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Abstract

In this paper, we study a stochastic epidemic model in Meta-population set-
ting. The stochastic model is obtained from the deterministic model by set up
random perturbations about the endemic equilibrium state. The outcome of
random perturbations on the stability actions of endemic equilibrium is dis-
cussed. Stability of the two equilibriums is studied using the Lyapunov func-
tion.
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1. Introduction

Modeling of infectious diseases with stochastic differential equation (SDE) has
increased foundation lately due to its extensive variety of applications and its
aptitude to reflect actuality in epidemiology [1]. The diseases outbreaks in a
population of susceptibles rationally go behind stochastic processes [2].
Stochastic process occurs naturally in lots of physical applications where
randomness is to be incorporated in the mathematical model [3] [4]. In recent
years, main studies on stochastic model that have been published by researchers
have recognized the growing significance of study the stability of stochastic
positive equilibrium, as well as the global stability of the endemic equilibrium [5]
[6] [7]. In this paper we approached by using deterministic and stochastic model.
Briefly deterministic models are model processes which are often described by
differential equations, with a unique input leading to a unique output for
well-defined linear models and with multiple outputs possible for non-linear

models. Throughout this paper, let (Q,7,P) be a complete probability space
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with a filtration (]:, )t p satisfying the usual conditions (ie, it is right
continuous and increasing while 7, contains all P -null sets).

Considering the general n dimensional stochastic differential equation
dx(t)=f(x(t),t)dt +p(x(t),1)dBt
on t>0 with initial value x(0)=ux,, the solution is denoted by x(z,x,).
Assume that f(0,£/)=0 and ¢(0,£/)=0 forall #>0,so (1.0) has the solution

x(2)=0. This solution is called the trivial solution.
Definition 1.1. The trivial solution x(7)=0 of (1.0) is said to be as follows:

1) stable in probability if for all €>0,
x(t,x,) > eU =0

lim P (sup

=0 20
2) asymptotically stable if it is stable in probability and, moreover,

lim P(limx(r,xo) :0) =1

xp—0 t—0

3) asymptotically stable in the large if it is stable in probability and, moreover,
forall x,eR
P(}E‘gx(t,xo) = O) =1
In this paper, we consider the epidemic model in Meta-population setting.

From the proposed schematics of the compartment model shown in [8], we will
extract a metapopulation model for HIV dynamics among the youth coupled

with awareness/education Ze, we extended the single patch disease model to

include multiple patches (see Figure 1).

Q- A 1 -m)A A -m)A 1 - A
i | Svur Sveri | Syemi| }
;: Hi \\\ /" Hi '5 W E:
Bus N By i
: SN H Pa
: B Y Bui : :
P — Pi e
“ap) I H
u o yum, v lyem,i ny
T 4
§; 6 a;
Tyg,;
T['li nli

11'11
Tl'li \l/ 1'
Hi 81,

Figure 1. A schematic of the metapopulation model. A schematic of the metapopulation
model for HIV transmission in the youths coupled with awareness/education in each

patch , 7=1, -, n.
Advances in Pure Mathematics

DOI: 10.4236/apm.2018.85030 517


https://doi.org/10.4236/apm.2018.85030

D. P. Kelkile

Differential Equation of the Model

dSyr J i

ﬂ:(l—l‘[)l ,B]U Lo Syor s ,3“ T Syur _(/)i +1ui)SYUF,[
dr Nyonrs YEM i

dSyer, Ly,  Lven

— = (1 - H) A+ pSyyr; = :31% —— Sy = B Syeri — HiSver
dr Nyoars Nygas i

ds ; I i ! i
;UM" = (1 — H)ﬂ - ﬂZU‘ NYUF’ SYUM,[ - ﬁZEI — SYUMJ - (,0, + 'u")SYUM"

YUF i YEF i

Doy _ (1 H)l +PiSyuns i :32 i s Syewm i ﬁz; e Syerr i = HiSyew i
dr Nyor, Nygr,;

dly, v Ly v Ly

—H/7~+ﬂ SYUF,:’ + Py SYEF,i _(pi + 4 +5z’)IYUM,z‘

dt YUM i YUM i

dIYF M

) I .

_ Ly £ Lyem.i
=IIA+p1 YUM i +ﬂ11 SYUF,i +ﬂl,i SYEF,i _(ai + 4 +5i)IYEM,i

YEM.i YEM i

dl Lygr, i
—EE T2+ ,0; T ﬂzi' S Syom i ﬂz i YEF Syem i — (ai + 44+, ) Lygr,
YEF.i YEF.i
dI YUFI YUFI
=1+ ﬂzl Syon ﬁzl Syem s _(pz T4 +5i)IYUF,i
Ny, YUF.i
d7,,
a =alyp; +aly; - (/Ji + 51,f)TY

States variables. S, susceptible children, S,,., susceptible uneducated
female youth, S, susceptible educated female youth, S, , susceptible
uneducated male youth, Sy, , susceptible educated male youth, /., infected
children(children who were infected either during pregnancy or at childbirth),
I,y > infected uneducated female youth, Iy, infected educated female youth,
I,y » infected uneducated male youth, Iy, , infected educated male youth,
and T, , antiretroviral therapy treatment among the youths. Parameters. u,
death rate of the youth and children, &, disease induced rate in the youth and
children before ART, &,, disease induced deaths in the youth and children after
ART, A, birth rate, @, rate of vertical transmission, [, probability a
susceptible female youth gets infected by infected male youth, f,, probability a
susceptible male youth gets infected by infected female youth, ¢,, rate at which
children grow to become uneducated female youth, ¢,, rate at which children
grow to become educated female youths, ¢,, rate at which children grow to
become uneducated male youths, ¢,, rate at which children grow to become
educated male youth, p, awareness/education rate, «, rate at which infected
youth take the ART. The solid lines represent movement between classes and the
dashed lines represent rate at which a susceptible individual moves in to infected
class.

The model answers one important underlying research subjects; the
determination of the existence of the threshold parameter which hints on the
spreading or dying out of an invading epidemic into a population of susceptible.

In this research article, we first study the positivity and boundedness of the
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system (1.0). The basic reproduction ratio is determined. Applying the
hypothetical theorem of the Lyapunov functional, we find out the global stability
of the two equilibria for system (1.0). We extend our stability analysis to the
stochastic system (5.0), which is obtained by random perturbation of the
deterministic system (1.0) and find the stability of its positive equilibrium.
Finally, numerical examples which shows the dynamics of systems (1.0) and (5.0)

are given, which gives the explicit difference in the dynamics of the models.

2. Basic Properties of the Model

In this section, the basic properties of model system (1.1) which are useful in the
proofs of stability are studied. These are the invariant region and positivity of
solutions. The former describes the region in which the solutions of system (1.1)
makes biological sense while the latter describes non-negativity of solutions of
system (1.1). The model under consideration monitors a human population and
as such, we need to have that all the parameters and the variables of the model

are positive for all 7>0.

2.1. Positivity of Solutions

The theory of ordinary differential equations requires that, for every set of initial
conditions
(SYUF,[O > SYEF,:‘O S Syum do? SYEM,[O Ayont iy > Lvent iy > Lver iy s Lyor g 1, ) the state variables
(SYUF,i (t), SYEF,i (t)’SYUM,i (t)’SYEM,i (t)’IYUM,i (t)’IYEM,i (t)ﬂlYEF,i (t)ﬁlYUF,i (I)rz (t))
of the solution must remain non-negative.

Proposition 2.1 Let the initial data be
{(Sc,i >0, SYUFJ > O’SYEF,I' >0, SYUM,i >0, SYEM,i >0, IYUM,:‘ >0,

Lyppgs > 0,0y > 0,1y >0,7,) 20} € Q.

Then, the solution set

{(SYUF,I' (t)’SYEF,I' (l)’SYUM,i (t)’SYEM,i (t)’IYUM,i (l)’]YEM,i (t)’IYEF,i (t)’[YUF,i (t)’T; (t))}
of system (1.1) is positive for all #>0

I, . S
Proof. Let a=f,—"~ y=pf 2L From the first equation of model
YUM, i YEM i

system (1.1),

YUF i
dr

= (1 —1‘[)1 =Sy, ~ VSyuri (pi + /ui)SYUF,i

That is,
dSy e
%2_1_[/1_(“4'7/4':01' +/u1)SYUF,t
Integrating (2.0) by separation of variables gives

ds
?Z—I(m+(a+7+p,- +14) Sy, ) dt

DOI: 10.4236/apm.2018.85030

519 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2018.85030

D. P. Kelkile

S(t) 2 S(0)e_j(nm(“”*"i“‘i)smﬂi)d’ >0

This proves that §(7)>0 for all #>0. Similarly, it can be shown that the
remaining variables of system (1.1) are also positive V¢>0.
Remark 2.1. ¢ >0 forall keR.

2.2. Invariant Region

Note that

dy,
d—t’§4/1i — 4N, _51,1'7; <44 - N,

We now apply Birkhoff and Rotas theorem on differential inequality (2.1). By

separation of variables of differential inequality (2.1), we get

dn,
—L—<dr
4/11'_/’!1'Ni

Integrating (2.2) on both sides gives,

dy; -1
————<|dt=—1In(44 — N,
I4ﬂl_ﬂ1Nl<I t /,l n( 1 Ml l)+c

ln(4ﬂi - ,UiN,-) > —,u(l + c)
Therefore,
42, — N, > Ae
where A is a constant. Now, applying the initial condition N (0)=N,, in (2.3),
we get
A=44 — N,
Substituting (2.4) into (2.3) gives
44, = N, 242, — uNye
Making N the subject in (2.5) we have,
N Sﬂ_[‘uﬁ' _luiNOi je—m
u u

As t— o in (2.6) above, the population size NV, approaches
0<N< ﬁ =>N-> 4—/1’
H H

Therefore, the feasible solutions set of system (2.7) enters the region

4
Q= {(SYUF,N SYEF,i’ SYUM,i9 SYEM,iv IYUM,i’ IYEM,i’ IYEF,i’ IYUF,is T ) € RE N, < 7}

j’Oi

7,

dNv
In this case, whenever N > , then — <0 which means that
t

. 42,
N ——" . On the other hand, whenever N, <—2 every solution with initial
H H;

condition in R’ remains in that region for #>0. Thus, the region is
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positively-invariant.

3. Basic Reproduction Number

The basic reproduction ratio ( R, ) is defined as an infections originating from an
infected individual that invades a population originally of susceptible
individuals.

The above system can be represented in matrix form as 7- = fT +vI where £
is the matrix of the infection rates and vis the matrix of the transition rates.

The spectral radius of the Metzler Matrix, p(—F v ) , is defined as the largest
eigenvalue of the Metzler Matrix. Thus:

p(-Fr)= ‘(—FV'I)—M‘

ﬂzUl (NYEM,i + NYUM,i)

R =
1 (pi+ﬂi+5i)NYUF,i
R - ﬁlEx (NYEF,i + NYUF,i)
’ (a[ + 4 +5i)NYEM,[
R - ﬁzE, (NYEM,i +NYUM,1‘)
’ (ai +/ui+5i)NYEF,i
R = ﬂll{ (NYEF,i +NYUF,i)
=

(pi+lui+é‘i)NYUMj

If R;<1 for;j=1,2,3,4,then each infectious individual in Sub-Population
j infects on average less than one other person and the disease is likely to die out
Otherwise, If R,;>1 for j =1, 2, 3, 4, then each infectious individual in
Sub-Population j infects on average more than one other person; the infection
could therefore establish itself in the population and become endemic. An SIR
epidemic model, where the presence or absence of an epidemic wave is

characterized by the value of R,;.

4. The Global Stability of the Endemic Equilibrium

In this part, we analyse the global stability of the endemic equilibrium point E~
by construction a appropriate Lyapunov function. For simplicity, we consider
the reduced model system (6) to prove for global stability. We use the come up
to of [8] as it is used for several complicated epidemiological models. We

consider the Lyapunov function of the form
L=k (PP in(R))

where &, >0 (fori=1, 2, -, 6 is a properly chosen positive constant in the
given region P. is a population of compartment 7 and P" is the equilibrium

level. So we define the Lyapunov function as
L([L"IYUM ’IYEM ’IYEF’IYUF’T)
=k (Il - 1n(11))+k2 (]YUM ~ Iy In (Zyg ))
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+k3 (IYEM _I;EM ln(IYEM ))+k4 (IYEF _I;EF ln(IYEF ))
+ ks (I = Iy (1)) + g (T =T" In(T))
The time derivative of L is

(;L k{ j*j%_’_kz[l_l;UMJd[YUM+k3(1_I;EMJdIYEM
t o) dt

Ly, ) dt Ly, ) dt

+k l—I:i —d[y”+k I—I;UF dIYUF+k l—T—* ar
Y P B T R ad L T

YUF dt

I*
=k [ _I_Cj(ai/li _((/71,i Tt t ¢4,i)lc,i _(/“i + é;)[C,i)
c
I, i
+k, (1_[3:}[("3,]0; "":BU NYUM (NYUF,i _IYUF,i)

YUM i

+,BU NYUM: (NYEF,i _IYEF,i)_('Di + 4 +(SI-)IYUM,I}
YUM i

I, Lypy i
+k3 [1_ IYEM ][%,;Ic,i +10i1YUM,i +ﬂ1€' = (NYUF,i _IYUFI)
YEM

YEM ,i

I,
+:Bfi — (NYEF,i _IYEF,i)_(ai T4, +5z’)IYEM,iJ
NYEM,i

I, :
+k, (1 = J[(Pzz]m + ,D, +1821 e (N -1
Lyg

YUM i YUM.i)
Nygr
I,...
£ dyer,
+ﬂ2,i N (NYEM,i _IYEM,i>_(ai + 4, +5i)IYEF,i
YEF i

I, Lr
+k; (1-&} o, + Bl (NYUM,i_I
IYUF N

YUM i )
YUF i

1 i
+132U, NYUF’ (NYEM,i _IYEM,i)_(pi + 4 +5i)[YUF,iJ
YUF i

+k (1 _T?](ailYEM,i +a e — (/Ji + §l,i)TY,i)

At an endemic equilibrium point E~ we have

Hiﬂ’i:(¢l,i+¢2,i+¢3,i+¢4,i)1 ( +§) C,iv

YUM i *
pi+lui+6i_ (Psz Ci ﬂlz (NYUF,i_IYUF,i)
YUMt YUMt
1311 (NYEFz IYEF,[) )
NYUM,i
5 = 1 I £ Lyeu I
ot +o,= Pyilc; + P YUM1+1811 (NYUF,i_ YUF,i)
IYEM J YEM.i
E I;EM,:’ N I
+ﬁ1,i ( YEF;i — YEF,i) >
Ny
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*

1 I l *
a+p+0,=—— (¢211C1+p1 YUFz+ﬂ21 Sl (NYUM,i_IYUM,i)

YEF i YEF i

X
,3 I YEF i I
2, YEM,i YEM i ) |

Nygr;
! oo Dy .
Pt +0,=— o de, + 5, (NYUM,i _[YUM,i)
YUF i YUF i
I;UFI *
ﬂz; N (NYEM,i - IYEM,i )J
YUF ,i
1 . "
M+ 0y, = T (ailYEM,[ + a[IYEF,i)
Y.

Therefore,

=k [1 _j_CJ(((Du 2R Vi (04,[)12,1' +(1ui + 51)[21 _((Pl,i R 2T ST (04,,')[C

C

YUM YUM i

Lo Lyngs
_(ﬂi—i_é‘i) )+k( 7 ][¢3!1C1+ 1Ut]vYU—M(NYUF,i_[YUF,i)

L ! .
[,j' — (NYEF,i_IYEF,l) (¢311Cl+ lli NYUMI (NYUFJ_IYUF"')

Li
Nyow i YUM i
L+ . Lo s I
+ ,Ble ﬂ(NYEF,i - IYEF,i) iU—M +k, [1 — \](¢4,ilc,i + Py
Nyow i Lyom Ly
I l‘ l * *
+ ﬂlEz NYEM (NYUF,i “Lyyr; ) ﬂll NYEM (NYEF,i - IYEF,i ) - (%,ilc,f + piIYUM,i
YEM i YEM. i
Iy i I, i * Lygy
+ ﬂIEz - (NYUF,i YUF i ) ﬂl J — (NYEF,i —Lyer; ) ZEM’
Nye Nyew Ly,

I y
+k4 [I_IYEFJ[¢211CI +pz YUz +:lei' o (NYUM,i _IYUM,i)

YEF YEF i

*

I YEF ,i * * I YEF i *
+ﬁ2E,i N (NYEM,i _IYEM,i)_ ¢2,ilc,i +pi[yUF,i +ﬂ2E,i N. (NYUM,i _IYUM,i)
YEF i

YEF i

I;EF,[ * Lyer I
+ ZE,i N (NYEM,i - IYEM,i) I*_ +hs|1- IYUF o de,
YEF i YEF i YUF

U “YUF,i YUFz
+ﬂ,- (NYUM,i YUMz) :Bzz N (NYEM,i _IYEM,i)
YUF i YUF i

. 1* i * i . I i
_((91,,1@ +ﬂ2U: NYUF! (NYUM i ~Lyom ,) ﬁzl NYUR (NYEMJ ~ e, )] ]ZUF’ J
YUFi YUF,i YUF.i
T’ . N Y
+kg [1 _FJ(aiIYEM,i + ailYEF,i - (aiIYEM,i + ailYEF,i )T_*J
Y

Simplification yields
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let

. \2
dL 1
—=-k 1--¢ (ﬂi+5z’)lC,z‘+F(Ic’IYUM’]YEM7IYEF7IYUF’T)9
dr I,
F (I, 1y Dygys s Ly > Ly, T) = F  where
I I. I I,
F:k 1__ ¢11+¢21+¢31+¢41 1C1+k ( _MJ *’I
[ Ic][ ICJ( ) Ly ]C,i
Lo+ . I Loe: Ly o
_ I;UM,; (P3,,-1c,[+k2 {1_ YUMJ ZUM’ _ I:UM, ﬂlUl YUM, (NYUF,i)
IYUM,:’ Ly IYUM,i IYUM,i NYUM,i

IYUM,i (IYUF,i) _ IYUM,i ﬂU I;UM,i (1* )
1,i

YUF i

_k2 1_ & * * * k)
IYUM IYUM,i (IYUF,i) [YUM,:' NYUM,[

I Lives Lo s Lo
+k2 1- o i’UM’ - i,UM’ ]ﬂlz s (NYEF,i)

YUM YUM ,i YUM ,i N, YUM ,i
* *
-~ (IYEFz) YUM.,i Tyonai (o
- kz 1- ﬂl Ji I YEF i
1 (r N, ’
YUM YEF i ) YUM i YUM ,i

I I.. I I L., .
+k{1—ﬂ S g, I, kK, (1—ﬂ] mLLES
IYEM I C,i IYEMz [YEM IYUM,i

"
IYEM,[ YEM YFMz IYEM,[ E IYEM,i N
_I* YUMz _I* ﬁl,i N. YUF i
YEM i YEM i YEM i YEM i
* ( I*
k11 1 YEM YEM i YUFt YEMz YEM ,i *
—ky| 1- B L
3 7 1,i N YUF i
vem )\ Lyen z( YUF 1) YEM. i YEM i

I* S S I i
+k3 1— YEM ZEM _ i’EM Jﬂ] . YEM , (NYEFJ-)

IYEM IYEM,i YEM i NYEM S

%

I .
YEF!) YEM ,i ﬂll]\/YEMl ([YEF’I_)

YEM ,i

—k 1_I:EM
3

IYEM YEM Ji [ YEF i ) YEM ,i

+k4 1_I;EF\J @ [ZEFI (0211C1+k ( I;EFJ ]);UFJ
IYEF IC,i IYEF,i IYEF [YUF,i

1

YEMI(

.
Ly I YEF IYEF; Lygr Lygr N

_1* Pilyyp; t - ﬁzl N YUM. i
YEF,i Lygp Ay, YEF.i

1B ’YEFI(IW ot | o Do, )

* *
Lygr )\ 1 YEF i (I YUM i ) YEF i YEF i

+k,|1- I;EF [i’EF,i _Ii’EF,i Jﬂfz IYEF,i (NYEM,,-)

ver N\ A YEF i YEF i N, YEF i

IYEF,i (IYEM,z) IYEFz I;EFz *
I ﬂZz NYEF: (IYEM,i)

k1= IYEF
4 * *
[YEF IYEF,i (IYEM,z )

YEF i
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n ks (1 _ I;UF ] Ii—l— II;UF,[ (Dl,ilé,i 4 ks (1 _ I;UF J [i’UF,i
IYUF IC,i [YUF,i IYUF IYUF,i
[YUF,i U I;UF,I' k1 I;UF IYUF,i ([YUM,i ) Iyup,i
T ﬁ2,iN (NYUM,i)_ 5 _1 ¥ " =
IYUF,i YUF i YUF IYUF,i (IYUM,i) IYUF,i
[:UFi * [* ]YUFi ]YUFi U [;UFi
x ﬂzuz ~\Lyupei )+ ks [ - ] T :Bz,i —\ Nygar
NYUF,z ( ) IYUF IYUF,i ]YUF,i NYUF,i ( )
I;UF ]YUF,i<[YEM,1) ]YUF, ];Up, .
—ks| 1= * * ﬁzz N. (IYEM,i)
YUF IYUF,i (IYEM,, ) [YUF i YUF i
T\ Iy . T, . N Lygr, Ty, .
+k6[1—_][&_ i”J(%IYEM,z)“Lk [1——j[£_ L Jailmj
T IYEM,i TY,i T IYEF,i TY,i

F is non-positive by following the approach of [9]. Thus, F <0 for

I..,1 1 1 1

YEM ,i>

dL
wr»1; <0. Hence E<O and is zero when I.=1I,

C,i>"YUM ,i> YEF ,i>

* * * *

Io=1-, Iy =D Loy =Iogys Ty = Iges T =T . Therefore, the largest

dL £
invariant set in Q such that d—<0 is the singleton E which is our
t

endemic equilibrium point. By LaSalles invariant principle [9] we conclude that
E" is globally asymptotically stable (g.a.s). Thus, we establish the following
theory.

Theorem 3.1 When R;; >0, j=1,2,3,4 the endemic equilibrium point
E" is globally asymptotically stable in Q.

5. The Stochastic Model

Stochastic perturbations were bring in some of the major parameters involved in
the model equations.

Here, we bring in stochastic perturbations in the major parameters of the
deterministic model (1.1). Thus we permit stochastic perturbations of the

variable

Sc,i’SYUF,i’SYEF,i’SYUM,i’ SYEM,i >

1 1 1 T

1C,i’ YUM i > YEM i » L YEF i> LyuF is 4

around their values at positive equilibrium E". Hence, we assume that the
white noise of the stochastic perturbations of the variable around values of are

proportional to the distances of

Scl’SYUF,i’SYEF,i’SYUM,i’SYEM,i’
Ly oLy T,

ICI’]YUM,i’IYEM,i’ YEF,i> " YUF,i>

from
* * * *

.
S SYUFI’SYEFI’SYUM z’SYEMz’ICz’IYUMHIYEM:’IYEF:’IYUF:’T; Hence the

stochastic version of model (1.1) is
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dS ((1 6)1 (¢11+¢21+¢31+¢41)S ﬂlSCl)dt+p1( C,i S* )dBl
dSYUFz (5011 C.i Mﬁlz NYUMI ﬁlz YEM’ YUF,i +/11 YUF i dt
YUM ,i YEM i

+ P, (SYUF,i SYUF i )dB

YUM i YEM i

1
v tyum,i Lypy s
dSyep,; = [(Pz,;Sc,; +PSyur; = P Syer i :81, Syer = MiSyer. jdf

+P; (SYEF,i - S;EFJ )st

YUFl YEFI
dSYUMz %z C.i ﬂz; YUMz ﬁz;N YUM,i_ +:uz YUM i dt
YUF,i YEF i

s

+ Py (SYUM,i _SYUM,i)dB4

N, N

YUF i YEF i

Lyyr, Lygr
dSYEMz = (¢4ISCI +p,8 YUM i ﬁzz YEMz ﬁzz YEM,i _:uiSYEM,i]dt

+ Ps (SYEM,i - S;EM,i )st
dl., = (01'2;' _((01,1' 2T %Y +¢’4,i)lc,i _(:ui +5i)IC,i)dt+p6 (Ic,f _Iz,i)dBe

[YUM,i IYUM,i
d]YUM,i = ((03,1'16,1' +ﬁll,ji N (NYUF,i _IYUF,i)+ﬁll,ji (NYEF,i _IYEF,i)

YUM i NYUM.I'

*

_(pi T4 +§i)IYUM,i]dt+p7 (IYUM _IYUM)dB7

Lypyr
dlyy, ;= (%,ilc,i + Py +:B1Ez — (NYUF,i _IYUF,i)

YEM ,i

I, .
+131,Ei L (NYEF,i _IYEF,i>_(ai + 1+ 0, )IYEM,ijdt
NYEM,[

+ P (IYEM _I;EM)dBS

Lypr s
Al = (%zlm +pl +ﬁ21 (NYUM,i _IYUM,i)

YEF i

1, .
+:BzE,i A;EF’I (NYEM,i _IYEM,i)_(ai TH T é‘i)IYEF.i]dt

YEF i

+ P (IYEF ~ Iz )dBQ

YUF i N YUF i

I YUF i YUF,i
dIYUF,i = {(ol,i]C,i + ﬂZUl N (NYUM i YUM i ) ﬁz: (NYEM,i - IYEM,:’)

_(pi TH +§i)IYUF,ijdt+p10 (IYUE _I;UE)dBIO

dTY,i:(ai[YEM,i a vy, (ﬂl+51;) Yz)dt+pll( [;UM)dBll

With p, where i=1,2,3,4,5,6,7,8,9,10,11 are real constants, and

B.=1,2,3,4,5,6,7,8,9,10,11 are independent wiener processes. We examine

the asymptotic stability behavior of the equilibrium E° of the stochastic
equation (5.0) and contrast results with the deterministic model (1.1).
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Stochastic Stability of the Positive Equilibrium
It can be shown clearly that, the deterministic model (1.1) has one disease-free
equilibrium
E*((1-0) A= (0, + @, + 9+ 04 ) Ney = #Nco» nNo = (0 + 1) Ny
?:Nco + PNyuro = HNyro, @5 Neo = (P + 1) Nyasos
@:Neo + PNyunro — HNy0.04,0,0,0,0,0)
which is globally asymptotically stable when R, <1.However, when R;>1, the

disease-free equilibrium E° is unstable. Obviously, there is also a unique
positive endemic equilibrium

E = (I_Hi)ﬂi P8¢,
- b * * >
((Pl,i +Q) QO ) —H U IYUM,i E IYEM,i
_ﬁl,i N _ﬂl,i N _(:Di +/”i)
YUM, i YEM. i
* * *
5S¢ T PSyur; @55,
* * b * * b
I, . I, . I, .. yp—
v Lyum. £ Lyem,i v dyur, £ Lyer
_ﬂl,i N - ﬂl,i N —H _182,1' N - ﬁZ,i N - (pi + 4 )
YUM i YEM.i YUF.i YEF i
* *
¢4,iSC,i + piSYUM,i 0.4,
* * 9 b
U IYUF,[ e yer, i TP T Q3 TPy + 4+ o,
_ﬂZ,i N - :Bz,i N —H;
YUF.i YEF i
%,i] C.i
S* . S* - )
U PYUF.i U OYEF.i *
_ﬂl,i N _ﬂl,i N +(pi + 4 +5i)IYUM
YUM i YUM.,i
Cuidc;+ Pilyon
S* . S* . ’
E YUF i E YEF i
B N =B N +(ai T4 +5;)
YEM i YEM. i
Pl + Pilyur;
* I* 9
g dyeri o g dyeri o
_/Bz,i N* SYUM,[ _182,1 N* SYEM,[ +(a+/”+5)
YEF.i YEF i
Wl,ilc,i ailYEM,i + aiIYEF,i
* * b
Mt 51,1‘

Svonr i Syrrs
_ﬂZLfi YgM’l - :Bzul YfM’l + (pi +u+ 51)
NYUF,i NYUF,i

This equilibrium is globally asymptotically stable. The stochastic system (5.0)
has the similar equilibria as the deterministic system (1.1). Assuming that
R, <1, we examine the stability of the endemic equilibrium E’ of (5.0). The
stochastic differential equation (5.0) can be centered at its positive equilibrium

E" by the change of variables

%

* * *
X :Sc _Sc’xz :SYUF _SYUF’xS = Syer = Syers Xy :SYUM _SYU/W

e

* * *
X5 = Sygar = Syan> X6 = Lo = Loy X = Lyyny = Lyong s X = Lyone — Lygag s

* * *
Xy = Lype = Lygps Xyo = Lyye = Lyye, %, =T =T
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The linearized system of the stochastic model (5.0) around E" takes the

form
dx(r) = 1 (x())dr-+ g (x(1))dB(7)
where
x(t) = col(x, (t),x2 (t),x3 (t),x4 (t),x5 (t),x6 (t),x7 (t),x8 (t),x9 (t),x,o (t),x11 (t))
and equals

f(x(r))=4+B+C

Clearly, the endemic equilibrium E° corresponds to the trivial solution
x(t):O in (5.2). We denote L to be the differential operator associated with
(5.2), defined for the family of nonnegative functions u(t,x)eC"z(RxR”)
such that it is continuously differentiable with respect to #and twice with respect
to x.

According to Afanas ev et al [9], the differential operator L for a function
u(t,x)eC" (R x R") is given by

Lu(t,x)zw_,_fT (X)MJF%TrI:gT () azu(t,x)g(x):l

ot ox ox’?
where
%@ﬁ@ﬁ@@ﬁ@ﬁﬂﬁj
ox \ox, ox, ox, ox, Oxg Ox, Ox, dx, Ox, Ox,, Ox,
and

o’ u B o’
o’ ox,0x; | ’
)

where jj=1,2,3,4,5,6,7,8,9,10,11, “T” and “77” are the transposition and trace
respectively. With reference to Afanas?€? ev et al [9], the following results hold.

Theorem 5.1: Suppose a function u(¢,x)e C'"? (R X R") exist, satisfying the
following inequalities

ky|x|” <u(t,x) < k,|x|”
Lu(t,x) < —k;|x|"

where £, >0,i=1,2,3,4,5,6,7,8,9,10,11 and p>0. Then the trivial solution of
(5.2) is p" moment exponentially stable. Again, given that p = 2 the trivial
solution is supposed to be exponentially stable in mean square and the
equilibrium x = 0 is globally asymptotically stable. From theorem 5.1, the
conditions for stochastic asymptotic stability of trivial solution of (5.0) are given
theorem 5.2.

Theorem 5.2: Suppose

,012 < 2((01,1' +@,,+ Q5+ 0, +,U)a

1* ) 1* )
2 v ‘yum, £ Lvem,
Py <2 ﬁl,i — +131,i T +(p+,U) >
Nyon s YEM i
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Lyons s Lo :
g < B g |

YUM i YEM i

Ly, Lyr s
pf<2[ﬂ§fi Nyi’F’ + By NYfF’ +(,0+/J)}

YUF i YEF i

[* *
pS <2[ﬂ21 ]\[YUF’ ﬂZz YEFI /’lja

YUF i YEF i

Pe <2(@,+ 0+ @y, + 0y + 1+ 0),

p2<2 (p+ﬂ+5) YUM ,i ﬂll( YEF1+SYUF1)
7

N, YUM i

a+’u+5)NYEM1 ﬂlz( YEF1+S;UF,1')

py <2

Nyey i

N

YEF i

p+,u+5 YUF i ﬁz,( vemi T S;UMJ)
N

Pio <2

[a+,u+5)NYEF, ﬁz,( YEM1+S;UMJ)

YUF i

p121 < 2(/”"'51,;)

and hold, then the zero solution of (5.0) is asymptotically mean square stable.
Proof: We consider the Lyapunov

1 2 2 2 2 2 2
u(t,x)= E(Wlxl FWXs +WXs + WX+ WX+ WX,
F WD+ WeXe + WeXg + WXy + W, X )

where w,i=1,2,3,4,5,6,7,8,9,10,11 non-negative constants that will be chosen
in the course of the proof. It can be easily ascertained that inequality (5.4) hold
true when p =2 Applying the operator Lon u(z,x) gives

2 v dyum i
Lu (t,x) = _((¢1,i 0, O Ty, ) + ,u) WX, + @ XX, —| By N
YUM i
Lipus s i
E “YEM., 2 1, *
+ ﬁl,i N + (p"'/’) WyXy — N—SYUF W)X, X5
YEM. i YUM i
ﬁlEi * U I;UMI
- N—SYUF WYX, Xg + @ WX X, + pWixsx, —| B N
YEM i YUM i
I U
YEMz 2 B 5
ﬁl J T U WXy — vEr | WiXsXs
Nyee, Nyo
ﬂlb; * U ];UFI'
- SYEF,i Wi3X3Xg + @3 Wy Xy Xy — ﬂQ,i
Ny, Nyur i
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*

o 2 ﬂf P o*
+ ﬁZ,i N +(p+ﬂ) Wy Xy — Syon | WaXaXo
YEF,i YEF,i
g 3
2,i * U YUF i
- N Syonr [WaXaXg + @, WsXs X + pXy — ﬂZ,i N
YUF.i YUF i
L. pr.
E YEF i 2 2,i *
+ 5, +H | WsXs — Syenr |WsXsXo
YEF i YEF,i
ﬂU
% ot 2
Y, Syem | WsXsXig _(<¢1,i TP TP, +¢4,i)+(/”+5))wsx6
YUF i
* *
IYUM,i IYUM,i

+ ﬂluz

U
N Wy X7 X, + :Bl,i N
YUM ,i YUM i

By By
Li * Li *
+ N—SYUM,i+N—SYEF,i_(p+Iu+6) W7X72

Wy XXy + @5 ;W3 X X

YUM i YUM i
* *
e Lyev e Lyen s
+ B N WX X, +| B Wy Xg X3 + @y Wy Xg X
YEM i YEM i
IBE ,BE
i ot i o 2
+ P W XXy + Syuri + Syer _(a+ﬂ+5) WeXg
YEM. i YEM i
E ];EF,i E I;EF,:’
+ ,Bz,i N WoXgXy + ﬂZ,i WoXgXs + Py ;WoXgXg
YEF i YEF i
ﬂE ﬂE
20 o 2 ot 2
+ N SYUM,i + SYEM,i —(0! tu+ 5) WoXg + P WoXg X
YEF.i YEF.i
I, I,
v dyur, v Ayur
+| By, N WigXiXy +| B, WigXi0Xs + @) iWioX0%X6
YUF i YUF i
B, By,
20 o* 20 ot
+ N l SYUM,:' + : SYEM,:' —(,0+ ﬂ+5) W1ox120 +aw XX
YUF.i YUF.i
2
1 0 u(t x)
2 T >
+ oW X, X, —(,u+51)w“x11 +5Tr g (x)Tg(x)
Further
I*
v Lyom,i
W (_((Dl,i R 2T R 2N R tu)xl )xl TWy | @X — ﬂl,i N—
YUM.i
* U E
£ Lyemi Bl o B o
+ EBY; +( "",U) Xy — N Sy % — Syr % | %
YEM.i YUM.,i YEM i
Low Lo B
v Lyum.i £ Lyeam i L o
tWyl @)X + pX, — ﬂl,i +ﬂl,i U= Sy |
YUM i YEM,i YUM i
pE I, I
i o* v dyuri £ dyeri
BEY; Sypr | Xg | X3+ Wy | 03, —| Bo; N +p5,, N +(,0+ﬂ) X,
YEM i YUF,i YEF i
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ﬁzb:i * ﬁ2U!l * 1* J
_[N Syou | Xo = WFJSYUM Xio |Xg T Ws| @y;% + PX, — ﬁZUINYL

YEF i YUF i

I* E ﬂU
£ Lyeri 20 ot % ot
+ﬁ2,i N +u X5 — i, Syer |Xo — N Syene [X0 | Xs
YEF.i YEF i YUF.i

*
i
>

1

N, YUM ,i

v Lo, Bl B o
+| B X3+ P5;% + N SYUM,i+—SYEF,i_(p+;U+5) X7

YUM i YUM,i Nyom
[;UMi U [;UMI' E [;EMi E [;EMI'
+ ﬂle — X +| B, — | Xy |X + Wy || B — X, +| B — | X3
( Nyowr i Nyvus i Nyewe i Nyewe
£ £
+@, ;X + P X7 [AS;UFJ +AS;EFJ - (a U+ 5)} Xg
YEM i YEM. i
];EMI' E ];EMi E ];EFI' E I;EFi
+ ﬁlEz — | Xy + /’71,1' — | X |Xg T Wy ﬁZ,i — X, + :Bz,i — | Xs
{ Nygu Nygu Nygr Nygr
£ E
+ @, X+ &S;UM,I' +£S;EM,:‘ _(a + /J+5) Xg + 0;X5 | Xg
YEF.i Nygr
I;UFi U I;UFf ﬂzul *
+W ﬁzuz — | Xy + ﬂZ,i — | X5 + @ ;X + —,SYUM,i
{[ Nyur i Nyur i Nyur s
B o
+—SYEM,1' _(p+/1+5) Xig | X0 Wy (axs +ax, _(ﬂ"'é} )xn)xn
YUF i
1 v\ 0u(t,x)
+—Tr xX)———>g(x
MG
Now remark that
0u 0*u (t x)
— and g (x)—“Lg(x
pe g (x)—5—¢(x)

with
1 T azu(t,x)
STrig (x)—5—¢(x)
2 ox
1 2.2 2 2 2 2 2.2 2 2 2 2
:E(Wlpl Xy FW, 0% W3 05X + Wy Py Xy + Ws Ps X5 + We P X
2.2 2.2 2 2 2 2 2 2
T W3 07%7 F Wy Py Xg + Wy Py Xg + Wi P10 +W”p“x”)
Now, from Equation (5.5), if we choose

W (((¢1,i T TP ¢4,f)+/“)x1 )x,

B o Bl o
Wy | @ ,% — ——Sywr | % —| = Syur | X | %2
[ [NYUM,i Nygres

Bl o Bl o
+ Wy @, % + PX, — N—SYEF X7 — N—SYEF Xg X3

YUM i YEM i
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ﬂ, * ﬂl,/l *
TWy| @5,% — : ——Syum %o — N;SYUM X0 (X4

YEF,i YUF i

Boi o Boi o
+Ws| @y % + PpX, — N—SYEM Xg = N—SYEM X0 | X5

YEF i YUF i

+W6( ¢1z+¢2z+¢3z+¢’4z+ﬂ+5 xe

U YUM i U YUM i
+w; Ly X, + X3 + @5, %
YUM.i Nyon i
v 1 }*’UM i U Lyong i
+| P — X + X10
"N,
YUM.,i Nyowr i
gl ;EM,i Lygyy
Wy :Bl,i N :611 N X3+ @y X
YEM.i YEM.i
e 1 ;EM,[ ;EM i
+ 0%, + ﬁl,iN Xy + /”UN Xio | X8
YEM,i YEM,i
;EFI el ;EF,i
1321 N X, + :Bz,i N Xs T, Xs + ;X1 | Xy
YEF,i YEF,i

I, I,
v Lyur, v Lyur,
+ Wy | By N Xy +| By, N X5 + @y ;i X
YUF i YUF i

+w11(ax8 +ax, —(;t+5l)xn)xll

and then from Equation (5.5), it is easy to verify that,

*

1 Ly
Lu(t,x) = _((501,1' 0 TPt 504,1')"'/1 _5512JW1X12 _[ﬁl[,]i Y*UM’

NYUM,i
+ﬂE I:EM,i +(,0+,U)— 1 52 W x ﬁ ;UM,i +ﬁE I;EM,I'
Li qr* 2 2 Li 5% Li 5%
NYEM N 2 NYUM,[ NYEM,[

*

... 1
YUF i YEF i
Y + B +(P+ﬂ)—5542JW4Xf

YUF i N, YEF i

1
+ﬂ_552jwsx3 [/sz

I I 1
_[ 2Ul — ﬁz; Y*EFI lu__652Jw5x52_((p],i+¢2,i+¢3,i

NYUF,i NYEFI 2
1 2 2 U SYUF[ U S;EF;
+(04,i+/u+5__56jwé‘x6_(_ =Bl (p+,u+5)
2 NYUM,i NYUM,i
Syuri S
303 ot | < P (a r0) 3 0 |
2 NYEM[ YEM ,i 2

N,

YEF i YEF i

A L g 1
(ﬂzl L SYUM: ﬂz; YEF YEM,i+(a+/u+5)_Eé‘92\JW9x92

* *

Syomr.i v Syem
+ 0 XXy — _ﬂzl,]i P _ﬁZ,i * (,0 +tu+ 5) 5 Wloxlo
( Nyyr Nyur 2

1 1 %u(t,x
—(,u+5u —Eéﬁjw“xlzl +5Tr{gT (x)%g(x)} =—x"Dx
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From the assumptions of the theorem, we deduce that
d,>0,i=1,2,3,4,56,7,8,9,10,11 and |D|>0.Hence, Dis a symmetric positive
definite matrix. Let 4, denote the minimum of its eleven positive eigenvalues
As Ay s Ay A A A Ags Ay, Ay, and A); then,we can easily get

Lu(t,x)<-4, |x|2

According to Theorem 5.1, we conclude that the trivial solution of stochastic
system is globally asymptotically stable.

Hence, according to theorem 5.1, the proof is completed.

6. Conclusion

In this article, the dynamics of deterministic epidemic model and its stochastic
variant are presented. The stability analyses of the deterministic model were
investigated. Suitable Lyapunov functions were constructed for the global
stability of the two equilibria. Mathematical analysis was done and it was
established that in the absence of the disease a disease free equilibrium will
always exist if R;, <1 for j=1, 2, 3, 4,. We also established that the endemic
equilibrium exists in the presence of the disease that is when R, >1 for;j=1,2,
3, 4, with the infectious population greater than zero. Reducing the infection in
the vector population reduces R,, for j = 1, 2, 3, 4, greatly. Thus the best
methods of controlling HIV transmission is to target the Infected uneducated
female youth, Infected educated female youth, Infected uneducated male youth,
Infected educated male youth. R;; is a threshold that completely determines
the global dynamics of disease transmission. Our major purpose of the study was
to examine the asymptotic stability behavior of the endemic equilibrium of the
stochastic version of the deterministic epidemic model in Metapopulation

setting.
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