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Abstract 
We are dealing with domains of the complex plane which are not symmetric 
in common sense, but support fixed point free antianalytic involutions. They 
are fundamental domains of different classes of analytic functions and the 
respective involutions are obtained by composing their canonical projections 
onto the complex plane with the simplest antianalytic involution of the Rie-
mann sphere. What we obtain are hidden symmetries of the complex plane. 
The list given here of these domains is far from exhaustive. 
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1. Introduction 

The word symmetry comes from the Greek συµµετρια  (symmetria), which 
means “agreement in dimensions, due proportion, arrangement”. It has an ob-
vious visual connotation and it refers to a sense of harmonious and beautiful 
proportion and balance. It is highly conveyed in arts and architecture and ap-
pears frequently in mathematics, physics, biology and chemistry. In mathematics 
it refers to objects which are (after Felix Klein) invariant to some transforma-
tions, including reflections, rotations and scaling. The symmetry of the most of 
these objects is manifest. However, in complex analysis objects remaining inva-
riant to some very simple groups of transformations are legitimately called 
symmetric, without appearing necessarily visually symmetric. These are the 
hidden symmetries of complex analysis. Some of them are instrumental in the 
construction of the family of Klein surfaces, which is a category including that of 
Riemann surfaces. These last surfaces are (see [1], p. 112) “domains of the most 
general type which can be used to replace the complex plane in the theory of 
analytic functions of one complex variable”. A (bordered) Riemann surface S is a 
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connected Hausdorff space with a conformal structure defined by a family Φ  
of local homeomorphisms (parameters). Each ϕ ∈Φ  is a topological mapping 
of an open set V S⊂  onto a relatively open set of the upper (closed) half plane 
Im 0z ≥  such that: if V V′ ⊂ , then |Vϕ ′′ ∈Φ , if V S⊂  is covered by open 
sets V S′ ⊂  such that |Vϕ ′′ ∈Φ , then ϕ ∈Φ  and finally the domains of all ϕ  
cover the whole space S. The conformal structure of Φ  means that for every 

1 2,ϕ ϕ ∈Φ , 1
1 2ϕ ϕ−
 , where defined, is a conformal mapping. When  

( ) { }| Im 0V z zϕ ⊂ >  for every ϕ ∈Φ  we say that S is a Riemann surface. 
Otherwise we denote ( ) ( ){ }| Im 0 for someS s S sβ ϕ ϕ= ∈ = ∈Φ  and we call it 
the border of S and S is called bordered Riemann surface. 

A symmetric Riemann surface S is a (bordered, or border free) Riemann sur-
face endowed with a fixed point free antianalytic involution k. This means that 
for every 1 2,ϕ ϕ ∈Φ , 1

2 1kϕ ϕ−
   is a mapping of ( )1 1Vϕ  onto ( )2 2Vϕ  whose 

complex conjugate is conformal. The involution k generates the two-element 
group of transformations of S formed with k and the identity I. We have 
k I I k k= =   and k k I= . This group is denoted by k  and the respec-
tive symmetric Riemann surface is denoted by ( ),S k . This is a symmetry in the 
sense of Klein (see [2]) and in this paper we will be talking only about this kind 
of symmetries. It is known that the conformal structure of ( ),S k  induces a di-
analytic structure Ψ  on the factor space X S k= , i.e. local parameters 
ψ ∈Ψ  are defined on X by ( ) ( )s sψ ϕ= , where ( )( ),s s k s=  such that for 
every 1 2,ψ ψ ∈Ψ , we have that 1

1 2ψ ψ −
  is a conformal mapping or the conju-

gate of a conformal mapping, named anticonformal. The surface ( ),X Ψ  ob-
tained in this way is called Klein surface. Klein surfaces can be orientable when 
all 1

1 2ψ ψ −
  are conformal mappings or non orientable, when some of them are 

anticonformal. When ( )Xβ ≠ ∅  we have a bordered Klein surface and when 
( )Xβ ≠ ∅  we have a border free Klein surface. 

2. Simple Examples of Hidden Symmetries 

The simplest examples of symmetric Riemann surfaces are the complex plane 
and the Riemann sphere endowed with the fixed point free antianalytic involu-
tion ( ) 1k z z= − . The Klein surfaces generated by these symmetric Riemann 
surfaces are the non orientable real projective plan, respectively the Klein bottle, 
which is also a non orientable surface. When the symmetric bordered Riemann 
surface is the annulus ,1RA R z R≤ ≤  endowed with the induced analytic 
structure of the complex plane, the generated non orientable Klein surface is the 
Möbius strip RM . Figure 1 illustrates the kind of symmetry ( )k z  is representing 
and how the Möbius strip is obtained by this symmetry. This picture has been 
created by Ove Edfors at the request of Ilie Barza. Here the symmetry is obvious. 
The image of the disc 

0e ,iz R r r Rθ− ≤ <
                       

(1) 

by ( )k z  is the disc  
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Figure 1. The symmetry defined by ( ) 1k z z= −  and the construction of the Möbius 

strip as a non orientable Klein surface.  
 

0 2 2

rz z
R r

− ≤
−

, where ( )0 π
0 2 2 eirz

R r
θ +=

−
.            (2) 

Local parameters 1ϕ  and 2ϕ  can be defined on { }0
1 | ei

RV A z z R rθ= − ≤ , 

respectively 2 0 2 2|R
rV A z z z

R r
 = − ≤ 

− 
  by 

( )
0

1
e ,

iz Rz
az b

θ

ϕ −
=

+                        
(3) 

where a and b are uniquely determined such that 

( )( )0
1 e tan

2
iR θϕ + =   and ( )( )0

1 e tan
2

iR θϕ − = −  .          (4) 

Analogously 

( ) ( ) ( )0 π

2

1 e
,

iz R
z

cz d

θ

ϕ
+−

=
+                     

(5) 
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where c and d are determined such that 

( )0 π
2

1 e tan
2

i

R
θϕ + +  = − 

 
   and ( )0 π

2
1 e tan

2
i

R
θϕ − +  = 

 
  .        (6) 

If p is the projection of RA  onto RM , i.e. for Rz M∈  we have  
( ) ( )( )z p z p k z= = , then 1

| , 1, 2
jj V jp jψ ϕ−= =  are local parameters on RM  

at ( ) ( )1 2V p V p V= = . 
We have proved in [3], Theorem 3 that conformal images of symmetric do-

mains are symmetric. Since Möbius transformations 

( ) , 0az bw z ad bc
cz d

χ +
= = − ≠

+                   
(7) 

are conformal mappings of the Riemann sphere (where ( )c dχ − = ∞  and 
( ) a cχ ∞ = ) and having in view this theorem, we are expecting that composed 

with ( )k z  the Möbius transformations will generate symmetries. Indeed we 
can prove 

Theorem 1. For every Möbius transformation ( )w zχ=  the function 
1h kχ χ−=    is a fixed point free antianalytic involution of the Riemann 

sphere. 
Proof: Indeed, it can be easily checked that 

( ) ( )1 ,b dw bz aw k z
cw a dz c

χ χ− − −
= =

− −


                
(8) 

and therefore 

( ) ( )1 ,Awh w k w
A w
µχ χ

ν
− −

= =
−

 

                 
(9) 

where A ac bd= + , 2 2a bµ = +  and 2 2c dν = + . 
For the function ( )h w  defined on the Riemann sphere we have 
( )h A ν∞ =  and ( )h A ν = ∞ . 
Obviously, h is an involution and an anticonformal mapping of the Riemann 

sphere and by [3] Theorem 3, it has no fixed point. We can prove by direct 
computation that h is fixed point free. Indeed, any Möbius transformation is 
obtained by composing some particular elementary transformations as transla-
tions, rotations, magnifications and inversions. It can be easily checked that 
composed with k as in the theorem each one of them generates fixed point free 
antianalytic involutions of the Riemann sphere. Finally an easy computation 
shows that if 1 1kϕ ψ ψ ϕ− −

     has a fixed point, then necessarily ϕ  has a 
fixed point, hence the function h from the theorem is a fixed point free antiana-
lytic involution. 

3. Blaschke Product Symmetries 

A Blaschke factor is a Möbius transformation of the form 

( ) e
1

ni n
n

n

a z
b z

a z
θ −

=
−                       

(10) 

where 1na <  and nθ ∈  

https://doi.org/10.4236/apm.2019.910041


C.-H. Tuan et al. 
 

 

DOI: 10.4236/apm.2019.910041 848 Advances in Pure Mathematics 
 

A Blaschke product is an expression of the form 

( ) ( )1
m

nnw B z b z≤∞

=
= =∏                     (11) 

When m is finite we have finite Blaschke products which are rational func-
tions of degree m, and when m is infinite ( )B z  is a transcendental function. It 
is not defined on the set E of cluster points of { }1 nA a= . In the infinite case it 
is customary to assign the values n na a  to the constants e niθ , as long as 

0na ≠ . The points 1 na  are poles of ( )B z . It is known that in the infinite case 
a necessary and sufficient condition for the uniform convergence of ( )B z  on 
compact subsets of ( )\ A E  is ( )1 1 nn a∞

=
− < ∞∑  (the Blaschke condition). 

Thus, ( )B z  has a meaning only if E is a subset of the unit circle. For finite 
Blaschke products E = ∅ . Since every Blaschke factor maps the unit circle onto 
itself, the same is true for any Blaschke product, with the specification that in the 
infinite case E should be removed. Also, the unit disc is mapped onto itself and 
the exterior of the unit disc is mapped onto itself. In general, these mappings are 
not bijective, yet there is a way to partition the complex plane into sets whose 
interiors are conformally mapped onto the whole complex plane with some slits. 
These are the fundamental domains of the Blaschke product. 

For the simple case of a single zero of order 2m ≥ , not only the fundamental 
domains are obvious, but so are the involved symmetries. Let 

( ) , e , 0 1,
1

m

i
a

a z aB z a r r
a az

α α
 −

= = ≤ < ∈ 
−  



           
(12) 

We can find the fundamental domains of ( )aB z  by solving the equation 
( ) m

aB z λ= , for 0 1λ≤ ≤ . We get the solutions 

( ) e , 0,1, , 1,
1

in
n

n

r
z n n

r
αω λ

λ
ω λ

+
= = −

+


               
(13) 

where nω  are the roots of order m of the unity. As λ  varies from 0 to 1 the 

point ( )nz λ  describes an arc nγ  joining z a=  with the point e
1

in

n

r
r

αω
ω

+
+

  

on the unit circle. It can be easily checked that ( )nz λ  are distinct numbers for 
0λ ≠  and then those points on the unit circle are also distinct. They determine 

m arcs nδ  on the unit circle which are mapped bijectively by ( )aB z  onto the 
the whole unit circle. The arcs 1n n nγ δ γ ++ −  bound domains which are mapped 
conformally by ( )aB z  onto the unit disc with a slit alongside the interval 
( )0,1  of the real axis. The symmetric domains with respect to the unit circle are 
mapped conformally by ( )aB z  onto the exterior of the unit disc with a slit 
alongside the interval ( )1,+∞ . The union of the symmetric domains and of 
their common boundary are fundamental domains jΩ  of ( )aB z  which are 
mapped conformally by this function onto the complex plane with a slit along-
side the positive real half axis. The antianalytic involution ( ) 1k w w= −  maps 
the upper half plane onto the lower half plane and vice-versa and the positive 
real half axis onto the negative real half axis and vice versa. Since the positive 
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real half axis is the border of ( )a jB Ω  we cannot compose 1
| jaB−
Ω  with 

( )ak B z  for jz∈∂Ω  therefore instead of jΩ  we should take  
{ }( )1

|\ | Im 0
jj j aB w w−

Ω∆ = Ω =  and define for jz∈∆ : 

( ) ( )1
| .

jj a ah z B k B z−
∆=  

                    
(14) 

We notice that j∆  is also a fundamental domain of ( )aB z  and it is sym-
metric in the sense of Klein with respect to the two-element group ,jh I  
where I is the identity. We say that jh  is a hidden symmetry of j∆ . Thus we 
have proved 

Theorem 2. For every Blaschke product ( )aB z  of the form (12) there is a 
partition of the complex plane into m sets whose interior are fundamental do-
mains of ( )aB z  and which contains each one of them a hidden symmetry. 

Figure 2 (see [4], page 16) illustrates these symmetric domains when 6m =  
and 1 2 3a i= + . 

Let us see what is the pre-image of the real axis in the case of an arbitrary fi-
nite Blaschke product. The pre-image of the origin is the set { }na  of the zeros 
of ( )B z . When performing continuation over the positive real half axis 
Re 0w >  starting from a zero nz a=  we obtain a Jordan arc with the end on 
the unit circle corresponding to a certain root of the equation ( ) 1w B z= = , 
then it continues with a symmetric arc with respect to the unit circle such that 
the pole 1 na  is reached at the limit as w → +∞ . Hence the pre-image of the 
positive real half axis is formed with arcs connecting zeros and poles of ( )B z . 
Continuing over the negative half axis we might reach the branch points of 
( )B z  and this will allow us to find fundamental domains of ( )B z . This is the 

case of Blaschke products which have symmetric zeros with respect to the origin. 
Figure 3 illustrates the case of the Blaschke product 

( )
1 1 1 1
z a z a z a z aB z

az az az az
− + − +

=
− + − +                  

(15) 

The roots of the equation ( ) 1B z =  are ±1 and ±i and ( ) 40B a= ,  
 

 
Figure 2. Fundamental domains of ( )aB z  containing hidden symmetries. 
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( ) 41B a∞ = . Moreover, it can be easily checked that ( )Im 0B z =  if Im 0z = , 

( ) ( )π 2e , 0,1, 2,3k iB z B z k= =  therefore the real and imaginary semi axes are 
mapped bijectively by ( )B z  onto the interval 4 4,1a a 

   and every qua-
drant is mapped conformally by ( )B z  onto the complex plane with a slit 
alongside this interval. We notice that the antianalytic involution ( ) 1k z z= −  
maps bijectively this interval onto the interval 4 41 ,a a − −  . If we denote by 
Ω  any one of these quadrants, and s∈Ω  is such that ( ) 4 41 ,B s a a ∈ − −   
then ( ) 4 4,1k B s a a ∈    and ( )1

|B k B s−
Ω    is not defined at s. Then in-

stead of Ω  we should deal with ( )4 41
|\ 1 ,B a a−
Ω

 ∆ = Ω − −   and study 
( ) ( )1h s B k B s−

∆=   . This is a hidden symmetry of ∆ . Figure 3 below illustrates  

this situation when ( )1 1
2

a i= + . We colored blue the pre-image of the positive  

real half axis, red that of the negative real half axis, black that of the circle 
1w = , green that of the circle 0.5w =  and brown that of the circle 1.5w = . 

Obviously, similar situations can be created when taking 2 πe ,0 1i ma r r= < <  

and dealing with the Blaschke product having the zeros 
2 π

e , 0,1, , 1
k i

m
ka a k m= = − .  

In the case where the zeros of ( )B z  are randomly located inside the unit disc, 
we need to find a different approach. 

Suppose ( )B z  is a finite Blaschke product of degree m: 

( ) 1 1
m n n
n

n n

a z a
B z

a a z=

−
=

−∏
                    

(16) 

Let us notice that 

( ) ( ) ( )( )

2

1

1
1

m n
n

n n

a
B z B z

a z a z=

−
′ = −

− −∑
              

(17) 

and for 1ζ =  we have 
 

 
Figure 3. Fundamental domains of Blaschke products with symmetric zeros. 
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( )
2

21

1
0m n

n
n

a
B

a
ζ

ζ=

−
′ = >

−
∑

                  
(18) 

therefore ( )B z′  does not cancel on the unit circle, which means that the roots 
of the equation ( ) e ,iB z α α= ∈ , which are all on the unit circle, are simple 
roots no matter if the zeros of ( )B z  are simple or not. On the other hand the 
equation ( ) 0B z′ =  has 1m −  roots (counted with multiplicities) inside the 
unit disc and they are instrumental in proving the following theorem (see [4], 
page 11): 

Theorem 3. For any Blaschke product ( )B z  of degree m there is a partition 
of the complex plane into m sets whose interior are fundamental domains of 

( )w B z= . These domains are symmetric with respect to the unit circle. 
Proof: There is a constructive proof of this theorem (see [4], page 10). Namely, 

if , 1, 2, , 1jb j m= −  are the zeros of ( )B z′  inside the unit disc (counted with 
multiplicities), then ( ) 1jB b <  and there is a non self intersecting polygonal 
line L connecting the points ( )jB b  and 1w = . The pre-image of this line is 
formed with Jordan arcs kγ  connecting the points , 1, 2, ,k k mζ =   on the 
unit circle, which are the solutions of the equation ( ) 1B z = , with jb . Some of 
these arcs can overlap, but they do not intersect each other in other points than 

jb , since such an intersection point is a branch point of ( )B z , i.e. a root of the 
equation ( ) 0B z′ = . If kη  are the arcs determined on the unit circle by con-
secutive points kζ  and 1kζ + , then 1k k kγ η γ ++ +  is a closed curve bounding a 
domain kD  which is mapped conformally by ( )B z  onto the open unit disc 
with a slit alongside the part of L which is the image of 1k kγ γ ++ . The symme-
tric domain kD  of kD  with respect to the unit circle is mapped conformally 
by ( )B z  onto the exterior of the unit disc with a slit alongside the image of the 
symmetric 1k kγ γ ++   of 1k kγ γ ++  with respect to the unit circle. The domains 

k k k kD D ηΩ = 

   (where kη  are considered as point sets) are fundamental 
domains of ( )B z  and they are mapped conformally by ( )B z  onto the com-
plex plane with a slit alongside the image of k kγ γ+   which is the same as that 
of 1 1k kγ γ+ ++ . It is obvious that they are symmetric with respect to the unit cir-
cle. Each one of them contains also the hidden symmetry ( ) ( )| jjh z B k B zΩ=   . 
This situation is illustrated in Figure 4. 

 

 
Figure 4. Building fundamental domains of Blaschke products with randomly chosen zeros. 
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4. The Case of Elementary Transcendental Functions 

We include in this family of functions the exponential ez , the trigonometric 
functions sin ,cosz z  etc. as well as the hyperbolic functions sinh ,coshz z  etc. 
All of these functions are combinations of simple transformations of ez  and 
therefore it will be enough to deal with just one of them. In [5], page 99 as well 
as in [4], page 51 it is the function ( ) cosz zϕ =  which has been chosen. Figure 
5 below illustrate the fundamental domains of this function which are vertical 
strips jΩ  bounded by the lines Re πz j=  and ( )Re 1 πz j= + , j∈ . They 
are mapped conformally by cos z  onto the complex plane with a slit alongside 
the real axis complementary to the interval ( )1,1− . The antianalytic involution 
( ) 1k z z= −  maps the upper half plane onto the lower half plane and vice-versa 

and then ( )1
| j

k zϕ ϕ−
Ω    is a hidden symmetry of jΩ . Figure 5 illustrates the 

fundamental domain of cos z . 

5. The Modular Function ( )λ τ  

The modular function ( )λ τ  effects a one-to-one conformal mapping (see [5], 
page 281) of the domain Ω  below (Figure 6) onto the upper half plane. The 
mapping extends continuously to the boundary in such a way that 0,1,τ = ∞  
correspond to 1, ,0λ = ∞ . By Schwarz symmetry principle, the domain ′Ω  
symmetric to Ω  with respect to the imaginary axis is mapped onto the lower 
half plane and then { }| Re 0, Im 0τ τ τ′Ω Ω = >   is mapped onto the whole 
complex plane with a slit alongside the real axis from −∞  to 1. This is a fun-
damental domain of ( )λ τ . If instead ′Ω  we take ′′Ω  the symmetric of Ω   

 

 
Figure 5. Fundamental domains of the function cos z . 

 

 
Figure 6. Fundamental domains of the modular function. 
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with respect to the circle 1 2 1 2τ − =  and we do the corresponding union we 
obtain another fundamental domain and the process can be continued indefi-
nitely. The symmetric of these domains with respect to the real axis are also 
fundamental domains of ( )λ τ . These domains accumulate to every point of the 
real axis in the sense that any neighborhood of such a point contains infinitely 
many fundamental domains. There are obvious symmetries of these domains, 
yet each one of them, say ∆  contains also a hidden symmetry, namely 

( )1
| kλ λ τ−
∆   . 

6. The Hidden Symmetries of the Euler Gamma Function 

There are a lot of ways to introduce this famous function. For our purpose the 
Weierstrass definition is the most useful, namely: 

( )
1

1

e 1 e
z

z n
n

zz
z n

γ −−
∞

=

 Γ = + 
 

∏
                 

(19) 

where 0.57722γ =   is the Euler constant. 
It is obvious from this formula that ( )zΓ  is a meromorphic function in the 

complex plane having the simple poles 0, 1, 2,− −   and no zero. As shown in [6] 
the pre-image by ( )zΓ  of the real axis is formed with the infinitely many un-
bounded curves (components). The components corresponding to the negative 
and the positive real half axis alternate and do not cross each other. However, at 
every pole of ( )zΓ  there are two such different components that meet each 
other. There are two types of components: those originating in the first and the 
last quadrant, which have no branch points and those situated in the second and 
the third quadrant which has branch points at the zeros of ( )z′Γ . Due to the 
fact that ( )zΓ  is real when z is real, every component has a symmetric one 
with respect to the real axis. Since the zeros of ( )z′Γ  are real, the branch points 
are located on the real axis. They form a sequence ( )nx , where ( )0 1, 2x ∈  and 
for 1,2,n =   we have that ( ), 1nx n n∈ − − + . Let us denote by ( )n nxα = Γ  
and notice that 2 0kα >  and 2 1 0kα + < , as seen in Figure 7(a). When z belongs 
to the first type of component, ( )Relim 0z z→+∞ Γ =  and ( )Relim z z→−∞ Γ = ±∞  
depending on the fact that z is on the pre-image of the positive, respectively 
negative real half axis. Similarly, if z belongs to the second type of component we 
have that ( )Relim z z→+∞ Γ = ±∞  and when z on the real axis tends to a pole, 
then the limit of ( )zΓ  is +∞  on the pre-image of the positive real half axis 
and −∞  on the pre-image of the negative real half axis. 

Consecutive components jγ
+  and 1jγ

+
+  of the first type of the pre-image of 

the positive real half axis bound fundamental domains jΩ  which are mapped 
conformally by ( )zΓ  onto the complex plane with a slit alongside the positive 
real half axis. Here { }\ 0j∈ , the real axis is between 1−Ω  and 1Ω  and for 
every j the strip 1j+Ω  is above jΩ . When moving on jγ

−  from Re z = −∞  to 
Re z = +∞  and continuing back on 1jγ

+
+  the corresponding domain remains to 

the left, therefore it is mapped by ( )zΓ  onto the upper half plane. Analogously, 
the domain bounded by jγ

+  and jγ
−  is mapped onto the lower half plane. On  
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the other hand, the involution ( ) 1k w
w

= −  maps bijectively the upper half 

plane onto the lower half plane, which shows that ( )1
| j

k z−
ΩΓ Γ   is a hidden 

symmetry of jΩ . 

Let us denote by 0Ω  the domain bounded by 1 1,γ γ− −
−  and the first compo-

nent 1δ
+  having a branch point. When going along 1γ −

−  from Re z = −∞  to 
Re z = +∞ , ( )zΓ  takes all the real values from −∞  to 0 and when continuing 
on 1γ −

+  from Re z = +∞  to Re z = −∞  it will take the same values once more. 
When going on 1δ

+  from Re z = −∞  in the upper half plane to the branch 
point, ( )zΓ  will take all the values from +∞  to the positive value 0α  where 

( )z′Γ  cancels first. Continuing in the lower half plane, the same values will be 
taken once more. Therefore 0Ω  is mapped conformally by ( )zΓ  onto the 
complex plane with slits alongside real axis from −∞  to 0 and from 0α  to 
+∞ . The involution ( )

0

1
| k z−
ΩΓ Γ   is a symmetry of this domain. 

Let j
+∆  and j

−∆  be the domains bounded by jδ  and 1jδ +  in the upper 
half plane, respectively lower half plane, 1, 2,j =  . It can be easily seen that 
each one of them is mapped by ( )zΓ  onto the complex plane with slits along-
side the real axis from −∞  to 2 1jα +  and from 2 jα  to +∞  and that these 
domains have hidden symmetries. 

Figure 7 below illustrate the graph of the real function ( )xΓ  as well as the 
pre-image of the real axis by ( )zΓ . 

7. Hidden Symmetries of Dirichlet Functions 

The knowledge we need here about Dirichlet functions can be found in [7]. We 
are dealing first with series of the form 

( ), 1 e ns
A nns a λζ ∞ −
∆ =

= ∑                     (20) 

 

 
Figure 7. (a) The graphic of the real function ( );xΓ  (b) The pre-image of the real axis by ( )zΓ . 
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Figure 8. The pre-images of the real axis by Dirichlet L-functions defined by conplex and 
by real Dirichlet characters. 

 
depending on an arbitrary sequence { }1 21 , ,A a a= =   of complex numbers, 
called the coefficients of (20) and on a non decreasing sequence of non negative 
numbers { }1 20 λ λΛ = = ≤ ≤ , the exponents of (20). Under certain condi-
tions on A and Λ  (see [7]) the series (20) can be continued as a meromorphic 
function in the whole complex plane. We keep the notation ( ),A sζ ∆  for this 
function and we call it Dirichlet function. 

It is known (see [8]) that for any Dirichlet function the complex plane admits 
a partition into infinitely many horizontal strips bounded by curves ,k k′Γ ∈  
which are mapped bijectively by ( ),A sζ ∆  onto the interval ( )1,+∞  of the real 
axis. Consecutive curves k′Γ  and 1k+′Γ  bound infinite strip kS  which are 
mapped by ( ),A sζ ∆  not necessarily injectively onto the complex plane with a 
slit alongside the interval ( )1,+∞ . We denote by 0S  the strip containing the 
origin. It has been shown that for 0k ≠  every strip kS  can be partitioned into 
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finitely many sub strips whose interiors ,k jΩ  are mapped conformally (hence 
bijectively) onto the complex plane with some slits. These are the fundamental do-
mains of ( ),A sζ ∆ . The strip 0S  contains infinitely many fundamental domains. 

When all na  are real the fundamental domains are symmetric two by two 
with respect to the real axis. Otherwise there are no obvious symmetries of Di-
richlet functions. However, we can show that the fundamental domains contain 
hidden symmetries. Indeed, if a fundamental domain Ω  is mapped confor-
mally by ( ),Az sζ ∆=  onto the complex plane (z) with a slit δ , let us denote by 
δ ′  the image of δ  by the involution ( )k z  and let γ  be the image of δ ′  
by the conformal mapping 

|

1
,Aζ Ω

−
∆ . Then ( ),Az sζ ∆=  maps conformally the 

domain \ γ∆ = Ω  onto the complex plane with a slit alongside δ δ ′ . The 
antianalytic involution ( )

|

1
, ,A Ak sζ ζ

∆

−
∆ ∆   is a hidden symmetry of ∆ . 

Figure 8 illustrates the symmetries in the case of real na  and lack of obvious 
symmetries when some na  are complex. However every fundamental domain 
contains hidden symmetries. 
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