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Abstract 

In this paper, we present continuous iteratively reweighted least squares algo-
rithm (CIRLS) for solving the linear models problem by convex relaxation, 
and prove the convergence of this algorithm. Under some conditions, we give 
an error bound for the algorithm. In addition, the numerical result shows the 
efficiency of the algorithm. 
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1. Introduction 

Low-dimensional linear models have broad applications in data analysis prob-
lems such as computer vision, pattern recognition, machine learning, and so on 
[1] [2] [3]. In most of these applications, the data set is noisy and contains num-
bers of outliers so that they are distributed in higher dimensional. Meanwhile, 
principal component analysis is the standard method [4] for finding a 
low-dimensional linear model. Mathematically, the problem can be present as 

2min    subject to   is an orthoprojector and
x

x x tr d
χ∈

−Π Π Π =∑     (1) 

where χ  is the data set consisting of N points in D , Dx∈ , a target di-
mension { }1,2, , 1d D∈ − , 2⋅  denotes the 2l  norm on vectors, and tr re-
fers to the trace. 

Unfortunately, if the data set contains a large number of noise in the inliers 
and a substantial number of outliers, these nonidealities points can interfere 
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with the linear models. To guard the subspace estimation procedure against out-
liers, statistics have proposed to replace the 2l  norm [5] [6] [7] with 1l  norm 
that is less sensitive to outliers. This idea leads the following optimization prob-
lem 

min       subject to    is an orthoprojector and
x

x x tr d
χ∈

−Π Π Π =∑     (2) 

The optimization problem (2) is not convex, and we have no right to expect 
that the problem is tractable [8] [9]. Wright [10] proved that most matrices can 
be efficiently and exactly recovered from most error sign-and-support patterns 
by solving a simple convex program, for which they give a fast and provably 
convergent algorithm. Later, Candes [11] presented that under some suitable 
assumptions, it is possible to recover the subspace by solving a very convenient 
convex program called Principal Component Pursuit. Base on convex optimiza-
tion, Lerman [12] proposed to use a relaxation of the set of orthogonal projec-
tors to reach the convex formulation, and give the linear model as follows 

min       subject  to    0   and  
x

x Px P I trP d
χ∈

− =∑           (3) 

where the matrix P is the relaxation of orthoprojector Π , whose eigenvalues lie 
in the interval [ ]0,1  form a convex set. The curly inequality   denotes the 
semidefinite order: for symmetric matrices A and B, we write A B  if and 
only if B A−  is positive semidefinite, the problem (3) is called REAPER. 

To obtain a d-dimensional linear model from a minimizer of REAPER, we 
need to consider the auxiliary problem 

1
min     subject  to  is an orthoprojector andS

x
P tr d

χ∈
−Π Π Π =∑      (4) 

where P  is an optimal point of REAPER, 
1S⋅  denotes Schatten 1-norm, in 

other words, the orthoprojector Π  is closest to P  in the Schatten 1-norm, 
and the range of Π  is the linear model we want. Fortunately, Lerman has 
given the error bound between the d-dimensional subspace with the 
d-dimensional orthoprojector Π  in Theorem 2.1 [12]. 

In this paper, we improve that the algorithm calls continuous iteratively re-
weighted least squares algorithm for solving REAPER (3), and under a weaker 
assumption on the data set, we can prove the algorithm is convergent. In the ex-
periment part, we compare the algorithm with the IRLS algorithm [12]. 

The rest of the paper is organized as follows. In Section 2, we develop the 
CIRLS algorithm for solving problem (3). We present a detail convergence anal-
ysis for the CIRLS algorithm in Section 3. An efficient numerical is reported in 
Section 4. Finally, we conclude this paper in Section 5. 

2. The CIRLS Algorithm 

We give the CIRLS algorithm for solving optimization problem (3), and the al-
gorithm is summarized as Algorithm 1. 
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In the next section, we prove the sequence ( ){ }
1

k

k
P

≥
 is convergent to Pδ . 

Furthermore, we also present the Pδ  satisfied the bound with the optimal point 
P  of REAPER. 

3. Convergence of CIRLS Algorithm 

In this section, we prove that the sequence ( ){ }
1

k

k
P

≥
 generated by Algorithm 1 

is convergent to Pδ  and we provide the Pδ  satisfied the bound with the op-
timal point P  of REAPER. Firstly, we start from the Lemma prepare for the 
proof of the following theorem. 

Lemma 1 ([12], Theorem 4.1) Assume that the set χ  of observations does 
not lie in the union of two strict subspaces of D . Then the iterates of IRLS Al-
gorithm with 0ε =  converge to a point Pδ  that satisfies the constraints of the 
REAPER problem. Moreover, the objective value at Pδ  satisfies the bound 

1 ,
2x x

x P x x P xδ
χ χ

δ χ
∈ ∈

− − − ≤∑ ∑                   (5) 

where P  is an optimal point of REAPER. 
In lemma 1, under the assumption that the set χ  of observations does not lie 

in the union of two strict subspaces of D , they consider the convergence of the 
IRLS algorithm. However, verify whether a data set satisfies this assumption re-
quires amounts of computation in theory, so we give a assumption that is easier 
to verify in following theorem. 

Theorem 1 Assume that the set χ  of observations satisfies { } Dspan χ =  , 
if Pδ  is the limit point of the sequence ( ){ }

1

k

k
P

≥
 generated by CIRLSδ  algo-

rithm, then Pδ  is an optimal point of the following optimization problem 

{ } { }

2

: :

1min
2

subject to  0   and  = ,

x x Px x x Px

x Px
x Px

P I trP d

δ δ
δ

δ− ≥ − <

  −  − + +     
∑ ∑

 

           (6) 

and satisfies 

1 ,
2x x

x P x x P xδ
χ χ

δ χ
∈ ∈

− − − ≤∑ ∑                   (7) 

where P  is an optimal point of REAPER(3). 
Proof. Firstly, we consider the optimization model with Algoritnm 1, 
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{ } { }

2

: :

1min
2

subject to  0   and  ,

x x Px x x Px

x Px
x Px

P I trP d

δ δ
δ

δ− ≥ − <

  −  − + +     
=

∑ ∑

 

           (8) 

then, we define iterative point ( )1kP +  of the optimization problem 
( ) 21

,: arg min     subject to  0   and  .
k

k
x

x
P x Px P I trP dδ

χ
ω+

∈

= − =∑      (9) 

where 
( ){ },

1:
max ,k x k

k x P x
δω

δ
=

−
. 

For convenience, let Q I P= − , and the optimization model(9) convert into 
( ) 21

,
0

: arg min .
k

k
x

Q I x
trQ D d

Q Qxδ
χ
ω+

∈
= −

= ∑
 

              (10) 

where 
( ){ },

1:
max ,k x k

k Q x
δω

δ
= . 

Similarly, we convert the optimization model (8) into 

( )
{ } { }

2

: :

1min min
2

subject  to  0   and  .

x Qx x Qx

Qx
F Q Qx

Q I trQ D d

δ
δ δ

δ
δ≥ <

  
  = + +

    
= −

∑ ∑

 

      (11) 

Next we prove the convergence of ( )kP , consider the Huber-like function 

( )

2

2

1 0
2

,
1
2

k

k k
k

k

x y
H x y

x y y
y

δ

δ δ
δ

δ

  
+ ≤ <  

  = 
  + ≥   

           (12) 

since 
21

2
x y x
y

 
+ ≥ 

 
, for any 0y > , then 

( ) ( ), , .
k k

H x y H x xδ δ≥                 (13) 

holds for any 0y > , x R∈ . We introduce the convex function 

( ) ( )

{ } { }

2

: :

: ,

1 ,
2

k k

k k

x

k
x Qx x Qx k

F Q H Qx Qx

Qx
Qx

δ δ
χ

χ δ χ δ
δ

δ

∈

∈ ≥ ∈ <

=

 
 = + +
 
 

∑

∑ ∑
      (14) 

note that F is continuously differentiable at each matrix Q, and the gradient is 

( )
{ } { }

{ }

T T

: :

T

.
max ,

k
k kx Qx x Qx k

x k

Qxx QxxF Q
Qx

Qxx
Qx

δ
χ δ χ δ

χ

δ

δ

∈ ≥ ∈ <

∈

∇ = +

=

∑ ∑

∑
          (15) 

in addition, we introduce the function 
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( )( )
( )( )

( ){ } ( )
( )

( ){ }

2 2

: :

,

: ,

1 1 ,
2 2

k

k

k k
k k

k

k

x

k
kk

kx Q x x Q x

G Q Q

H Qx Q x

Qx Qx
Q x

Q x

δ

δ
χ

χ δ χ δ

δ
δ

∈

∈ ≥ ∈ <

=

   
   = + + +
   

  

∑

∑ ∑

    (16) 

then 

( )( ) ( ){ }
T

, .
max ,k

k

kx k

QxxG Q Q
Q x

δ
χ δ∈

∇ = ∑                (17) 

By the definition of ( )( ),
k

kG Q Qδ  we know that 
( ) ( )( ) ( ) ( )( ) ( )( ), , ,

k k k

k k k k k

x
G Q Q H Q x Q x F Qδ δ δ

χ∈
= =∑         (18) 

and 

( ) ( )( )
( )

( ){ }
( )( )

T

, ,
max ,k k

k
k k k

kx k

Q xxG Q Q F Q
Q x

δ δ
χ δ∈

∇ = = ∇∑         (19) 

it is obvious that ( )( )  ,
k

kG Qδ ⋅  is a smooth quadratic function, we may relate 
( )( )  ,

k

kG Qδ ⋅  through the expansion in ( )kQ  as follows 
( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )
, ,

1 , ,
2

k k k

k k k k

k k k
k

G Q Q F Q Q Q F Q

Q Q C Q Q Q

δ δ δ= + − ∇

+ − −
         (20) 

where ( )( ) ( ){ }
T

max ,
k

k kx k

xxC Q
Q xχ δ∈

= ∑  is the Hessian matrix of ( )( ),
k

kG Q Qδ . 

By the definition of ( )( ),
k

kG Q Qδ  we know that ( ) ( ),
k k

F Q G Q Qδ δ= , com-
bines with (13) we have 

( ) ( )
( )( )

( )( )

,

,

, ,

k k

k

k

x

k

x

k

F Q H Qx Qx

H Qx Q x

G Q Q

δ δ
χ

δ
χ

δ

∈

∈

=

≤

=

∑

∑                 (21) 

and since the optimization model(10) is equivalent to the model 
( ) ( )( )1

0
: arg min , ,

k

k k

Q I
trP D d

Q G Q Qδ
+

= −

=
 

                (22) 

then we have the monotonicity property 
( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 1 , , .

k k k k

k k k k k kF Q G Q Q G Q Q F Qδ δ δ δ
+ +≤ ≤ =     (23) 

We note that when 0x ≥ , we have 

( ) 2, 1 0
2

k

k

k k
k

x x
H x x x xδ

δ

δ δ
δ

≥
=   + ≤ < 

 

              (24) 
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( )
1

1

2

1 1
1

, 1 0
2

k

k

k k
k

x x
H x x x xδ

δ

δ δ
δ

+

+

+ +
+

≥
=   + ≤ < 

 

          (25) 

since 1k kδ δ+ < , on the one hand, when 1kx δ +≥ , ( )
1

,
k

H x x xδ +
=  holds, and 

( ),
k

H x x xδ ≥  holds for any x R∈ , therefore the inequality  
( ) ( )

1
, ,

k k
H x x H x xδ δ+

≤  holds for 1kx δ +≥ . On the other hand, when 1kx δ +< ,  

( )
1

2

1
1

1,
2k k

k

xH x xδ δ
δ+ +

+

 
= + 

 
, and ( )

21,
2k k

k

xH x xδ δ
δ
 

= + 
 

 holds, then we have 

( ) ( )

( )

1

2 2

1
1

2

1
1

1, ,
2

1 1 .
2

k k k k
k k

k k
k k

x xH x x H x x

x

δ δ δ δ
δ δ

δ δ
δ δ

+ +
+

+
+

 
− = − + − 

 
 

= − − 
 

         (26) 

since 1k kδ δ +> , and 1kx δ +< , ( ) ( )
1

, , 0
k k

H x x H x xδ δ +
− >  holds for all 0x ≥ , 

therefore 
( )( ) ( ) ( )( )

( ) ( )( )
( )( )

1 1

1 1 1

1 1

1

,

,

,

k k

k

k

k k k

x

k k

x

k

F Q H Q x Q x

H Q x Q x

F Q

δ δ
χ

δ
χ

δ

+ +

+ + +

∈

+ +

∈

+

=

≤

=

∑

∑             (27) 

and according to (23), we have the following result 
( )( ) ( )( )1

1 .
k k

k kF Q F Qδ δ+

+ ≤                  (28) 

Since 
( ) ( )( )1

0
arg min , ,

k

k k

Q I
trQ D d

Q G Q Qδ
+

= −

=
 

                (29) 

combined with the convex optimization variational inequalities with some con-
straints, we have 

( ) ( ) ( )( )1 10 , ,   0 , ,
k

k k kQ Q G Q Q Q I trQ D dδ
+ +≤ − ∇ ∀ = −       (30) 

base on (20), we have the equation 
( )( ) ( )( ) ( )( ) ( )( ), ,

k k

k k k k
kG Q Q F Q C Q Q Qδ δ∇ = ∇ + −          (31) 

then we have 
( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 10 , ,

k

k k k k k k
kQ Q F Q C Q Q Qδ

+ +≤ − ∇ + −        (32) 

therefore 
( ) ( )( )

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( )

1

1

1 1

1 1

,

,

1 ,
2

,

k

k k

k

k k

k k k k

k k k k k
k

k k k k k k
k

G Q Q

F Q Q Q F Q

Q Q C Q Q Q

F Q Q Q C Q Q Q

δ

δ δ

δ

+

+

+ +

+ +

= + − ∇

+ − −

≤ − − −
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( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( )

1 1

1 1

1 ,
2

1 , ,
2

k

k

k k k k k

k k k k k k
k

Q Q C Q Q Q

F Q Q Q C Q Q Q

δ

δ

+ +

+ +

+ − −

≤ − − −
      (33) 

and according to(23), then we get the inequality 

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 11 , ,
2k k

k k k k k k k
kF Q F Q Q Q C Q Q Qδ δ

+ + +≤ − − −     (34) 

add to ( )( ) ( )( )1

1 1
k k

k kF Q F Qδ δ+

+ +≤ , then we have 

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1

1 1 11 , .
2 k k k

k k k k k k kQ Q C Q Q Q F Q F Qδ δ δ +

+ + +− − ≤ −   (35) 

Let { }{ }1
: max ,maxkk x

m x
χ

δ
≥ ∈

= , since ( )1kQ + , ( )kQ  and ( )( )k
kC Q  are all 

symmetric matrix, then the inequality 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( )

1 1

21

,

,

k k k k k
k

k k k
k

Q Q C Q Q Q

tr Q Q C Q

+ +

+

− −

 ≥ − 
 

              (36) 

holds, in addition, ( )10 kQ I+  , ( )0 kQ I  , thus ( ) ( )( )21k kQ Q+ −  is  
positive semidefinite matrix, and ( ) ( )k kQ x Q x x≤ ⋅ ≤ , then we have 

( ){ } { }max , max ,k
k kQ x x mδ δ≤ ≤ , therefore 

( )( ) ( ){ }
T

T T
min

1 1 ,
max ,

k
k kx x xk

xxC Q xx xx I
m mQ xχ χ χ

λ
δ∈ ∈ ∈

 
=  

 
∑ ∑ ∑      (37) 

so we have 

( ) ( )( ) ( )( ) ( ) ( )( )2 21 1T
min

1 ,k k k k k
k

x
Q Q C Q xx Q Q

m χ
λ+ +

∈

 
− − 

 
∑        (38) 

thus we can get the inequality as follows 

( ) ( )( ) ( )( ) ( ) ( )2 21 1T
min

1 .k k k k k
k Fx

tr Q Q C Q xx Q Q
m χ
λ+ +

∈

 
− ≥ − 

 
∑      (39) 

Let T
min

1
2 x

xx
m χ

µ λ
∈

 
=  

 
∑ , then 0µ > , and we have 

( ) ( ) ( )( ) ( )( )( )1

21 11 ,
k k

k k k k

F
Q Q F Q F Qδ δµ +

+ +− ≤ −           (40) 

since ( ) 0
k

F Qδ ≥ , so we have 

( ) ( ) ( )( )1

21 1

1

1 ,k k

Fk
Q Q F Qδµ

∞
+

=

− ≤ < +∞∑               (41) 

therefore, we get the following limits 
( ) ( )1lim 0.k k

k F
Q Q+

→∞
− =                     (42) 

Since the set { }: 0 ,Q Q I trQ D d= −   is bounded and closed convex set, 
and ( ) { }1 : 0 , , 1, 2,kQ Q Q I trQ D d k+ ∈ = − =   , then the sequence  

( ){ }
1

k

k
Q

≥
 exist convergent subsequences, we suppose ( ){ }

1

ik

i
Q

≥
 is one of the 
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subsequences and 
( ){ }lim .ik

i
Q Q

→+∞
=                       (43) 

Since for any 1i ≥ , we have 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 ,

i i i i

i i i

k k k k

F F

k k k

F F

Q Q Q Q Q Q

Q Q Q Q

+ +

+

− = − + −

≤ − + −

 



          (44) 

and 
( ) ( )1lim 0,k k

k F
Q Q+

→∞
− =                  (45) 

so we have 
( )1lim 0,ik

i F
Q Q+

→+∞
− =                  (46) 

in other words 
( )1lim .ik

i
Q Q+

→+∞
=                     (47) 

According to the definition of ( )1ikQ +  and (10), for any  
: 0 ,Q Q I trQ D d= −  , we have 

( ) ( )( ) ( )( ) ( ) ( )( )1 10 , .i i i i i
k ii

k k k k k
kQ Q F Q C Q Q Qδ

+ +≤ − ∇ + −       (48) 

Since 

( )( )
( )

( ){ }
( )

( ){ }

{ }
( )

T

T

T

lim lim
max ,

lim
max ,

max ,

i
i

ki i
i

i

i
i

k
k

ki i x
k

k

kix
k

x

Q xxF Q
Q x

Q xx

Q x

Qxx
Qx

F Q

δ
χ

χ

χ

δ

δ

δ

δ

→+∞ →+∞ ∈

→+∞∈

∈

∇ =

=

=

= ∇

∑

∑

∑






          (49) 

and 
( )( ) ( ) ( )( )

( ){ }
( ) ( )( )

( ){ }
( ) ( )

( ) ( )

( ) ( )

1

T
1

T
1

T
1

1T

max ,

max ,

1

i i i
i

i i

i
i

i i

i
i

i i

i

i i

k k k
k

F

k k

kx
k

F

k kF
k Fx

k

k kF

Fx k

k k

F Fx

C Q Q Q

xx Q Q
Q x

xx
Q Q

Q x

xx
Q Q

xx Q Q

χ

χ

χ

χ

δ

δ

δ

δ

+

+

∈

+

∈

+

∈

+

∈

−

= −

≤ ⋅ −

 
 ≤ ⋅ −
 
 
 

≤ ⋅ − 
 

∑

∑

∑

∑

            (50) 
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as well as ( ) ( ) ( )1 0i ik k

F
Q Q i+ − → → +∞ , so we have 

( )( ) ( ) ( )( )1lim 0,i i i
i

k k k
ki F

C Q Q Q+

→+∞
− =               (51) 

thus 
( )( ) ( ) ( )( )1lim 0.i i i

i

k k k
ki

C Q Q Q+

→+∞
− =                 (52) 

Taking the limit at both ends of the inequality (48) and using the continuity of 
the inner product, for any : 0 ,Q Q I trQ D d= −  , we have 

( )0 , ,Q Q F Qδ≤ − ∇                      (53) 

the variational inequalities demonstrate that 

( )arg min     subject to  0 ,  ,Q F Q Q I trQ D dδ= ≤ ≤ = −         (54) 

it means that the limit points Qδ  of any convergent subsequence generated by 
( ){ }

1

k

k
Q

≥
 is an optimal point of the following optimization problem 

( )arg min     subject to  0 ,  .Q F Q Q I trQ D dδ δ= ≤ ≤ = −         (55) 

Now we set P I Qδ δ= −  and define ( ) ( )0 :
x

F P I P x
χ∈

= −∑  with 0 P I≤ ≤  

and trP d= . And we define ( ) ( ) ( )( ): ,
x

F P H I P x I P xδ δ
χ∈

= − −∑ , and 

( )0: arg minP F P=  with respect to the feasible set 0 P I≤ ≤ , and trP d= , 
then we have 

( )arg min ,    subject to  0   , .P F P P I trQ dδ δ= ≤ ≤ =         (56) 

According to the lemma 3.1, we have 

( ) ( )0 0
10 ,
2

F P F Pδ δ χ≤ − ≤                  (57) 

where χ  denotes the number of elements of χ . 

4. Numerical Experiments 

In this section, we present a numerical experiment to show the efficiency of the 
CIRLS algorithm for solving problem (3). We compare the performance of our 
algorithm with IRLS on the data generated from the following model. In the test, 
we randomly choose Nin inliers sampled from the d-dimensional Multivariate 
Normal distribution ( )0, LN Π  on subspace L and add Nout outliers sampled 
from a uniform distribution on [ ]0,1 D , we also add a Gaussian noise 

( )20,N Iε . The experiment is performed in R and all the experimental results 
were averaged over 10 independent trials. 

The parameters were set the same as [12] that 1510ε −= , 0.01ε =  and  
1010δ −= , we choose η  from [ ]0,1  and we set 1

2
η =  in general. All the  

other parameters of the two algorithms were set to be the same, Nout means the 
number of outliers and Nin is the number of inliers, D is the ambient dimension 
and d is the subspace dimension we want. From the model above, we get the da-
ta sets with values in the table below, then we calculate the iterative number  
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Table 1. The iterative number of the CIRLS and IRLS for different dimension. 

D Methods d Nin Nout n (iterative) 

10 
IRLS 2 50 200 22 

CIRLS 2 50 200 13 

50 
IRLS 10 50 200 51 

CIRLS 10 50 200 30 

100 
IRLS 10 50 200 51 

CIRLS 10 50 200 31 

150 
IRLS 10 50 200 53 

CIRLS 10 50 200 33 

200 
IRLS 10 50 200 53 

CIRLS 10 50 200 35 

250 
IRLS 10 50 200 51 

CIRLS 10 50 200 30 

300 
IRLS 10 70 280 49 

CIRLS 10 70 280 30 

 
( )iterativen  with the two algorithms through the data sets and the given para-

meters. The results are shown in Table 1. 
We focus on the convergence speed of the two algorithms. Table 1 reports the 

numerical results of the two algorithms for different space dimension. From the 
result, we can see that in different dimension, the CIRLS algorithm performs 
better than IRLS algorithm in convergent efficiency. 

5. Conclusion 

In this paper, we propose an efficient continuous iteratively reweighted least 
squares algorithm for solving REAPER problem, and we prove the convergence 
of the algorithm. In addition, we present a bound between the convergent limit 
and the optimal point of REAPER problem. Moreover, in the experiment part, 
we compare the algorithm with the IRLS algorithm to show that our algorithm is 
convergent and performs better than IRLS algorithm in the rate of convergence. 
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