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Abstract 
The concept of quasi-periodic property of a function has been introduced by 
Harald Bohr in 1921 and it roughly means that the function comes (qua-
si)-periodically as close as we want on every vertical line to the value taken by 
it at any point belonging to that line and a bounded domain Ω . He proved 
that the functions defined by ordinary Dirichlet series are quasi-periodic in 
their half plane of uniform convergence. We realized that the existence of the 
domain Ω  is not necessary and that the quasi-periodicity is related to the 
denseness property of those functions which we have studied in a previous 
paper. Hence, the purpose of our research was to prove these two facts. We 
succeeded to fulfill this task and more. Namely, we dealt with the qua-
si-periodicity of general Dirichlet series by using geometric tools perfected by 
us in a series of previous projects. The concept has been applied to the whole 
complex plane (not only to the half plane of uniform convergence) for series 
which can be continued to meromorphic functions in that plane. The ques-
tion arise: in what conditions such a continuation is possible? There are 
known examples of Dirichlet series which cannot be continued across the 
convergence line, yet there are no simple conditions under which such a con-
tinuation is possible. We succeeded to find a very natural one. 
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1. Introduction 

The theory of Dirichlet series started at the end of the 19-th Century with works 
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of celebrated mathematicians as Hadamard, Landau, Bohr etc. These series are 
natural generalizations of the Riemann Zeta series. From the beginning 
questions were asked of what are those Dirichlet series which can be continued 
as meromorphic functions in the whole complex plane and satisfy there similar 
properties with those of the Riemann Zeta function, as for example a Riemann 
type of functional equation, similar display of non trivial zeros (the famous 
Riemann Hypothesis) etc. We devoted a lot of studies to these questions by 
using geometric methods. We perfected an idea of Speiser (1934) of studying the 
pre-image of the real axis by functions obtained as meromorphic continuations 
to the whole complex plane of general Dirichlet series. The key result was a way 
to identify the fundamental domains of these functions. These are domains 
represented conformally (hence injectively) by the functions onto the whole 
complex plane with some slits. 

As Ahlfors [1] noticed, this is the most natural way to proceed when studying 
different classes of functions. The results are promising and there are a lot of 
followers mainly in the field of Blaschke products but also in that of Dirichlet 
functions. 

By a general Dirichlet series we understand an expression of the form 

( ),
1

e ,ns
A n

n
s a λζ

∞
−

Λ
=

= ∑                         (1) 

where ( )nA a=  is an arbitrary sequence of complex numbers and 1 2λ λ< <  
is an increasing sequence Λ  of non negative numbers with lim nn

λ
→∞

= ∞ . There 
is no loss of generality by considering only normalized series (1) in which 1 1a =  
and 1 0λ = . It is known [2] that if the series (1) converges for 0 0 0s s itσ= = + , 
then it converges for every s with 0Re s σ> . The number  

( ){ },inf | convergesc Aσ σ ζ σΛ= , when it exists, is called the abscissa of 
convergence of the series (1). When the series does not converge for any s∈  
we denote cσ = +∞  and if it converges for every s we put cσ = −∞ . The line 
Re cs σ=  is called the line of convergence of (1), although there are examples of 
Dirichlet series (see [2]) which do not converge for any s with Re cs σ= . Other 
series converge for all the points of that line, or only for some points. 

When (1) does not converge for 0s = , then (see [2])1 

1

1limsup log 0.
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λ→∞ =
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If (1) converges for 0s = , then 
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1limsup log 0 0.
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λ Λ

→∞ =+
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The abscissa aσ  of absolute convergence of the series (1) is defined in an 
analogous way and it is obvious that c aσ σ−∞ ≤ ≤ ≤ +∞ . For the Riemann Zeta 

 

 

1We followed the tradition of this monograph by using the notation “log” for the principal branch of 
the multivalued function logarithm. Obviously, when the argument is positive, it simply means nat-
ural logarithm. 
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function 1c aσ σ= = , while for the alternate Zeta function 0cσ =  and 1aσ = . 
When cσ < +∞  then ( ),A sζ Λ  converges uniformly on compact sets of the 
half plane Re cs σ>  and ( ),A sζ Λ  is an analytic function in that half plane 
and sometimes it can be continued analytically to the whole complex plane 
except possibly for some poles. We will deal with this problem in Section 3. 
We keep the notation ( ),A sζ Λ  for this extended function and we call it 
Dirichlet function. Since 1 1a =  and 1 0λ =  in the series (1) we have that 

( ),lim 1A it
σ

ζ σΛ→+∞
+ =  and it can be easily seen [3] that this limit is uniform with 

respect to t. In other words, for every 0ε >  there is εσ  such that for εσ σ>  
we have ( ), 1A itζ σ εΛ + − <  for every real t, hence ( ),A sζ Λ  maps the half 
plane ( )Re s εσ>  into the disc 1z ε− < . 

This fact suggests that the series (1) converges uniformly on that half plane. 
Harald Bohr defined the abscissa of uniform convergence of (1) as being the 
infimum uσ  of the abscisas σ  such that (1) converges uniformly for 

( )Re s σ> . It has been found that c u aσ σ σ≥ ≥  and every value between cσ  
and aσ  can be taken by uσ  for particular series (1). 

Studying Dirichlet L-functions ( )f s  generated by ordinary Dirichlet series 
(the case where logn nλ = ) Harald Bohr (see [4]) discovered that they display 
on vertical lines a quasi-periodic behavior, namely for every bounded domain 
Ω  of uniform convergence of the series and for every 0ε >  there is a 
sequence ( )nτ , 

( )
2 1 1 2

1

0
liminf 0,

limsup

n nn
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n n

τ τ τ τ
τ τ

τ

− −

+→±∞

→±∞

< < < < < <

− >

< ∞

 

                      (4) 

such that for every s∈Ω  we have ( ) ( )nf s i f sτ ε+ − < . 
This roughly means that the function comes (quasi)-periodically on a vertical 
line as close as we want to the value of it at any point of Ω  belonging to that 
line. 

We study in this paper the quasi-periodic property of functions defined by 
general Dirichlet series and show that this is a geometric property of the image 
by ( ),A sζ Λ  of vertical lines related to the fundamental domains of these 
functions. These fundamental domains are obtained as shown in [3] and [5]. 

2. The Quasi-Periodicity on Vertical Lines of General 
Dirichlet Series 

Let us give first to the concept of quasi-periodicity a slightly different definition. 
We will say that ( )f s  is quasi-periodic on a line 0Re s σ=  if for every 0ε >  
and for every 0s itσ= +  a sequence (4) exists such that ( ) ( )nf s i f sτ ε+ − < . 
We notice that this definition is no more attached to bounded domains, hence it 
appears less restrictive than that given by Bohr, yet the inequality refers only to 
the points of a given vertical line and not to the points of any vertical line 
intersecting the domain Ω , which is a restriction. This new definition serves 
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better the purpose of studying the denseness properties of Dirichlet functions. 
Theorem 1 If nλ  with 2,3,n =   are linearly independent in the field of 
rational numbers then the series (1) is quasi-periodic on every vertical line of the 
half plane uRes σ> . 

Proof Let s be arbitrary with 0Re us σ σ= >  and divide ( ),A sζ Λ  and 
( ),A s iζ τΛ +  into the sum nA  of the first n terms and the rest nR . Since the 

series converges uniformly on 0Re s σ= , when 0ε >  is given, there is a rank n  

such that ( )
3nR s ε

<  and ( )
3nR s i ε

τ+ <  for every real number τ . On  

the other hand 

( ) ( ) ( )
1

e e 1k k
n

s i
n n k

k
A s i A s a λ λ ττ − −

=

+ − = −∑              (5) 

By Diophantine approximation, a sequence (4) exists such that for every mτ  
of that sequence e k miλ τ−  is as close to 1 on the unit circle as we whish. Since the  

set { }e ks
ka λ−  is bounded, we have ( ) ( )

3n nA s i A s ε
τ+ − <  for every mτ τ=  

and then ( ) ( ), ,A As i sζ τ ζ εΛ Λ+ − <  for every mτ τ= , which proves the  

theorem. 
Remark For ordinary Dirichlet series we have logn nλ = , for 2,3,n =   

and these are linearly independent in the field of rational numbers, therefore 
these series are quasi-periodic on every vertical line from the half plane of 
convergence. 

It is known (see [5]) that for every series (1) which can be continued 
analytically to a the whole complex plane except possibly for a simple pole at 

1s = , the complex plane is divided into infinitely many horizontal strips 
,kS k∈  bounded by components of the pre-image of the real axis which are 

mapped bijectively by ( ),A sζ Λ  onto the interval ( )1,∞ . These are unbounded 
curves k′Γ  such that for kitσ ′+ ∈Γ  we have ( ),lim 1A it

σ
ζ σΛ→+∞

+ =  and no 

k′Γ  can be contained in a right half plane. If kS , 0k ≠  contains kj  zeros of 
( ),A sζ Λ  counted with multiplicities, then it will contain 1kj −  zeros of 
( ),A sζ Λ′ . The strip 0S  can contain infinitely many zeros of such a function. 

Every strip , 0kS k ≠  containing kj  zeros counted with multiplicities can be 
divided into kj  unbounded subsets whose interiors ,k jΩ  are fundamental 
domains of ( ),A sζ Λ , i.e. they are mapped conformally by ( ),A sζ Λ  onto the 
whole complex plane with some slits. The strip 0S  can contain infinitely many 
fundamental domains. 

Every fundamental domain contains either a simple zero or no zero and in 
this last case a double zero belongs to the boundary of two adjacent fundamental 
domains. The zeros of ( ),A sζ Λ′  are all simple zeros (see [6]) and are all located 
on the boundaries of the fundamental domains. 

Figure 1 illustrates the pre-image of the real axis for t between −20 and 20 by 
two Dirichlet L-functions defined by Dirichlet characters modulo 13 studied in 
[3], the first one by a complex character and the second by a real one. On both 
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Figure 1. The pre-image of the real axis by two Dirichlet L-functions. 

 
of them the strips 0S , , 2S+ −  and , 3S+ −  can be seen, as well as the zeros 
belonging to these strips. For any Dirichlet function ( ),A sζ Λ  every vertical line 
which does not pass through the pole is divided by the boundaries of the 
fundamental domains ,k jΩ  into finite intervals which are mapped bijectively by 

( ),A sζ Λ  onto Jordan arcs ,k jγ . 
The image of the whole line by ( ),A sζ Λ  is therefore the union of infinitely 

many Jordan arcs ,k jγ . If two domains ,k jΩ  are adjacent, then the ends of the 
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corresponding ,k jγ  which are images of the same point of the vertical line will 
obviously coincide. Moreover, different arcs ,k jγ  can have some other common 
points. 

The image of an interval determined by , 0kS k ≠  is a bounded curve starting 
and ending on ( )0,∞  and having a finite number of intersections with the real 
axis and also a finite number of self intersection points. These last points 
represent the intersections of different arcs ,k jγ  as well as points corresponding 
to zeros of ( ),A sζ Λ′ . At the points which are zeros of ( ),A sζ Λ′  the corresponding 
arcs are tangent to each other (see [7]). 

When the analytic continuation to the whole complex plane of the series (1) is 
possible the arcs ,k jγ  are defined for any vertical line, not only for the lines 
included in the half plane of convergence of this series. Then, expressing the 
quasi-periodic property in terms of these arcs, we can extend this concept to any 
vertical line. The extension can be performed by noticing that if ( ),A sζ Λ  is 
quasi-periodic on a vertical line 0Re s σ=  from the half plane of uniform 
convergence of (1) then for every 0ε >  and every s with 0Re us σ σ= >  there 
is a sequence (4) such that 

( ) ( ), 0 ,A Ait sζ σ ζ εΛ Λ+ − <                 (6) 

for 0mt τ− >  small enough where mτ  is any term of the sequence (4). This 
means that to every term mτ  of this sequence corresponds an arc ,k jγ  such 
that a point ( ), 0A itζ σΛ +  on that arc is located at a distance less than ε  of 

( ),A sζ Λ  for mt τ−  small enough. Then we can say that ( ),A sζ Λ  is 
quasi-periodic on the arbitrary line 0Re s σ=  (not necessarily belonging to the 
half plane of uniform convergence of this series) if for every s with 0Re s σ=  and 
every 0ε >  there are infinitely many fundamental domains ,k jΩ  of ( ),A sζ Λ  
such that the inequality (6) is satisfied for some t with ( ), 0 ,A k jitζ σ γΛ + ∈ .  

3. Analytic Continuation of General Dirichlet Series 

It is known that some functions defined by Dirichlet series cannot be extended 
across the line Re cs σ=  since all the points of the abscissa of convergence are 
singular points. Examples of such series can be easily found as seen in [8] and 
[3]. On the other hand all the Dirichlet L-functions are analytic continuations to 
the whole complex plane, except for some poles of particular Dirichlet series. 
These continuations have been performed by using the Riemann technique of 
contour integration. In that follow, we will show that a similar technique is 
applicable also to general Dirichlet series. 

We recall that the Gamma function can be expressed as 

( ) 1
0

e ds xs x x
∞ − −Γ = ∫                        (7) 

and this is a meromorphic function in the complex plane.  
On replacing x by e n xλ  in (7), we obtain 
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( )
1 e

0

1e e d ,nns s xx x
s

λλ ∞− − −=
Γ ∫  

which multiplied by na  and added gives 

( ) ( ) ( )1
, ,e0

1 d .s
A A

s x x x
s

ζ ζ Λ

∞ −
Λ =

Γ ∫                   (8) 

Here we have denoted by eΛ  the sequence 1 2e ,e ,λ λ
  and we have 

interchanged the integration and the summation, which is allowed, since the 
integrals of the terms are absolutely convergent at both ends. We notice that 
Hardy and Riesz [2] have found (in Theorem 11) a similar formula to (8) in the 
case of a Dirichlet series convergent for Re 0s > , yet they did not use it to 
extend the function ( ),A sζ Λ  across the imaginary axis. 

For the Riemann Zeta function we have 1cσ =  (see [1]) and after 
summation under integral in (8) one obtains 

( ) ( )
1

0

1 d
e 1

s

x

xs x
s

ζ
−

∞
=
Γ −∫                          (9) 

Riemann has shown that the integral from (9) is equivalent to a contour 
integral of ( )1 1es zz − −  on a curve C formed with a part of a circle of radius r 
centered at the origin and two half lines parallel to the real axis ([1], p. 216). The 
integrand is well defined on the respective curve and as 0r →  the integral 
approaches that in (9). We cannot do the same thing with (8) as long as we don't 
make sure that the circle is in the half plane of convergence of ( ),eA

sζ Λ . There 
is however a way to circumvent this difficulty by noticing that: 

Theorem 2 If the series (1) has a finite abscissa of convergence cσ , then the 
abscissa of convergence of ( ),eA

sζ Λ  is 0. 
Proof Suppose that 0cσ ≥ . Then 

1

1limsup log
n

c k
n kn

aσ
λ→∞ =

= ∑  

and the abscissa of convergence of ( ),eA
sζ Λ  is 

1 1

1 1limsup log limsup log limsup 0.
e e en n n

n n
n n

k k c
n n nk kn

a aλ λ λ

λ λ
σ

λ→∞ →∞ →∞= =

= = =∑ ∑  

If 0cσ < , then the abscissa of convergence of ( ),eA
sζ Λ , which should be 

also less than or equal to zero, is given by the formula 

( )

( )

1

1 1

,e
1

1 1
,
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1limsup log 0
e

1limsup log 0 limsup 0.
e e

n
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kAn k
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λ
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λ λ
ζ σ

λ

Λ
+

+ +

→∞ =

+ +
Λ

→∞ →∞=+

−

= − = =

∑

∑
 

Consequently, the half plane of convergence of ( ),eA
sζ Λ  is the right half plane. 

Once we know this half plane of convergence, we can try to use the Riemann 
technique, but taking care to choose the integration curve in the right half plane. 
Fortunately such a choice is possible and we can prove: 
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Theorem 3 If ( ),eA
sζ Λ  has only isolated singularities on the imaginary axis, 

then the series (1) can be continued across the line Re cs σ=  to a 
meromorphic function in the whole complex plane. 

Proof Let us form a contour rγ  with a half circle rC , where 

: e , π 2 π 2i
rC z r θ θ= − ≤ ≤  

and the half lines Im z r=  with Re 0z ≥ , respectively Im z r= −  with 
Re 0z ≥ , as seen in Figure 2. 

Since the singularities of ( ),eA
sζ Λ  are isolated, we can chose r such that the 

half circle rC  does not contain anyone of them. We study the line integral  

( ) ( )1
, d

r

s
Az z z

γ
ζ−

Λ−∫ . Let us notice first that ( ) 1sz −−  is unambiguously defined  

as ( ) ( )1 loge s z− − . The integrand is a continuous function on rγ  and therefore it is 
bounded on rC , since rC  is a compact set. If Rγ  is the blue contour, rγ  
the red one and γ  the green contour, then 

( ) ( ) ( ) ( )1 1
, ,d d

r R

s s
A Az z z z z z

γ γ
ζ ζ− −

Λ Λ− = −∫ ∫  

as both of these integrals are obviously equal to ( ) ( )1
, ds

Az z z
γ

ζ−
Λ−∫ , therefore  

the integral on rγ  does not really depend on r. 
We can take r such that no singular point of ( ),eA

sζ Λ  except possible the  

origin exits on the interval of the imaginary axis between ir−  and ir . Now, we 
can let 0r →  and show that the integral on rC  tends to zero. Indeed, with 

eiz r θ=  we have ( ) ( )( )1 π 11es i ssz r θ− + −−− =  and d e diz ir θ θ= , thus 

( ) ( ) ( ) ( )π 21 π 1
, ,eπ 2

d e e e d .
r

s i s s i s i
A AC

z z z i r rθ θζ ζ θΛ

− −
Λ −

− =∫ ∫  

Since the function under the integral is bounded between π 2−  and π 2 , 
the integral is finite and the whole expression tends to zero as 0r → , now, we 
can use the argument from [1], page 214 to infer that (8) is equivalent to 

( ) ( ) ( ) ( )1
, ,e

1
d

2π r

s
A A

s
s z z z

i γ
ζ ζ Λ

−
Λ

Γ −
= − −∫                 (10) 

 

 
Figure 2. The integrals on rγ  and Rγ  are equal. 
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The right hand side in (10) is defined for every complex value s and represents 
a meromorphic function in the whole complex plane. 

4. Quasi-Periodicity and Denseness Property 

The connection between the quasi-periodic property and the denseness property 
of the image of vertical lines by Dirichlet functions appears clearly when we 
interpret the first one in terms of the arcs ,k jγ . Indeed, we can prove the 
following: 

Theorem 4 The necessary and sufficient condition for ( ),A sζ Λ  to be 
quasi-periodic on the line 0Re s σ=  is that for for every 0ε >  and every 
point s on that line infinitely many fundamental domains ,k jΩ  exist such that 
the corresponding arcs ,k jγ  intersect the disc ( ),Az sζ εΛ− < . 

Proof The condition is necessary, since if for every 0ε >  and every s on the 
line 0Re s σ=  a sequence (4) exists with the property that  

( ) ( ), ,A n As i sζ τ ζ εΛ Λ+ − < , then the number of domains ,k jΩ  containing 

points ns iτ+  must be infinite. Indeed, the inequality ( )1liminf 0n nn
τ τ+→±∞

− >   

implies that every ,k jΩ  can contain only a finite number of points ns iτ+ . 
Then there must be infinitely many arcs ,k jγ  intersecting the disc 

( ),Az sζ εΛ− < . Vice versa, if infinitely many such arcs exist, then choosing a 
point ns iτ+  belonging to that disc on each one of them, the sequence ( )nτ  
satisfies obviously the conditions (4). 

Hence, if ( ),A sζ Λ  is quasi-periodic on the line 0Re s σ=  then any small 
neighborhood V of every point ( ),A sζ Λ  with 0Re s σ=  intersects infinitely 
many arcs ,k jγ , therefore the image of 0Re s σ=  is dense in (at least a part of) 
V. Indeed, there is an arc 

0 0,k jγ  passing through ( ),A sζ Λ  and as close as we 
want of this arc pass infinitely many arcs ,k jγ , which are parts of the image of 
the same line and every one of these arcs has the same property, hence the 
denseness of the image of 0Re s σ=  in the part of V around this arc is obvious. 
Then we can say that the quasi-periodic property of ( ),A sζ Λ  on the line 

0Re s σ=  implies the denseness in itself of the image of that line by ( ),A sζ Λ . 
Indeed, every point of 

0 0,k jγ  is either an intersection point with another arc 

,k jγ  or a tangent point with such an arc or a limit point of arcs ,k jγ  in the 
sense that there is a sequence of such arcs whose distance to that point tends to 
zero. 

No two arcs ,k jγ  and ,k jγ ′ ′  can overlap partially. Indeed, in the contrary case, 
we would have that the conformal mapping of ,k jΩ  onto ,k j′ ′Ω  given by  

( )
,

1

k j
f f s

′ ′

−

Ω
 , where ( ) ( ),Af s sζ Λ= , maps an interval of 0Re s σ=  onto  

another interval of the same line, which would be possible only if ( )f s  were a 
linear transformation and this is not the case. Hence the image of the line 

0Re s σ=  by ( ),A sζ Λ  cannot have arcs towards which no other arcs 
accumulate. Its closure is necessarily a two dimensional set whose boundary is 
formed by arcs ,k jγ  or limit points of such arcs. 
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In order to study the image of vertical lines by the series (1) the condition that 
the exponents nλ  are linearly independent in the field of rational numbers has 
been assumed in [9]. As we suppose that 1 0λ = , we cannot use the results in [9]  

for the series (1), yet we can study the series ( )
2

e ns
n

n
f s a λ

∞
−

=

= ∑  and translate the  

results obtained to ( ) ( ), 1A s f sζ Λ = + . By [9], under the condition of linear 
independence of the exponents of ( )f s , the closure of the image by ( )f s  of 
the line 0Re s σ= , where 0σ  is greater than the abscissa of absolute 
convergence of the series (1) (which is obviously the same as that of ( )f s ) is 
either a ring domain r z R≤ ≤  or a disc r z R≤ ≤ , according to the case  

where the sequence { }0e , 2n
na nλ σ− ≥  has a leading (vorhanden) term or not.  

Consequently, under the same condition, this image by ( ),A sζ Λ  will be a ring 
domain 1r z R≤ − ≤ , respectively a disc 1z R− ≤ . We say that the numeric  

series 
1

n
n

∞

=
∑  has the leading term 

0n  if 
0

0n n
n n

ρ ≠

> ∑


  . The previous numbers R 

and r are respectively 
2

n
n

R
∞

=

= ∑  and 
0

2 nr R= − , where 0e n
n na λ σ−= . 

The results of Bohr are in agreement with the fact that the function (1) tends 
uniformly with respect to t to 1 as σ → +∞ . Indeed, for 0σ σ> , where 0σ  is  

big enough, if there is a leading term 
1nρ  of the series 

2
e n

n
n

R a λ σ
∞

−

=

= ∑  then  

the image by ( ),A sζ Λ  of the line 0Re ,s σ σ σ= ≥  is included in the ring  
domain ( ),1 1Az R ζ σΛ− ≤ = −  and it is a dense set in this domain. Here we  

have denoted by A  the sequence ( )na . As 0σ  gets smaller, some other 
term 

2nρ  can become leading term and then the image by ( ),A sζ Λ  of the line  

0Re s σ=  will be included in the ring domain 
2nz Rρ− ≤ . If no leading term  

appears, then the respective ring domain will evolve into a disc. At the limit, as 

0 aσ σ=  we have R = ∞  and the image of the line Re as σ=  is a dense set 
either in the whole complex plane or outside of an open disc. Hence we can 
state: 

Theorem 5 For any Dirichlet function ( ),A sζ Λ  the image of the line 

0Re s σ= , 0 aσ σ>  is a dense set in either a ring domain 1r z R≤ − ≤  or a  

disc 1z R− ≤  according to the fact that ( ) 0
0,

2
1 e n

nA
n

R a λ σζ σ
∞

−
Λ

=

= − =∑  has a  

leading term or not. When 0 aσ σ=  we have R = ∞  and these domains 
become the exterior of an open disc or respectively the whole complex plane. 

For the Riemann series, the term 1
2σ  is leading term for 

2

1
n nσ

∞

=
∑  as long as 

( ) 1

11
2σζ σ −< + . Let us denote by σ∗  the solution of the equation 

( ) 1

11
2σζ σ −= + . By inspecting a table of values of ( )ζ σ  we noticed that  

2 4σ∗< < , hence for 01 2σ< ≤  the image by ( )sζ  of the line Re as σ=  is 
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included in the disc ( )01 1z R ζ σ− ≤ = −  and it is a dense set in this disc. For  

0 4σ ≥ , if we denote 
0 1

1
2

r Rσ −= −  then this image is included in the ring  

domain 1r z R≤ − ≤ . 

5. Conclusion 

A Dirichlet function is defined by an arbitrary sequence of complex numbers 
(the coefficients) and a sequence of increasing positive numbers (the exponents), 
otherwise also arbitrary. It is intriguing how two such arbitrariness can involve a 
strong property as that of quasi-periodicity. We have shown that this is in fact a 
geometric property related to the fundamental domains of the respective 
function. The domains are infinite strips which are mapped conformally by the 
function onto the whole complex plane with some slits. A vertical line intersects 
all those strips and the values of the function on each one of the segments 
obtained come quasi-periodically close to every given value on that line as 
illustrated in Figure 3 and Figure 4. The Diophantian approximation plays here 
 

 

Figure 3. The image by ( )sζ  of ( )Re 4s =  for 1000 1750t< < . 
 

 

Figure 4. The image by ( )sζ  of ( )Re 1.5s = −  for 0 500t≤ ≤ . 
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the same role as in the denseness property and this is the reason why the two 
properties come simultaneously. We brought in this paper some light into these 
two complex phenomena. 
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