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Abstract 
The main differential equations of quantum theory are the eigenequations 
based on the energy operator; they have the energy as eigenvalues and the 
wave functions as eigenfunctions. A usual complexity of these equations 
makes their accurate solutions accessible easily only for very few physical 
cases. One of the methods giving the approximate solutions is the Schrödin-
ger perturbation theory in which both the energies and wave functions of a 
more complicated eigenproblem are approached with the aid of similar pa-
rameters characteristic for a less complicated eigenproblem. No time para-
meter is necessary to be involved in these calculations. The present paper 
shows that the Schrödinger perturbation method for non-degenerate statio-
nary quantum states, i.e. the states being independent of time, can be sub-
stantially simplified by applying a circular scale of time separately for each 
order of the perturbation theory. The arrangement of the time points on the 
scale, combined with the points contractions, gives almost immediately the 
series of terms necessary to express the stationary perturbation energy of a 
given eigenproblem. The Schrödinger’s method is compared with the 
Born-Heisenberg-Jordan perturbation approach. 
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1. Introduction 

There exists a multitude of the mathematical methods which help the people in 
science, engineering and everyday life. The aim of the present paper is to dem-
onstrate a reversed example, namely that physical ideas on time can be helpful in 
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the treatment of the mathematics connected with solving of the differential ei-
genequations. 

In general a differential equation is represented by a mutual dependence be-
tween some unknown function, its derivative or derivatives, and one or more 
independent variables. Evidently the mathematics has its methods to solve such 
equations. In some special cases the solutions can be analytic in their form, but 
in general there exist the numerical methods which can provide us systematically 
with the required results. 

In the modern non-relativistic quantum theory, began by Schrödinger in the 
middle of 1920’s, the differential eigenequations played an important role [1] [2] 
[3] [4]. This comes from the postulate that the stationary states of the energy of a 
physical system, say an atom or an atomic ensemble, should be given by the ei-
genvalues of the Hamiltonian energy operator composed usually from the kinet-
ic differential part and a multiplicative part acting together on the wave function 
representing the examined electron system. In effect the operators of a mixed 
character—partly differential and partly multiplicative—can enter into play giv-
ing usually a complicated mathematical problem. 

In case of the presence of many electrons the resulted eigenproblem can be 
much too complicated to be attacked with the aid of conventional methods ap-
plied to the differential equations. An example can be the accurate differential 
equation describing the electron wave function in a metal. The equation should 
be necessarily transformed into a more simple form due to an analysis of the 
physical conditions governing the behaviour of electrons near the nuclei of the 
metal atoms on the one side, and in the areas rather distant from the nuclei on 
the other side; see e.g. [5]. The effect of a simplification of such kind can be the 
equations which occur to be satisfactory in calculating many of the physical 
properties concerning metals. But this is only one advantage due to the use of a 
simplified solution. Another advantage—raised especially by Wigner—is that a 
successful simplification of the necessary mathematical equations allows us for a 
better insight and understanding of the physics entering the problem [6]. Such 
insight can be easily smoothed out by a powerful computer whose task was to 
present only the effective numerical data for the physical parameters characte-
rizing the examined piece of matter, but the calculations do not give a look into 
the play of forces which are responsible for the observed phenomena and results. 

In the present paper we discuss the use of a specific time notion and time scale 
suitable in solving a kind of the differential eigenequations entering the quantum 
mechanics. 

2. Schrödinger’s Quantum Mechanics of the Unperturbed  
and Perturbed Differential Eigenequations  

A crucial mathematical difficulty of the quantum theory, i.e. the complexity of 
the eigenquations, became evident already for Schrödinger himself [3]. In fact 
only very special, and mathematically rather simple, objects like the harmonic 
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oscillator or hydrogen atom, could be successfully attacked by the quantum 
theory from before of 1925. Already the spectrum of the helium atom, the next 
atom in the periodic table after the hydrogen, could not be presented by that 
theory. However, by the use of the idea of the de Broglie waves of matter, 
Schrödinger could formulate his second-order differential equations suitable to 
be applied to the electron spectrum of any atom. Moreover, the appropriate 
Schrödinger equations, called sometimes the wave-mechanical equations, could 
be applied to molecules and solids. In practice the equations could be easily 
founded—but not solved—for any multi-electron problem because of our know-
ledge of the electrostatic forces which govern any many-electron system: The 
forces dictated by the Coulomb law act between the electrons and atomic nuclei, 
as well as—separately—between the purely multi-electron and many-nuclear 
ensembles. 

The idea of construction of the differential eigenequation suitable for each 
case was based on the classical Hamilton expression for the energy possessed 
separately by any particle entering the system increased by the interaction ener-
gy between different particles. For example any single electron particle, say in an 
atom, has its kinetic energy represented by the expression (m is the electron 
mass): 

( )2 2 2
kin

1 ,
2 x y zE p p p

m
= + +                        (1) 

where xp , yp  and zp  are the Cartesian coordinates of the particle momen-
tum, increased by the potential energy due to the electrostatic interaction be-
tween an electron and the atomic nucleus:  

2

pot .
i

ZeE
r

= −                             (2) 

Here ir  is a distance between the ith electron having charge −e and the nucleus 
having Ze as its electrostatic charge. 

The collective electrostatic energy between the electrons is represented by the 
Coulomb interaction energy term equal to  

2

int
1 ,
2 i j

iji j

eE
r

≠

= ∑∑                           (3) 

where ijr  is a distance between the electrons i and j. 
Usually the nucleus is assumed to be at rest, so its kinetic energy is neglected. 

In effect the total classical Hamiltonian for an atom is a sum of (1), (2) and (3) 
extended respectively over the number of the electron particles. An exclusion of 
the self-interaction energy of electrons should be done by eliminating the terms 
corresponding to i j=  from the sum entering (3). 

The next step—suggested by the de Broglie waves—was to change xp , yp  
and zp  in (1) into the differential operators:  

ˆ ˆ ˆ, , .x x y y z zp i p p i p p i p
x y z
∂ ∂ ∂

→ − = → − = → − =
∂ ∂ ∂

         (4) 
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The Planck constant h divided by 2π  is usually entering (4); in the present 
case this constant term is put equal to 1. 

Therefore instead of the classical kinE  in (1) we obtain the kinetic-energy 
operator  

( )
2 2 2

2 2 2 2
kin 2 2 2

1 1 1ˆ ˆ ˆ ˆ .
2 2 2x y zE p p p

m m mx y z
 ∂ ∂ ∂

= + + = − + + = − ∇ 
∂ ∂ ∂ 

     (5) 

The operators potE  and intE —because they depend solely on the electron 
position—remain of a multiplicative character given in (2) and (3), therefore  

pot pot
ˆ ,E E=                             (6) 

int int
ˆ .E E=                             (7) 

In effect the quantum problem of the atomic electron energy postulated to be 
solved becomes  

( ) ( )( )tot kin pot int tot
ˆ ˆ ˆ ˆ ˆ ,i i

i
H E E E E Eψ ψ ψ ψ = = + + =  

∑            (8) 

or more briefly  

tot tot
ˆ ,E Eψ ψ=                           (9) 

where totE  on the right of (9) is a number. The sum in (8) is extended over the 
number of electron particles labelled by i. 

Because of  

kin kinÊ E≠                            (10) 

the problem becomes mathematically a differential eigenequation for the elec-
tron wave functions  

( )
( )
( )

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

x y z x y z x y z

x y z x y z x y z

x y z x y z x y z

α

β

γ

ψ

ψ

ψ







                (11) 

and electron eigenenergies  

( ) ( ) ( )
tot tot tot tot, , ,E E E Eα β γ=                       (12) 

Because of the equality of the operators  

tot
ˆ ˆE H=                            (13) 

the operator Ĥ  in (13) is called the Hamiltonian, or energy operator.  

3. Classification of the Wave Functions and Energies into  
Non-Degenerate and Degenerate States  

Any wave function  

( )1 1 1 2 2 2, , , , , ,x y z x y zψ ψ=                    (14) 

defines some electron distribution called the electron density  
* .ψ ψ=                           (15) 
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In general there can exist an infinite number of solutions ψ  and totE  of the 
eigenequation (9):  

, , ,α β γψ ψ ψ ψ=                          (16) 

(see (11)) and  

totE                               (17) 

given in (12). In case when all eigenvalues (12) are different, the eigenproblem is 
called non-degenerate, but in case some of solutions (12) are found to be equal, 
the eigenproblem is called degenerate. Examples of the solutions (16) and (17) 
are given in [7] and [8].  

4. Difficulty in Solving the Schrödinger Equations and  
Application of the Perturbation Method  

The problem, noticed already by Schrödinger [3], is that the solution of his equ-
ation (8)-(9) becomes, in general, an extremely complicated task. Only very few 
physical systems provide us with simple expressions for ψ  and totE . In reply 
to this difficulty Schrödinger proposed to solve many eigenproblems by consi-
dering them similar to the solved problems in the sense that the operator  

( ) ( )unsolved solved per
pot pot

ˆ ˆ ˆE E V− =                       (18) 

is of a small size and, for the sake of convenience, dependent solely on the posi-
tion vector, or vectors, of the kind of r . Therefore, for a single set of the Carte-
sian coordinates x, y, z, we have  

p pˆ = ( ),er erV V r                          (19) 

so perV  remains of a multiplicative character. The essence of the perturbation 
method becomes to calculate per

totE  and perψ —the perturbed eigenenergies and 
eigenfunctions due to the eigenproblem  

( )per per per per
totĤ V Eλ ψ ψ+ =                      (20) 

with the aid of totE  and ψ  obtained due to solving the unperturbed problem. 
The λ  entering (20) is assumed to be a small number. It makes that for 0λ =  
we have the unperturbed problem, whereas 1λ =  gives a full perturbed prob-
lem to be solved. 

If we focus our attention only on the energy—which is usually a more seeked 
parameter than the wave function—we obtain  

per 2
tot tot 1 2 .E E E Eλ λ= + ∆ + ∆ +                   (21) 

For 0λ =  the first term on the right of (21) is equal to one of the unper-
turbed energies in (12). The other terms, labelled by  

2 3
1 2 3, , ,E E Eλ λ λ∆ ∆ ∆                        (22) 

are for 1λ =  equal to the full perturbation corrections of some unperturbed 
energy ( )

tot
iE  belonging respectively to the perturbation orders:  

1, 2, 3, .N N N= = =                        (23) 
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In general the corrections (22) can be constructed from the matrix elements  
perVα βψ ψ                           (24) 

where αψ  and βψ  are the unperturbed wave functions, and from the unper-
turbed energy differences  

( ) ( ) ( ) ( ) ( )( )
tot tot tot tot tot tot, , ,i i iE E E E E Eβ γα− − −                   (25) 

where evidently  

, , , ,iα β γ ≠
                          (26) 

if the unperturbed energy state ( )
tot
iE  is taken into the perturbation process. 

According to [9] and [10] any NE∆  is composed of NS  different kinds of 
the perturbation terms built up of (24) and (25). Excepting for the case of 

1N = , any of the NS  terms  

( )
( )

2 2 !
! 1 !N

N
S

N N
−

=
−

                         (27) 

taken for 1N >  is represented by an infinite sum of the expressions containing 
(24) and (25). For example for 2N =  we have a single perturbation term be-
cause  

( )
2

2 2 2 !
1

2!1!
S

× −
= =                        (28) 

which has the form  

( ) ( )

per

2 .
per

i j
j i

i V j j V i
E

E E≠

∆ =
−

∑                   (29) 

It should be noted that NS  can attain large numbers already for rather low N:  

1 2 3 4 5 6 7 81, 1, 2, 5, 14, 42, 132, 429,S S S S S S S S= = = = = = = =       (30) 

But for example for 20N =  we have  
9

20 1.767 10 .S ≅ ×                        (30a) 

5. Construction of the Energy Perturbation Terms ΔEN  
Belonging to Different N and the Problem of Time  

Schrödinger did not use the notion of time in solving his perturbation eigenequ-
ations [3]. In principle the unperturbed and perturbed Schrödinger eigenequa-
tions did not contain the time as an independent variable. Also in course of 
solving his eigenequations he followed a purely mathematical procedure. But 
time was included in the perturbation process for energy, and corresponding 
diagrams, by Feynman [11] [12]. By using the scale of time known from the 
everyday experience, the time parameter t can be extended from the minus to 
plus infinity, viz.  

t−∞ < < ∞ .                          (31) 

In this case, it became possible to calculate the NS  perturbation terms be-
longing to a given order N with the aid of  
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( )1 !NP N= −                          (32) 

terms corresponding to the Feynman diagrams. For large N the number NP  
heavily exceeds NS . For example for 20N =  we have  

17
20 19! 1.216 10P = ≅ ×                     (32a) 

which makes the ratio  

( ) 8
20 20 1.216 1.767 10P S = ×                   (33) 

equal to a very large number. In effect the calculation of numerous individual 

20S  terms done with the aid of the 20P  terms can be a very complicated task. 
But an evident simplification of the access to the Schrödinger perturbation 

terms can be afforded by a suitable choice of the scale of time which labels the 
collisions of a quantum system with the perturbation potential perV  [13]-[18]. 
The scale is assumed to be of a circular character remaining similar for any N. 
This means that for any N points of time considered on the scale, only 1N −  
points of time, viz.  

1,2,3,4, , 1,N −                        (34) 

are active in the collision done on a circular way with perV . The Nth point is 
considered to be a beginning-end point of the scale and has no participation in 
the collisions process. 

But a travel of a quantum system along the set of points given in (34) gives 
only one of the NS  terms of the perturbation energy belonging to N. Such situ-
ation, when NS  is reduced to a single term, holds for the case of  

( )1 1 1 .S N= =                         (35) 

The time scale corresponding to 1N =  is given in Figure 1. Evidently the 
scale possesses solely a single time point which is the beginning-end point of the 
scale. 

For 2N =  we have a situation represented by Figure 2. Here again  
 

 
Figure 1. Time scale for the perturbation order N = 1. Only one time point—the begin-
ning-end point of the scale—is indicated. 
 

 
Figure 2. Time scale for the perturbation order N = 2. Beyond of the beginning-end point 
of the scale, only point 1 of collision with the perturbation potential V is indicated. 
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2 1 1 1S S S= × =                          (36) 

gives a single diagram, but beyond of the beginning-end point we have still one 
time point 1 present on the scale. 

The energy term due to Figure 1 is  
per

1E i V i V∆ = ≡                          (37) 

assuming that the energy of an unperturbed state i is perturbed, whereas the 
perturbed energy term due to Figure 2 is that given in (29). An abbreviated 
formula for 2E∆  is:  

2E VPV∆ =                           (38) 

since  

( ) ( )
1 .

i j
P

E E
=

−
                         (39) 

The presence of a single P implies a single summation within the expression 
(38) over index j, evidently with exclusion of the index i; see (29). 

For 2N >  we have 1NS > ; see (30). The remaining terms NS  are obtained 
from contractions of the time points which are free on the circular scale; see Sec-
tion 6.  

6. Time-Point Contractions on a Circular Scale and Their  
Contribution to the Perturbation Energy  

We limit our further calculations to the orders 3,4N =  and 5, giving respec-
tively the number of the perturbation terms equal to  

3 42, 5S S= =                          (40) 

and  

5 14;S =                            (41) 

see (30). The number of free points of time remaining on the scale is respectively  

3 1 2, 4 1 3, 5 1 4− = − = − =                   (42) 

for 3, 4N =  and 5. 
The points (42), when they are remaining free, are arranged successively on 

the main loop of time characteristic for a given N. The main loop of time means 
that it contains the beginning-end point of the time scale. When no time-point 
contractions on the main loop are present, the perturbation terms due to the 
loop—in the notation presented earlier in Section 5 for 1N =  and 2N =
—are:  

VPVPV                           (43) 

for the loop corresponding to 3N = ,  

VPVPVPV                         (44) 

for the loop corresponding to 4N = , and  

https://doi.org/10.4236/apm.2019.93011


S. Olszewski 
 

 

DOI: 10.4236/apm.2019.93011 236 Advances in Pure Mathematics 
 

VPVPVPVPV                         (45) 

for the loop corresponding to 5N = . The loop corresponding to 3N =  is 
presented in Figure 3. 

We see that the number of symbols P entering the formulae (43)-(45) is equal 
to 1N − , whereas the number of V is equal to N. 

In the next step the contractions of the time points whose number is given in 
(42) should be taken into account. The contractions provide us with the side 
loops touching the main loop of time. In the first case of (42) ( 3N = ) we have 
only two free points of time labelled by 1 and 2. They can give only a single con-
traction  

1: 2;                              (46) 

the diagram connected with contraction in (46) is given in Figure 4. We see that 
the side loop due to (46) is identical with the loop of time characteristic for 

1N = . Therefore the energy contribution due to contraction (46) should be the 
term  

per .i V i V=                         (47) 

But the merging of the time points given in (46) provides us with the merging 
of two P separated by V in (43). In effect the contribution to the perturbation 
energy due to (46) is represented by the formula  

2VP V                             (48) 

A general rule is that the total number of V and P in the energy formulae be-
longing to a given N does not change, so for 3N =  it should contain three 
terms V and two terms P; see (43). This implies that the total second perturba-
tion term for 3N =  is  
 

 
Figure 3. Time scale for the perturbation order N = 3 having no contraction of the free 
time points 1 and 2. 
 

 
Figure 4. Time scale for the perturbation order N = 3 having the contraction point 1:2. 
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2 2
1 .V VP V E VP V− = −∆                  (49) 

The minus sign in front of (49) is dictated by the fact that an even number of 
terms enter the product representing the whole term (49). In case we have an 
odd number of terms entering the product, the sign before the whole perturba-
tion term should be positive. 

It is easy to study the contractions of the free time points presented in (42) for 
4N =  (in this Section) and 5N =  (in Section 7). 

The three time points (1, 2 and 3) present in the case of 4N =  give four 
kinds of contractions:  

1: 2, 1: 3, 2 : 3 and 1: 2 : 3.                    (50) 

Together with the formula (44) the contractions in (50) give  

4 5S =                             (51) 

perturbation terms belonging to 4N = . We obtain  
2 2

11: 2 ,VP VPV V VP VPV E→ − = − ∆              (52) 

2 2
21: 3 ,VP V VPV VP V E→ − = − ∆               (53) 

because the side loop of time due to contraction 1: 3  has a free point 2 on it 
which makes the loop identical to that characteristic for 2E∆ ,  

2 2
12 : 3 VPVP V V VPVP V E→ − = − ∆              (54) 

is symmetrical to (52), and  

( )22 2
11: 2 : 3 ,VP V V V VP V E→ = ∆              (55) 

because three points of time merge together and they give two side loops of time 
each representing the energy contribution characteristic for 1N = . A general 
rule for contractions of the time points is that the loops created by them should 
not cross; see e.g. [13]. 

7. Time Points, Their Contractions and the Perturbation  
Energy Terms Belonging to the Order N = 5  

The time points being free on the main loop of time representing the perturba-
tion order 5N =  are  

1,2,3, and 4.                           (56) 

(Point 5 becomes the beginning-end point of time on the loop.) The energy term 
due to the free time points in (56) is presented in the formula (45). But since for 

5N =  we have the number  

5 14S =                             (57) 

of the Schrödinger perturbation terms, the remainder of 14 1 13− =  terms 
should be calculated. They come respectively from the following contractions of 
the time points in (56):  

1: 4, 1: 2 : 4, 1: 3 : 4, 1: 2 : 3 : 4,                  (58) 
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2 : 4, 2 : 3 : 4,                         (59) 

3 : 4.                             (60) 

In case of (60) there remain still points 1 and 2 as free. They can contract to-
gether giving a combined contraction  

1: 2 3 : 4.                           (61) 

In fact the presence of point 4 considered alone as free does not stop the con-
tractions of the time points 1, 2, and 3 which are:  

1: 2, 1: 3, 1: 2 : 3 and 2 : 3.                    (62) 

The above contractions (58)-(61) give the following energy terms:  

( )

2
3

3
1 2

3
2 1

3 4
1

1: 4 ,

1: 2 : 4 ,

1: 3 : 4 ,

1: 2 : 3 : 4 ,

E VP V

E E VP V

E E VP V

E VP V

→ −∆

→ ∆ ∆

→ ∆ ∆

→ − ∆

 

( )

( )

2
2

2 3
1

2
1

2 2 2
1

2 : 4 ,

2 : 3 : 4 ,

3 : 4 ,

1: 2 3 : 4 .

E VPVP V

E VPVP V

E VPVPVP V

E VP VP V

→ −∆

→ ∆

→ −∆

→ ∆

                (63) 

The presence of the free points 1, 2, 3 before 4 yields the term  

1,2,3 VPVPVPVPV→                    (45a) 

given already in (45), but contractions listed in (62) provide us with the terms: 

( )

2
1

2
2

23
1

2
1

1: 2 ,

1: 3 ,

1: 2 : 3 ,

2 : 3 .

VP VPVPV E

VP VPV E

VP VPV E

VPVP VPV E

→ − ∆

→ − ∆

→ ∆

→ − ∆

                  (64) 

The first contraction in (58) provides us with a factor having the perturbation 
energy 3E∆  which implies two Schrödinger terms, any of the remainder 11 
contractions in (58)-(62) provide us with one Schrödinger perturbation term, so 
in total we obtain 2 11 13+ =  energy terms which—together with the term in 
(45) or (45a)—complete the calculation of 14 terms entering 5E∆ .  

8. Comparison of the Born-Heisenberg-Jordan (BHJ)  
Perturbation Approach with That Given by Schrödinger  

The BHJ perturbation approach to a quantum system [19] was proposed almost 
simultaneously with that due to Schrödinger [3]. In a review of the quantum 
theory presented by Van der Waerden [20] the author considers the BHJ for-
malism as mathematically equivalent to the Schrödinger’s method. This seems to 
be true only for the fragments of the BHJ calculation. In fact the first step done 
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by BHJ—but absent in the Schrödinger case—is a conversion of the Hamiltonian 
( )ˆ ˆ ˆ,H p q  of a non-degenerate perturbed system into a diagonal matrix form  

( ) ( ) 1
0 0

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ, , ,H p q SH p q S W−= =                     (65) 

so the commutation properties of 0p̂  and 0q̂  as well p̂  and q̂  remain un-
changed. The next step—also absent in the Schrödinger theory—is to undertake 
a principal axes transformation of the Hermitian form given in (66) below into a 
sum of squares:  

( ) * *

,
.k l m m m

k l m
H kl x x W y y=∑ ∑                      (66) 

The aim is to find the solution of the equation  

( ) 0k l
l

Wx H kl x− =∑                        (67) 

for some special nW W=  with the aid of the substitutions  

( ) ( ) ( ) ( ) ( ) ( )0 1 22
kl lH kl W H kl H klδ λ λ= + + +             (68) 

( ) ( ) ( )0 1 22W W W Wλ λ= + + +                   (69) 

and  
( ) ( ) ( )0 1 22

k k k kx x x xλ λ= + + +                    (70) 

This leads to a sequence of results [19]:  
( ) ( ) ( )1 1 ,W H nn=                        (71) 

( ) ( ) ( )
( ) ( )

( )

1 1
2 2

0

,nl ln

l

H H
W H nn

h nlν
′= +∑                  (72) 

and 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )

1 2 2 1 1 1 1
3 3

2
,0 0 0

1 1
1

2 2
0

nl ln nl nl nl lk kn

l l k

nl ln
nn

l

H H H H H H H
W H nn

h nl h nl kn

H H
H

h nl

ν ν ν

ν

+′ ′= + +

′−

∑ ∑

∑
     (73) 

where ( )0ν αβ  is the frequency of transition between the levels α  and β . 
The perturbation expansion of the matrix elements ( )H kl  in (68) is absent 

in the Schrödinger perturbation theory, also expansion (70) is absent there. In 
effect only the term on the right of (71), the second term on the right of (72), 
and two last terms on the right of (73)—all containing the perturbed matrix 
elements of order one—are identical with the results obtained by Schrödinger.  

9. Discussion  

We find that the notion of time—very common in the everyday life and science, 
but not so necessary in mathematics—becomes very helpful in solving the 
Schrödinger perturbation problem for energy. In fact the corresponding energy 
series can be obtained from the combinatorics of the time-point contractions 
entering a circular time scale characteristic for the successive perturbation or-
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ders N. 
We obtain here an example of the “action” of time as an ordering parameter 

which facilitates the calculations—in an agreement with the Leibniz idea of time 
as an arrangement parameter [21] [22]. 

The paper considers the solution of the Schrödinger differential eigenequation 
for energy being basic in the quantum theory. Usually to obtain such solution 
the well-known prescriptions concerning the differential equations have to be 
satisfied. But the Schrödinger’s idea, and that of his followers, was to construct 
the eigenvalues of energy and perturbed eigenfunctions based on the ready solu-
tions of a less complicated eigenequation. In fact such construction—making a 
systematic reference between the perturbed eigenequation and unperturbed 
one—became a very tedious task, especially for large perturbation orders N 
which can be important for the accuracy of the solution. 

The advantage of the applied time scale is that the formulae for the terms of 
the perturbation energy can be calculated almost immediately on the basis of an 
analysis of the results provided by the scale. 
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