 0.54 0.67 0.96 0.96 0.95 0.96 0.96 

N
N

 

DF 1.00 0.70 1.00 0.43 0.36 0.10 0.36 0.56 0.98 0.70 0.78 0.85 0.75 

MF 0.92 0.73 0.93 0.29 0.33 0.52 0.37 0.53 0.94 0.71 0.71 0.68 0.70 

SH 0.92 0.88 0.95 0.00 0.84 0.75 0.84 0.73 0.98 0.86 0.88 0.85 0.89 

WA 0.94 0.94 0.94 0.80 0.87 0.83 0.82 0.83 0.91 0.94 0.98 0.96 0.96 

BS 0.98 0.86 0.98 0.36 0.49 0.49 0.48 0.49 0.98 0.86 0.88 0.88 0.90 

M
LC

 

DF 1.00 0.93 1.00 0.49 0.53 0.48 0.36 0.50 1.00 0.92 0.93 0.82 0.85 

MF 0.94 0.70 0.94 0.18 0.19 0.15 0.37 0.20 0.92 0.87 0.90 0.79 0.77 

SH 0.95 0.84 0.97 0.72 0.75 0.70 0.84 0.70 0.96 0.90 0.98 0.93 0.81 

WA 0.96 0.89 0.91 0.78 0.84 0.78 0.82 0.85 0.94 0.86 0.91 0.84 0.84 

BS 0.95 0.96 0.95 0.41 0.63 0.40 0.48 0.49 0.98 0.85 0.96 0.85 0.84 
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For Random Forest both data group A and C provides the best classification 
accuracy in terms of overall accuracy (average OA = 95.7% and 96.9% respec-
tively). Higher F1 score index values are obtained for all land cover types ranging 
between 0.94 and 1 (Table 2). Group B indicates higher overall classification 
accuracy compares to other classifier (average OA = 61.08%) and Lower F1 score 
index values varying between 0.38 and 0.61 are obtained for dense forest, mod-
erate forest and bare soil covers. For neural network classifier, like other classifi-
er best results are obtained with data group A and C (average OA = 91.03% and 
89.02% respectively). Lower F1 score values for dense forest, moderate forest and 
bare soil covers ranging from 0.1 to 0.56 (Figure 2 and Table 2). For all classifi-
ers when using SAR data water is the only land cover type classified with very 
higher F1 score index values followed by shrubs (Table 2). 

4.2. Evaluation of RF, SVM, NN and MLC Classifiers 

The non-parametric classifiers (RF, SVM and NN) are assessed together with the 
maximum likelihood classifier (MLC) on different data subgroups. Figure 3 in-
dicates the performance of the three classifiers in terms of Kappa coefficient 
(KC). The results of data group A and C Landsat based surface reflectance, 
PALSAR backscattering and derivatives, indicate that the three tested machine 
learning classifiers as well as MLC have good performance (average KC = 0.89 
and 0.91 respectively) and there is no statistically significant difference at 95% 
confidence interval in their results (Figure 3).  

However, MLC provides the poorest accuracy compared to the machine 
learning classifiers. In these groups, SVM and RF have better performance at 
95% confidence interval compared to NN and MLC classifiers. For group B, SAR  

 

 
Figure 3. Comparison of Kappa coefficients for various classification results for different 
data categories (Table 1) and classifiers. The results are based on validation samples. 
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backscattering and derivatives, all classifiers displayed poorer performance (Av-
erage KC = 0.50), though in most cases machine learning algorithm performed 
better compared to MLC (Figure 3). In this group, SVM and RF have more or 
less same performance and there is no substantial difference in their perfor-
mances at 95% confidence level. Generally, in all data categories, SVM and RF 
produce better classification value at 95% confidence interval compared to NN.  

Table 3 presents classifier comparison results of the three classification algo-
rithm utilized based on the two sample t-test. The performances of all classifiers 
within each group are compared at 5% significance level. The results indicates 
that there is a statistical significant difference between SVM and NN classifiers 
(p-value = 0.05) at 5% significant level. There is no statistical significant differ-
ence between SVM and RF classifiers (p-value = 0.834) at 5% significance level. 
Both SVM and RF classifiers indicate a significance difference when compared 
to MLC (p-value = 0.001). RF and NN classifiers are statistically significant dif-
ferent at 5% significance level (p-value = 0.012). NN and MLC indicates that 
there is no statistically significant different at 5% significance level (p = 0.622) 
(Table 3).  

5. Discussion 

In this research a comparison of supervised learning algorithm using indepen-
dent and integrated landsat TM and ALOS PALSAR data has been carried out. 
The assessment of the performances of the four classifiers under study shows 
that both parametric and non-parametric classifiers have good performance 
when using Landsat TM data (Figure 2 and Figure 3). Attarchi and Golaguen 
[1] attained same results indicating that both parametric and non parametric 
classifiers performs well for Landsat based surface reflectance and derivatives. 
SAR data and derivatives were effectively well classified by RF and SVM classifi-
ers compared to MLC at 95% confidence level. This is probably due to the fact 
that SAR data and their derived parameters usually do not follow a Gaussian 
distribution, which is a basic assumption for several classification approaches.  

 
Table 3. T-test statistic results for the comparison of the classifiers. The comparison was 
done based on the overall classification accuracy attained for each data category. 

Pair t-test value p-value 

SVM-MLC 4.173 0.001 

SVM-NN 2.233 0.045 

SVM-RF −0.214 0.834 

NN-MLC −0.505 0.622 

NN-RF −2.979 0.012 

RF-MLC 4.391 0.001 

Notes: A p-value ≤ 0.05 indicates the two samples are statistically significant different at 5% significance 
level. The p-value of greater than 0.05 implies that there is no significant difference between the two sam-
ples on comparison. 
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On the integration of SAR and Landsat data all classifiers indicate good perfor-
mance, however, SVM and RF has the best performance in relation to NN and 
MLC at 95% confidence interval. Based on previous studies, parametric classifi-
ers like MLC are not worthy when using multi-source remote sensing data. The 
superior performance of SVM and RF compared to NN could be due to the fact 
that SVM and RF has the potential to handle high dimensional data [1].  

Looking on the performance of classifiers based on data category, results in 
category A, subgroup A1-A3, Landsat surface reflectance and its derivatives in-
dicates that non-parametric classifiers (SVM, RF and NN) as well as MLC per-
forms well (Figure 2 and Figure 3). However NN indicate the lowest perfor-
mance for data group A2. In category B, subgroup B1-B5 MLC has lowest per-
formance. In this category MLC and NN have the more or less same perfor-
mance for data group B2 and B4 and there is no significant difference in their 
performances at 5% confidence level. Subgroup A3 and C1 are the only data 
categories where all four classifiers indicates nearly similar performances 
(Figure 2 and Figure 3). In all categories A-C, SVM and RF provides the best 
performance. In data category C, specifically for C2-C4 NN display lowest per-
formance compared to SVM and RF as well as MLC (Figure 2 and Figure 3). 
Attarchi and Gloaguen [1], also indicated a poorest performance of NN com-
pared to SVM and RF. As depicted in Figure 3, SVM and RF appear to have 
more or less same performance. This is simply because accuracy improvement of 
land cover mapping by new algorithms are hardly observable [2] [38]. Li et al [2] 
attained more or less similar classification accuracy values for SVM and RF. 

The performances of all classifiers within each group are compared at 5% sig-
nificance level. Comparing all classifiers using the two sample test, the results 
indicates that there is no statistical significant difference between SVM and RF 
classifiers at 5% confidence interval. Both SVM and RF classifiers indicate a sig-
nificance difference when compared to NN and MLC. RF and SVM show a sta-
tistically significant different at 5% significance level when compared to MLC. 
NN and MLC indicates that there is no statistically significant different at 5% 
significance level (Table 3).  

6. Conclusion and Recommendations 

The potential of parametric and non parametric classifiers has been examined 
based on integration of Landsat TM and ALOS PALSAR data. All classifiers un-
der study performs well in terms of overall accuracy when using Landsat TM 
and derivatives, however SVM and RF are superior compared to others. For SAR 
data SVM, RF and NN performs well compared to MLC. On integration of 
Landsat and PALSAR data SVM and RF seems to be very powerful compared to 
NN and MLC especially when combining TM derivative, backscattering and 
GLCM textures. Generally, the overall results indicates the robustness SVM and 
RF at 5% significance level for land cover classification in tropical area. Howev-
er, the process of selecting a suitable classifier for a certain task depends much 
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on tradeoffs among classification accuracy, time consumption, and computing 
resources. Based on the results attained the researcher recommends that, the 
performance of other classification algorithms, especially object based classifica-
tion should be tested in tropics and semi-arid environments. This will show their 
potential ability in terms of differentiating forest resource and land cover map-
ping. Additionally, since new classification algorithms are developed rapidly it is 
very essential to evaluate their performance and sensitivity in different environs 
using various types of remote sensing datasets and high quality samples. If a 
comprehensive assessment of algorithms on various kinds of environment types 
were carried out it would be more suitable to select an algorithm for a specific 
remote sensing application. 
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Abbreviations 
The following abbreviations are used mostly in this manuscript: 

ALOS Advanced Land Observing Satellite 

BS Bare soil 

DF Dense Forest 

GLCM Grey Level Co-Occurrence Matrix 

KC Kappa Coefficient 

MLC Maximum Likelihood Classifier 

MF Moderate Forest 

NDVI Normalized Difference Vegetation Index 

NN Neural Network 

OA Overall Accuracy 

PALSAR Phased Array type L-band Synthetic Aperture Radar 

RF Random Forest 

RS Remote Sensing 

SAR Synthetic Aperture Radar 

SH Shrub 

SVM Support Vector Machine 

TM Thematic Mapper 

UA User Accuracy 

VI Vegetation Index 

WA Water 
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