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Abstract 
In [1], a new consequence of the (restricted) wreath product for arbitrary 

monoids A and B with an underlying set ( )B AA A B B⊕ ⊕× × × . Let us denote 
it by A B . Actually, in the same reference, it has been also defined the 
generating and relator sets for A B , and then proved some finite and 
infinite cases about it. In this paper, by considering the product A B , we 
show Green’s relations   and   as well as we present the conditions for 
this product to be left cancellative, orthodox and finally left (right) inverse(s). 
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1. Introduction 

Let A and B be arbitrary monoids. In [2], Theorem 2.2, Howie and Ruskuc 
defined a presentation for the (restricted) wreath product of A and B. Also, in 
[3], Theorem 7.1, it has been showed that the wreath product of semigroups 
satisfies the periodicity when these semigroups are periodic. In [1], a new 
derivation for wreath product of monoids A and B has been recently defined 
which will be dented by A B  here (in [1], it has been denoted by A B  
but the author prefers her the symbol   instead of   to distinguish this 
new type of extension from the known symbol for general product (Zappa-Szép 
product A B )). Also, again in [1], by proving the existence a presentation of 
this wreath product, it has been given necessary and sufficient conditions for 
A B  to be regular and periodic, and some finite and infinite applications 

about it are denoted. In this paper, we give some algebraic properties of the new 
wreath product in terms of the algebraic properties of the monoids themselves. 
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More specifically, we present the Green’s relation   and   (in Section 2), 
and also prove the conditions on it to be left cancellative, orthodox and left 
(right) inverse.  

We recall the fundamentals of the construction of A B  which will be 
needed to form our results. We note that this product is based on the wreath 
product and we may refer to ([2] [4] [5] [6] [7]) for the details of wreath 
products. The Cartesian product of B copies of the monoid A is denoted by 

BA× , while the corresponding direct product is denoted by BA⊕ , similar 
definition for AB⊕ . One may think that BA⊕  and AB⊕  are the sets of all 
functions having finite support, that is to say, having the property that 
( ) 1Ab f =  for all but finitely many b in B and ( ) 1Ba g =  for all but finitely 
many a in A. The restricted wreath product of the monoid A by the monoid B is 
the set BA B⊕ ×  with the multiplication defined by  

( )( ) ( ), , , ,bf b g b f g bb′ ′=                      (1) 

where, :b g B A→  is given by  

( ) ( ) ( ).by g yb g y B= ∈                      (2) 

Dually the restricted wreath product of the monoid B by the monoid A is the 
set AB A⊕ ×  with the multiplication defined by  

( )( ) ( ), , , ,af a g a fg aa′ ′=                      (3) 

where, :ag A B→  is given by  

( ) ( ) ( ).ax g ax g x A= ∈                      (4) 

Now for ( )1 1 1,P a b= , ( )2 2 2,P a b A B= ∈ × , let us define  

( )1 2 1 2 1 2, .P P a a b b=  

After that the new derivation for the wreath product of A and B, denoted by 
A B , is the set ( )B AA A B B⊕ ⊕× × ×  with the multiplication  

( )( ) ( )1 2
1 2 1 2, , , , , , ,b af P g h P k f h P P g k=                (5) 

where, 1 :b h B A→  and 2 :ag A B→  are defined by  

( ) ( ) ( )1
1

by h yb h y B= ∈                     (6) 

and 

( ) ( ) ( )2
2 .ax g a x g x A= ∈                    (7) 

In fact, A B  is a monoid with the identity ( )( )1, 1 ,1 ,1A B
 , where 1  and 1  

are defined by  

( ) ( )1 1 , 1 1 ,A Bb a= =                       (8) 

respectively, for all b B∈  and a A∈ .  

2. Green’s Relations on the Product A B  

In the light of Green’s relations, it is well known that one may prove some 
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computational results (for example, the minimal number of generators etc.) on 
the monoid structure (which will be kept for a future work and so not 
investigated in here). Hence, in this section, we only characterize Green’s 
relations   and   (cf. [8] [9]) for the product A B .  

Proposition 2.1 Let A B  be the new derivation of wreath product of a 
monoid A by a monoid B. Then  

1) ( ) ( )1 1 1 1 2 1, , , ,f P g h P k  in A B  implies that 1 1g k  in AB⊕ , and 

1 2P P  in A B× ,  
2) ( ) ( )1 1 1 1 2 1, , , ,f P g h P k  in A B  implies that 1 1f h  in BA⊕ , and 

1 2P P  in A B× .  
Proof. 1) Suppose that ( ) ( )1 1 1 1 2 1, , , ,f P g h P k  in A B . So there exist 

( ) ( )2 3 2 2 4 2, , , , ,f P g h P k A B∈   such that 

( )( ) ( )2 3 2 1 1 1 1 2 1, , , , , , ,f P g f P g h P k=                   (9) 

( )( ) ( )2 4 2 1 2 1 1 1 1, , , , , , .h P k h P k f P g=                  (10) 

These two equations can also be written as  

( )( ) ( )3 1
2 1 3 1 2 1 1 2 1, , , , ,b af f P P g g h P k=                 (11) 

( )( ) ( )4 2
2 1 4 2 2 1 1 1 1, , , , .b ah h P P k k f P g=                 (12) 

Hence, by the equality of components, we obtain  

( )3 1
2 1 1 3 1 2 3 1 2 2 1 1,: ,: and ,b af f h a a a b b b g g k= = = =           (13) 

( )4 2
2 1 1 4 2 1 4 2 1 2 1 1,: ,: and .b ah h f a a a b b b k k g= = = =           (14) 

It follows that 1 1g k  in AB⊕  while 1 2P P  in A B× .  
Similar proof can be applied for 2). Hence the result.  
Theorem 2.2 Assume that the product A B  is obtained by a monoid A 

and a group B. Then  

( ) ( )1 1 1 1 2 1 1 1 1 2, , , , and .Bf P g h P k A B f h A P P A B⊕∈ ⇔ ∈ ∈ ×     

Proof. By Proposition 2.1, ( ) ( )1 1 1 1 2 1, , , ,f P g h P k A B∈   implies the 
existence of 1 1

Bf h A⊕∈  and 1 2P P A B∈ × .  
To prove the converse, let us suppose that 1 1f h  in BA⊕  and 1 2P P  in 

A B× . In fact, 1 1f h  in BA⊕  gives that there exist 1l  and 2l  in BA⊕  such 
that  

1 1 1 1 2 1and .f l h h l f= =  

Also, 1 2P P  in A B×  implies that there exist ( ),c d , ( ),c d′ ′  in A B×  
such that  

( )( ) ( ) ( )( ) ( )1 1 2 2 2 2 1 1, , , and , , , .a b c d a b a b c d a b′ ′= =  

To show that ( ) ( )1 1 1 1 2 1, , , ,f P g h P k  in A B , we have to find two 
elements ( )2 3 2, ,f P g  and ( )2 4 2, ,h P k A B∈   such that these must satisfy  

( )( ) ( )1 1 1 2 3 2 1 2 1, , , , , , ,f P g f P g h P k=                 (15) 
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( )( ) ( )1 2 1 2 4 2 1 1 1, , , , , , .h P k h P k f P g=                  (16) 

From these above, we obtain  

( ) 31
1 1 1 1 3 2 1 2 1, , ,abf f h P P P g g k= = =                  (17) 

( )2 4
1 2 1 2 4 1 1 2 1, , .b ah h f P P P k k g= = =                  (18) 

Since BA⊕  is a group (because B is a group), we have  

( )3 3
1

1 2 1 2 1 1,a ag g k g g k
−

= ⇒ =                    (19) 

( )4 4
1

1 2 1 2 1 1.
a ak k g k k g

−
= ⇒ =                    (20) 

Therefore, we set ( ) 1
1

2 1
bf l

−

=  and ( ) 1
2

2 2
bh l

−

= . Hence  

( )( ) ( ) ( ) ( )( )
( )( ) ( )

( )
( )

1
1 3

1 1
1 3 3

1

1 1 1 2 3 2 1 1 1 1 3 1 1

1

1 1 1 3 1 1 1

1
1 1 1 3 1

1 2 1

, , , , , , , ,

, ,

, ,

, , .

B

b a

b
b a a

f P g f P g f P g l P g k

f l P P g g k

f l P P k

h P k

−

−

−

−

=

 
=  
 

=

=

 

With a similar way, one can also show that  

( )( ) ( )1 2 1 2 4 2 1 1 1, , , , , , .h P k h P k f P g=  

Hence, ( ) ( )1 1 1 1 2 1, , , ,f P g h P k , as required.  

3. Some Algebraic Properties on A B  

In this section, we will illustrate some algebraic properties of the new wreath 
product A B  in terms of the algebraic properties of the monoids A and B 
themselves. The following Theorem characterize when new wreath product 
M A B=   is a group. 

Theorem 3.1 The new derivation of wreath product M A B=   of monoids 
A and B is a group if and only if both A and B are groups.  

Proof. Suppose A and B are both, groups, then M A B=   is a monoid with 
identity ( )( )1, 1 ,1 ,1A B

  where 1  and 1  are defined by 

( ) ( )1 1 , 1 1 .A Bb a= =                       (21) 

Now, let ( )( ), , ,f a b g M∈ . Define 

( ) ( )( ) 11: by such that , and , ,Bf B A y f yb f f A y b B
−

− ⊕′ ′ ′→ = ∈ ∈  

( ) ( )( ) 11: by such that , and , .Ag A B x g a x g g B x a A
−

− ⊕′ ′ ′→ = ∈ ∈  

Then 

( )( ) ( )( ) ( )( )
( )( )

11 1 1 1, , , , , , , , ,

1, 1 ,1 ,1

b a

A B

f a b g f a b g f f aa bb g g
−− − − −′ ′ ′ ′=

= 
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Since ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 11 1b

Ay f f y f yb f y f ybb f y f y f
− −−′ ′= = = = ,  

and ( ) ( ) ( ) ( ) ( )( )1 1 11 1 1a a
Bx g g x g x g a x g a x g

− − −
− −′ ′= = = . Hence  

( )( )1 1, , ,f a b g− −′ ′  is a right inverse for ( )( ), , ,f a b g . Also 

( )( ) ( )( ) ( )( )
( )( )

1 1 1 1, , , , , , , , ,

1, 1 ,1 ,1

b a

A B

f a b g f a b g f f a a b b g g− − − −′ ′ ′ ′=

= 

 

Since ( ) ( ) ( ) ( )( ) ( )1 11 1 1 1b
Ay f f y f yb f yb f yb f

− −
− − −′ ′= = = , and  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )
11 11 1a a

Bx g g x g x g ax g x g a ax g x g x g x g
−− −−′ ′ ′= = = = = . 

Hence, ( )( )1 1, , ,f a b g− −′ ′  is a left inverse for ( )( ), , ,f a b g , therefore, M is a 
group. 

Conversely, assume that M A B=   is a group, let  
( )( ) ( )( )1

, 1 ,1 ,1 , 1 ,1 ,A B A Bf k l
−
=  so 

( )( ) ( )( ) ( )( ) ( )( )1, 1 ,1 ,1 , 1 ,1 , , 1 ,1 ,1 1, 1 ,1 ,1B
a

A B A B A B A Bf k l f k l= =    

and 

( )( ) ( )( ) ( )( ) ( )( )1, 1 ,1 , , 1 ,1 ,1 , 1 ,1 , 1 1, 1 ,1 ,1B a
A B A B A B A Bk l f k f l= =    

Then 1 1Bf k = , 1 1
a
l =  , 1 1Bk f = , and 1 1al =  . Since 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1 1 1B B
A B A Ab f k b b f b k b f b k b fk= ⇒ = ⇒ = ⇒ =  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1 1 1B B
B A Ab k f b b k b f b b k b f b kf= ⇒ = ⇒ = ⇒ = . 

Hence, 1 Bk f A− ⊕= ∈ , therefore, BA⊕  is a group and hence B is a group. 
Similarly we get 1 Al g B− ⊕= ∈ , if we suppose that ( )( ) ( )( )1

1, 1 ,1 , , 1 ,1 ,A B A Bg k l
−
= , 

therefore AB⊕  is a group and hence A is a group.  
We first recall that a semigroup S is called left-cancellative if ca cb a b= ⇒ =  

and right-cancellative if ac bc a b= ⇒ = , for all , ,a b c S∈  (cf. [8]). A 
semigroup is cancellative if it is left-cancellative and right-cancellative.  

Theorem 3.2 A and B are cancellative monoids if and only if M A B=   is 
cancellative monoid.  

Proof. Assume that A and B are left cancellative monoids. Suppose  

( )( )( )1 2 3, , , , , , ,f P g k P l h P j A B∈   

where , , Bf k h A⊕∈ , , , Ag l j B⊕∈  and 1 2 3, ,P P P A B∈ × . Therefore  

( )( ) ( )( )1 3 2 3, , , , , , , ,f P g h P j k P l h P j=  

( ) ( )3 31 2
1 3 2 3, , , ,a ab bf h P P g j k h P P l j⇒ =  

3 31 2
1 3 2 3, , a ab bf h k h P P P P g j l j⇒ = = =  

( )( ) ( )1 2b bb B b f h b k h⇒ ∀ ∈ =  

( )( ) ( ) ( ) ( )1 2 1 2b B b f bb h b k bb h b b⇒ ∀ ∈ = ∧ =  
[Since B is left cancellative] 

1 2 .f k b b⇒ = ∧ =  

Also  
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3 3
1 3 2 3 and a aP P P P g j l j= =  

( )( ) ( )3 3a aa A a g j a l j⇒ ∀ ∈ =  

( )( ) ( ) ( ) ( )3 3a aa A a g a j a l a j⇒ ∀ ∈ =  

( )( ) ( ) ( ) ( )3 3a A a a g a j a a l a j⇒ ∀ ∈ =  
[Since A is left cancellative] 
( )( ) ( )a A a g a l⇒ ∀ ∈ =  
[Since B is left cancellative] 

1 2 .g l a a⇒ = ∧ =  

As a result, M A B=   is actually a right cancellative monoid. In fact, one 
may prove with a similar way for left cancellative. Hence M A B=   is 
cancellative.  

On the other hand, the converse part of the proof is clear.  
Hence the result.  
In [10], the question of orthodox wreath products of monoids has been 

explained. After that, in [11], it has been investigated the orthodox wreath 
products of semigroups without unity. In this part, we will give necessary and 
sufficient conditions for A B  to be orthodox, where A and B are any 
monoids.  

Recall that the semigroup S is called orthodox if the set of idempotents ( )E S  
is a subsemigroup of S. An orthodox semigroup S is left (respectively, right) 
inverse if ege ge=  (respectively, ege eg= ) for every ( ),e g E S∈ . For more 
details reader refer [12] [13]. From [[10], Lemma 3.1], BA⊕  is an orthodox or 
left or right inverse semigroup if and only if A has the same property. In the 
reference [1], the necessary and sufficient conditions for the new derivation of 
wreath products to be regular have been defined. In here, we give sufficient 
conditions for it to be orthodox as in the following theorem.  

Theorem 3.3 If A B  is an orthodox monoid or left (right) inverse, then 
each of A and B has the same property.  

Proof. Applying [[1], Theorem 5.2], we see that A and B are regular. It 
remains to prove that the set of idempotents of A and B closed under 
multiplication defined on A and B respectively. Let ( ), Bf g E A⊕∈  and 

( ), Ah k E B⊕∈ . Then 2f f= , 2g g= , 2h h=  and k2 = k. Since A B  is an 
orthodox monoid, then for an element ( )( ) ( )( ) ( ), , , , , , ,f a b h g c d k E A B∈  , 
we have  

( )( ) ( )( ) ( )( ) ( ), , , , , , , , , ,b cf a b h g c d k f g ac bd h k E A B= ∈   

( )( ) ( )( ) ( )( ), , , , , , , , ,b c b c b cf g ac bd h k f g ac bd h k f g ac bd h k⇒ =  

( ) ( ) ( )( ) ( ) ( )( ) ( )( )2 2, , , , , ,
acb bd b c c b cf g f g ac bd h k h k f g ac bd h k⇒ =  

( ) ( ) ( ) ( ) ( )2 2, , ,
acb bd b b c c cf g f g f g h k h k h k ac ac bd bd⇒ = = = =  

( ) ( )2 2in and in .B Afg fg A hk hk B⊕ ⊕⇒ = =  

Furthermore  
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( )( ) ( )
bdb b bx f g f g x f g=  

( )( )( ) ( ) ( ) ( )b bbbdx f g x f x g x f x g⇔ =  

( ) ( ) ( ) ( ) ( ) ( )bbdx f bdx g x f xb g x f xb g⇔ =  

( ) ( ) ( ) ( ) ( ) ( )bdx f bdxb g x f xb g x f xb g⇔ =  

( )2 for every .fg fg x B⇔ = ∈  

Similar, calculation shows that ( )2hk hk= , for every y A∈ . Hence the set of 
idempotents of BA⊕  and AB⊕  are subsemigroups. The result follows from 
[[10], Lemma 3.1].  

Now let us suppose that A B  is the left inverse. Then, for any element 
( )( ) ( )( ) ( ), , , , , , ,f a b h g c d k E A B∈  , where ( ), Bf g E A⊕∈  and  

( ), Ah k E B⊕∈ , we certainly have  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ), , , , , , , , , , , , , , ,f a b h g c d k f a b h g c d k f a b h=  

( )( ) ( )( ), , , , , ,b bd ca a d af g f aca bdb h k h g f ca db k h⇒ =  

, , ,b bd d ca a af g f g f h k h k h aca ca bdb db⇒ = = = =  
,fgf gh hkh kh⇒ = =  

and  

( ) ( )b bd dx f g f x g f=  

( ) ( ) ( ) ( ) ( )b bd dx f x g x f x g x f⇔ =  

( ) ( ) ( ) ( ) ( ) .x f xb g xbd f x g xd f⇔ =  

Hence, fgf gh=  for every x B∈ . Similar, calculation shows that hkh kh=  
for every y A∈ . We thus conclude that A and B are actually left inverses.  

The same proof can be applied to show right inverse case as well.          
Note 3.4 1) The other inclusion of Theorem 3.3 is left for future work. 

Following Caito [10], who determined necessary and sufficient conditions for 
the (restricted) wreath product to be orthodox, to be left inverse and to be right 
inverse, respectively. 

2) There is also a particular class of regular monoids, namely coregular 
monoids [14]. An element of a monoid S is called coregular if there is a Sβ ∈  
such that α αβα βαβ= =  as well as the monoid S is called coregular if each 
element of it is coregular cf. [15]. In fact, the coregularity and its properties over 
the new type of wreath product are left as an open problem for the future 
studies.  

4. Conclusion 

In this paper, the author investigated some specific theories such as Green’s 
relations, left cancellative, orthodox, left (right) inverse etc. over new type of 
wreath products over monoids. Of course, there are still so many different 
properties that can be checked on this important product. On the other hand, in 
Note 3.4, we indicated some problems for future studies. 
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