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Abstract 
Let f be a meromorphic function in  . If the order of f is greater than 2, f ′  
has finitely many zeros and f takes a non-zero finite value finitely times, and 
then ( )( )1 0f f −′  is unbounded. 
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1. Introduction and Main Result 

Let f be a meromorphic function in  , define  
( )( ) ( ) ( ){ }1 an0 : 0dfM f f f z z f z−′ ′= = ∈ = . W. Bergweiler [1] gave a con-

jecture in 2001 as follow: Conjecture 1: Let f be a transcendental meromorphic 
function in  . If ( ) 1f z′ ≠  for all z∈ , then fM  is unbounded. 

Bergweiler pointed that let ( ) ( )g z z f z= − , Conjecture 1 is equivalent to the 
following one. 

Conjecture 2: Let g be a transcendental meromorphic function in  . Suppose 
that g ′  does not have zeros. Then there exist a sequence { } 1n n

z ∞

=
 of fixed 

points of g such that ( )ng z′ → ∞ . 
Bergweiler [1] has separately proved Conjecture 1 is affirmative for finite or-

der meromorphic functions and entire functions; Jianming Chang [2] has con-
firmed the conjecture for infinite order meromorphic functions for the first 
time, which is based on theory of normal and quasinormal families. 

For the conjecture, 1f ′ ≠  and ( )0f c c′ ≠ ≠  are essentially equivalent. In 

fact, if ( )0f c c′ ≠ ≠ , then 1f
c
′
≠  and f

c
 is also transcendental meromor-
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phic function; the zeros of f and the zeros of f
c

 are the same and fM  is un-

bounded if and only if f
c

M  is unbounded. 

Considering the discussion above, it’s natural to research the problem that 
whether the conclusion is true if 0f ′ ≠  but not ( )0f c c′ ≠ ≠ , the problem is 
radically different to the conjecture and gives a important supplement. We can 
give a example to show that the problem is significant. Let ee 1

z
f = − , it’s ob-

vious that 0f ′ ≠  and fM  is unbounded. In details, we have  
Theorem 1. Let f be meromorphic in   and the order is greater than 2. If 

f ′  has finitely many zeros and f takes a finite non-zero value finitely many 
times, then fM  is unbounded.  

Theorem 2. Let f be entire in   and the order is greater than 1. If f ′  has 
finitely many zeros and f takes a finite non-zero value finitely many times, then 

fM  is unbounded.  

2. Preliminary Lemmas 

Lemma 1. Let f be a meromorphic function. If the spherical derivative 
( )#f z  of ( )f z  is bounded. Then the order of ( )f z  is at most 2.  

For details of lemma 1, can see [3] 
Remark: Let ( )nf z  be a sequence of meromorphic functions, ( ) ( ).loc

nf z g z  
means ( )nf z  locally uniformly convergence to meromorphic function ( )g z ; 
for a meromorphic function f in  , let ( ) { }0 0, :D z M z z z M= − ≤ .  

Lemma 2. Let   be a family of functions meromorphic in a domain D. 
Suppose that there exist 0K >  such that ( )0,gM D K⊂  for all g ∈ . For 
any given α  satisfying 1 1α− < ≤ , if   is not normal, then there exist a se-
quence { } 1n n

f ∞

=
 in  , a sequence { } 1n n

z ∞

=
 in D, a sequence { } 1n n

ρ ∞

=
 of posi-

tive real numbers and a non-constant finite order function f which is meromor-
phic in   such that 0nz z→  for some 0 , 0nz D ρ∈ →  and  

( ) ( ) ( ).
   ; .

locn n

n

f z z
f z z nα

ρ
ρ
+

∈ →∞  

Moreover, the spherical derivative ( )#f z  of f satisfies  

( ) ( )# # 0 1f z f K≤ = +  for all z∈ .  

For details of lemma 2, can see [4] 
In the case no hypothesis on gM  is required, the case 0α =  is due to 

Zalcman [5], and the case 1 1α− < <  is due to Pang [6] [7]. In the hypothesis of 
Lemma 2, if all g ∈  have no zero in D, then gM = ∅  and the conclusion is 
still right according to the proof of Lemma 2 in which K can take 0.  

Lemma 3. Let f be a meromorphic function, D be an bounded domain and c 
be constant in  , if ( )f z c−  has ( )2l l ≥  zeros in D and ( )f z′  has 1l −  
zeros in D which are all the zeros of ( )f z c− . Then each discriminating zero of 
( )f z c−  and ( )f z′  in D is the same one.  
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Proof. Let ( ) ( ) ( ) ( ) ( )
1

l

j
j

f z c z z g z R z g z
=

− = − =∏  with ( )g z  be a mero-

morphic function which have no zero in D satisfying ( ) ( )1, ,jg z j l≠ ∞ =   

and ( ) ( )
1

l

j
j

R z z z
=

= −∏  in which ( )1, ,jz D j l⊂ = 
. 

Because ( )f z′  has 1l −  zeros in D which are all the zeros of ( )f z c− , 
there exist 1l −  points in ( )1, ,jz j l= 

 be zeros of ( )f z′  and without loss 
of generality we may assume ( ) ( )0 1, , 1jf z j l′ = = − . 

As ( ) ( ) ( ) ( ) ( )f z R z g z R z g z′ ′ ′= + , we can deduce that  

( ) ( ) ( ) ( ) ( )
( )1

0 1, , 1 ,    and  
l

j j
j l

R z lR z j l R z l z z
R z z z=

′
′ ′= = − = ⋅ − =

−∏  

from the above it follows that ( ) ( )l
lR z z z= −  and the proof of Lemma 3 is 

complete.  
Lemma 4. Let f be a holomorphic function, if the spherical derivative of f is 

bounded. Then the order of f is at most 1.  
For details of lemma 4, can see [8]. 

3. Proof of Theorem 1 

Proof. we apply Lemma 1 to obtain a sequence { } ( )1
,n nn

nω ω∞

=
→ ∞ →∞  such 

that ( ) ( )# ,nf nω →∞ →∞ . n∀ ∈ , let ( ) ( )n nf z f z ω= + , it’s easy to apply 

Marty’s theorem to know ( ){ } 1n n
f z

∞

=
 is not normal at 0. Suppose ( )f z λ−  

only have finitely many zeros ( 0λ ≠ ), there exist a subsequence of ( ){ } 1n n
f z

∞

=
 

we still suppose it’s ( ){ } 1n n
f z

∞

=
 such that ( )f z λ−  have no zero in  , thus 

according to Lemma 2, there exist a sequence { } 1n n
z ∞

=
, a sequence { } 1n n

ρ ∞

=
 of 

positive real numbers and a non-constant finite order function ( )g z  such that 
when n →∞ , 0, 0n nz ρ→ →  and  

( ) ( ) ( ).locn n n n n n

n n

f z z f z z
g z

ρ λ ω ρ λ
ρ ρ
+ − + + −

=   

in   and ( )g z  satisfies ( ) ( )# # 0 1g z g≤ =  for all z∈ . 

n∀ ∈ , let n n nzτ ω= + , there exist entire functions ( )F z  and ( )H z  
such that ( )F z  and ( )H z  have no common non-trivial divisor and 

( ) ( )
( )

H z
f z

F z
= , then 

( ) ( )
( )
( ) ( ).

n n

locn n n n n n n

n n n

H z
f z z f z F z

g z

τ ρ
λ

ρ λ τ ρ λ τ ρ
ρ ρ ρ

+
−

+ − + − +
= =   

( ) ( ) ( ). 1   
locn

n n

z
f z g z

ρ
τ ρ λ

∈
+ −

                   (1) 
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For ( ) 0n nf zτ ρ λ+ − ≠  and ( ) 0g z ≠ , the derivative of (1) is  

( )
( ){ }

( )
( )

( )
2

.

2 2   
locn n n

n n

f z g z
z

g zf z

ρ τ ρ

τ ρ λ

′ ′+
∈

+ −
                 (2) 

here we divide two cases: 

Case 1: 
( )
( )2

g z
g z
′

 have no zero in  . 

Because 
( ) ( )

#

#1 g z
g z

 
=  

 
 is bounded, then we apply Lemma 4 to have that 

the order of 
( )
1

g z
 and 

( )
( )2

g z
g z
′

 are at most 1. On the other hand, 
( )
( )2 0

g z
g z
′

≠ , 

we can deduce 
( )
( )

( )2 e , , 0Az Bg z
A B A

g z
+′

= ∈ ≠  or constant ( )0α α ≠  and 

( )
1 e  

Az B

d
g z A

+

= +  or 
( ) ( )1 ,z d

g z
α β β= + ∈ . 

here we first proof that 0d ≠ , if 0d = , we have  

( ) ( ).
  

e
locn n

Az B
n

f z A z
τ ρ λ

ρ +

+ −
∈  

then we have that  

( ) ( )
( ) ( ).

  
locn n

n n
n n

H z
f z z

F z
τ ρ

τ ρ λ
τ ρ

+
+ = ∈

+
               (3) 

( ) ( )
( ) ( ).

0  
locn n n n

n n

H z F z
z

F z
τ ρ λ τ ρ

τ ρ
+ − +

∈
+

               (4) 

From (4) it can be deduced that because ( ) ( )n n n nH z F zτ ρ λ τ ρ+ − +  have 
no zero, ( )n nF zτ ρ+  have no zero in any bounded domain when n is large 
enough,. Then so are ( )n nH zτ ρ+  unite (3). What’ more, ( )n nf zτ ρ+  has no 
zero and pole and cannot take λ  in any bounded domain, which contradict 
with Picard’s Theorem, therefore 0d ≠ . 

From (1) we have  

( ) ( ) ( ). 1   
locn n

n n

z
f z g z

ρ ρ
τ ρ λ λ

− ∈
+ − −

  

Because 1
g

 have zero in  , from above it can be deduced that ( )n nf zτ ρ+  

have to have zeros which convergence to the zeros of 
( )
1

g z
. From (2) when 

( ) 0n nf zτ ρ+ =  then 
( )

2
n n nf z

Ad
ρ τ ρ

λ

′ +
→ −  or α  and 

( ) ( )n nf z nτ ρ′ + ∈  have to be unbounded. 

Case 2: 
( )
( )2

g z
g z
′

 have zero in  . We will proof the case is impossible. 
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Take a finite zero c of 
( )
( )2

g z
g z
′

 and it’s multiple is ( ), 1k k k∈ ≥  then there 

exist some sufficiently small neighborhood cD  of c such that cD  only have 

one zero of 
( )
( )2

g z
g z
′

. (2) can be expressed as  

( ) ( ) ( ) ( )
( ) ( ){ }

( )
( )

( ).2
2 2   .

locn n n n n n n n
n

n n n n

F z H z H z F z g z
z

g zH z F z

τ ρ τ ρ τ ρ τ ρ
ρ

τ ρ λ τ ρ

′ ′ ′+ + − + +
⋅ ∈

+ − +
  

Because ( )f z  take λ  finitely many times and from (2) 
( ) ( )n n n nH z F zτ ρ λ τ ρ+ − +  have no zero in cD  then when n is large enough, 
( ) ( ) ( ) ( )n n n n n n n nF z H z H z F zτ ρ τ ρ τ ρ τ ρ′ ′+ + − + +  have k zeros in cD , 

which are all the zeros of ( )n nF zτ ρ+  due to that  
( ) ( ) ( ) ( )

( )2

H z F z H z F z
f

F z
′ ′−

′ =  only has finitely many zeros; therefore, c is the 

zero of 
( )
1

g z
 with 1k +  multiple and ( )n nF zτ ρ+  have 1k +  zeros in cD .  

(1) can be expressed as  

( )
( )
( )
( )

( ) ( ). 1   .
1

n n
n

locn n

n n

n n

F z
H z

z
F z g z
H z

τ ρ
ρ

τ ρ
τ ρ

λ
τ ρ

+
+

∈
+

−
+

  

From (1) we have that  

( )
( ) { }( ).

1  \ .
locn n

c
n n

F z
z D c

H z
τ ρ

λ
τ ρ
+

∈
+

                  (5) 

Here we divide two cases for (5): 

Subcase 2.1: If 
( )
( )

1

n n

n n n

F z
H z

τ ρ
λ

τ ρ

∞

=

 + 
 

+  
 is normal in cD . 

From (5) we have  

( )
( ) ( ).

1  .
locn n

c
n n

F z
z D

H z
λ τ ρ

τ ρ
+

∈
+

                     (6) 

( ) ( )
( ) ( ).

0  .
locn n n n

c
n n

F z H z
z D

H z
λ τ ρ τ ρ

τ ρ
+ − +

∈
+

  

when n is large enough, notice that ( ) ( )n n n nH z F zτ ρ λ τ ρ+ − +  have no zero 
in cD , therefore ( )n nH zτ ρ+  have no zero in cD  and according to (6), 
( )n nF zτ ρ+  have no zero in cD  contradict with ( )n nF zτ ρ+  have 1k +  

zeros in cD .  

Subcase 2.2: If 
( )
( )

1

n n

n n n

F z
H z

τ ρ
λ

τ ρ

∞

=

 + 
 

+  
 is not normal in cD . Let  

( ) ( ) ( )
( )

.n n n n
n

n n

F z H z
z

H z
λ τ ρ τ ρ

ϕ
τ ρ

+ − +
=

+
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Then ( ){ } 1n n
zϕ

∞

=
 is not normal and have no zero in cD , we apply Lemma 2 

to obtain { } 1n n
ν ∞

=
∈  and { }*

1n n
ρ

∞

=
 of positive real numbers and a 

non-constant finite order function ( )ψ ξ  such that *, 0n ncν ρ→ → , and  

( )
( )

( )( ) ( ) ( )
*

. # #
* ,   with  0 1.

locn n n
n

n

n
ϕ ν ρ ξ

ψ ξ ψ ξ ξ ψ ξ ψ
ρ

+
= →∞ ∈ ≤ =  

here we will prove that ( )ψ ξ  has no simple pole if it exist; let 0ξ  be the pole 
of ( )ψ ξ , for ( )ψ ξ  cannot always be ∞ , there exist closed disc ( )0 ,D ξ δ  
such that ( )1ψ ξ  and ( )1 nψ ξ  are holomorphic in ( )0 ,D ξ δ  and 

( ) ( )1 1nψ ξ ψ ξ  uniformly in ( )0 ,D ξ δ  and so are ( ) *1 n nψ ξ ρ+ . 
Notice that ( )1 nψ ξ  cannot be constant, there exist  

{ } ( )01
,n nn

nξ ξ ξ∞

=
→ →∞  such that  

( ) ( ) ( )
*

* * *
*

1 0, 1 0.n
n n n n n n

n n n n n n

ρ
ρ ρ ϕ ν ρ ξ

ψ ξ ϕ ν ρ ξ
+ = + = + + =

+
 

We firstly show that the discriminating zeros of ( ) 1n zϕ +  in cD  are all the 
zeros of ( )n zϕ′  in cD  when n is large enough. In fact, we have that the k zeros 
of ( ) ( ) ( ) ( )n n n n n n n nF z H z H z F zτ ρ τ ρ τ ρ τ ρ′ ′+ + − + +  as same as ( )n zϕ′ , 
which are all belong to the 1k +  zeros of ( )n nF zτ ρ+  and ( ) 1n zϕ +  in cD , 
then Lemma 3 can be used to prove the conclusion and we further have  

( )
( )
( ){ }

( )
( ){ }

{ }
0

20 *
2 2

0

1 lim lim 0 0n n
nn n

n n
ξ ξ

ψ ξ ψ ξ
ρ

ψ ξ ψ ξ ψ ξ→∞ →∞

=

′ ′ ′ 
= − = − = − ⋅ =  

 
 

which means ( )ψ ξ  has to have multiple pole if it exist. 

Notice 
( ) ( ) ( ) ( )

( )2

H z F z H z F z
F z

′ ′−
 only has finitely many zeros, then 

( )n nH zτ ρ+  have no multiple zero in   when n is large enough.  

Considering ( ) ( )( ).
1 1

loc
nψ ξ ψ ξ ξ ∈ , since ( ) ( )n n n nF z H zλ τ ρ τ ρ+ − +  

have no zero in cD  when n is large enough, ( )1 nψ ξ  are analytic in cD  and 
according to Hurwitz’s Theorem, ( )ψ ξ  has no multiple pole. With the assert 
above, ( )ψ ξ  have no pole and be entire. 

Notice that ( ) ( ) ( )# # 0 1ψ ξ ψ ξ≤ = ∈  and Lemma 4, the order of ( )ψ ξ  is 
at most 1. Since ( )n zϕ  have no zero in cD  when n is large enough, then 

( )*
n n nϕ ν ρ ξ+  have no zero in any bounded domain, from the above it follows 

that ( ) ( )0ψ ξ ξ≠ ∈  and ( ) ( )e , , 0A B A B Aξψ ξ += ∈ ≠ . 
( ) ( )( ).

1 1
loc

nψ ξ ψ ξ ξ ∈  is  

( )
( ) ( ) ( )

* *
.

* *
e   .

locn n n n n n A B

n n n n n n n n n n

H

F H
ξ

ρ τ ρ ν ρ ρ ξ
ξ

λ τ ρ ν ρ ρ ξ τ ρ ν ρ ρ ξ
− −

+ +
∈

+ + − + +
     (7) 

Let 

( ) ( ) ( ) ( ) ( )
( ) ( ){ }2

n n n n n n n n
n

n n n n

F z H z F z H z
z

F z H z

τ ρ τ ρ τ ρ τ ρ
η

λ τ ρ τ ρ

′ ′+ + − + +
=

+ − +
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then the derivative of (7) is  

( ) ( ) ( )
2 .* * e  , .

loc A B
n n n n n A nξρ ρ λη ν ρ ξ ξ− −+ − → ∞ ∈          (8) 

(2) can be expressed as  

( ) ( )
( )

( ).2
2   , .

loc
n n

g z
z n z

g z
ρ η

′
→ ∞ ∈  

 n∀ ∈ , let ( )nh z  be the k order derivative of ( )n zη , then the k order deriva-
tive of (2) is  

( ) ( )

( )

( )
1

.2 1    , .
k

loc
n nh z n z

g z
ρ

+
 

→ ∞ ∈  
 

  

with 
( )

( )1
1

k

g z

+
 
  
 

 have no zero in cD . Let 
( )

( )

( )
1

1 0
k

c

z c

G
g z

+

=

 
= ≠  

 
 then we 

have  

( ) ( ).2 *   , .
loc

n n n n ch G nρ ν ρ ξ ξ+ →∞ ∈               (9) 

The k order derivative of (8) is  

( ) ( ) ( ) ( )
2 . 1* * e    , ,

k loc k A B
n n n n nh A nξρ ρ λ ν ρ ξ ξ

+ + − −+ − → ∞ ∈       (10) 

(9) + (10) is  

( ){ } ( ) ( ) ( )
2 . 1* * e  , .

k loc k A B
n n n n n n ch G A nξρ λ ρ ρ ν ρ ξ ξ

+ + − −+ + + − →∞ ∈  

It shows that ( )*
n n nh ν ρ ξ+  have to have zeros in   when n is large enough, 

however, from (10) and Hurwitz’s theorem, it is impossible; this gives a contra-
diction and the proof of Theorem 1 is complete. 

4. Remarks 

It follows from the proof of Theorem 1 that the hypothesis for order can be re-
placed by greater than 1 for entire functions. In fact, from Lemma 4, we can ob-
tain a sequence { } ( )1

,n nn
nω ω∞

=
→ ∞ →∞  such that ( ) ( )# ,nf nω →∞ →∞ . 

Then using the start point of proof of Theorem 1,  n∀ ∈ , let 
( ) ( )n nf z f z ω= + , it’s easy to apply Marty’s theorem to know ( ){ } 1n n

f z
∞

=
 is 

not normal at 0. Suppose ( )f z λ−  only has finitely many zeros ( 0λ ≠ ), there 
exist a subsequence of ( ){ } 1n n

f z
∞

=
. We still suppose it’s ( ){ } 1n n

f z
∞

=
 such that 

( )nf z λ−  has no zero in  . Thus according to Lemma 2, there exist a se-
quence { } 1n n

z ∞

=
, a sequence { } 1n n

ρ ∞

=
 of positive real numbers and a 

non-constant finite order function ( )g z  such that when n →∞ , 
0, 0n nz ρ→ →  and  

( ) ( ) ( ).loc
n n n n n nf z z f z z g zρ λ ω ρ λ+ − = + + −   

in   and ( )g z  satisfies ( ) ( )# # 0 1g z g≤ =  for all z∈ . For 0g ′ ≠  and 
0g ≠  we apply Lemma 6 to have the order of g at most 1, and 
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( )e 0Az Bg A+= ≠  and we have  

( ) ( ).
e   , .

loc Az B
n n nf z z n zω ρ λ++ + + →∞ ∈  

and the first order derivative is  

( ) ( ).
e   , .

loc Az B
n n n nf z z A n zρ ω ρ +′ + + → ∞ ∈  

If ( ) 0n n nf z zω ρ+ + = , then ( )n n n nf z z Aρ ω ρ λ′ + + → −  and 
( ) ( )n n nf z z nω ρ′ + + ∈  is unbounded. Then the proof of Theorem 2 is com-

plete. 
The requirement for order in Theorem 2 is sharp, let e 1zf = − , then 

{ }1fM = . 
By the equivalence between the conjecture 1 and 2, we can have two corolla-

ries from Theorem 1 and 2.  
Corollary 1. Let g be meromorphic in   and the order is greater than 2. If 

1g ′ −  has finitely many zeros and g z−  takes a finite non-zero value finitely 
many times, then g has a sequence { } 1n n

z ∞

=
 of fixed points such that 

( ) ( ),ng z n′ → ∞ →∞ .  
Corollary 2. Let g be entire in   and the order is greater than 1. If 1g ′ −  

has finitely many zeros and g z−  takes a finite non-zero value finitely many 
times, then g has a sequence { } 1n n

z ∞

=
 of fixed points such that 

( ) ( ),ng z n′ → ∞ →∞ .  
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