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Abstract 
The number circle—that is, the notion that the largest possible positive num-
bers are followed by infinity and then by the smallest possible negative num-
bers—is not new. L. Euler defended it in the eighteenth century and, before 
him, J. Wallis considered something vaguely similar. However, in the nine-
teenth century, the number circle was for the most part abandoned—even if 
something similar is on occasion accepted in geometry, in the sense that space 
is circular. The design of the present paper is to present positive proof of the 
veracity of the number circle and therefore, at the same time, to falsify the 
number line. Verifying the number circle implies falsifying negative infinity 
and positive infinity—infinity instead being neither negative nor positive, just 
like 0. Part of said proof involves showing that infinity can be defined both as 
1 1 1 1 1+ + + + +  and as 1 1 1 1 1− − − − − −  and that the following Equa-
tion applies: 1 1 1 1 1 1 1 1 1 1+ + + + + = − − − − − −   The principal mathe-
matical technique that will be used to provide said proof is introduced here 
for the first time. It is called the two dimensional infinite series. It is an infi-
nite series of infinite series. Some additional observations regarding the geo-
graphy of infinity will be made. A more detailed description of the geography 
of infinity will be reserved for other papers. The Equation 

11 2 3 4 5
12

+ + + + + = −  is discussed in this paper only to the extent that 
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the attention that has been paid to it has necessitated the construction of a 
theory of infinity that, upon closer inspection, makes the Equation more 
self-evident and intuitively apparent; a fuller discussion will take place in a 
later paper. 
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1. Anticipating the End Design of the Present Study in  
Subsequent Papers: Rendering the  

Equation 

1
1+ 2+3+ 4 +5+ = -

12
 Intuitively Clear 

What triggered this study in the first place is the remarkable Equation 

11 2 3 4 5
12

+ + + + + = − . 

There is no denying that the Equation does not at first sight—or even upon 
closer inspection—look intuitively clear in the least to anyone who encounters it. 
Nor did it look intuitively clear to me when I first encountered it. I am in fact 
quite confident that there has never been anyone to whom the Equation has 
been intuitively clear at first sight when they first encountered it. 

It should be noted right at the outset that the design of the present paper is 
not to prove the above Equation, as an anonymous reviewer seemed to suggest. 
That has been done a long time ago, convincingly and definitively (see below). 
Nor is the design of the present paper to render this very Equation more intui-
tive at this time. The design is rather to establish necessary mathematical foun-
dations so that this goal can be achieved in later papers. The matter of infinite 
series is just too wide-ranging. A principal issue concerns the so-called divergent 
series and whether they do or do not have sums? It is common to believe that 
they do not have sums. I personally believe that they do.  

The total absence of intuitive clarity evidently pertains to the Equation’s two 
most striking characteristics.  

1) The sum to the left of the Equation sign has every appearance of adding up 
to infinity. And yet it does not. How on earth is that possible?  

2) The sum to the left of the Equation sign consists of numbers that are all 
positive. In common experience, a sum of positive numbers always produces a 
positive number as its result. And yet, in the present case, the result is a negative 
number. How on earth is that possible?  

There was a time, until three or four centuries ago, when negative numbers 
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were disregarded or aroused suspicion. The metaphor most commonly used to 
persuade anyone of the validity of negative numbers has always been the notion 
of debt. Money has this peculiar way of peaking human attention. 

Someone who is in debt has a negative sum of money, as it were. Accordingly, 
someone who is 100 dollars in debt has 200 dollars less than someone how has 
100 dollars. Let us assume, then, that the numbers in the above Equation refer to 
dollars. How can a person who endlessly keeps accumulating money end up in 
debt? It boggles the mind.  

To be absolutely clear, the design of what follows is not to prove the veracity 
of the Equation  

11 2 3 4 5
12

+ + + + + = − . 

L. Euler and S. Ramanujan have already provided sufficient proof long ago. 
There is no doubt that the Equation is true.  

S. Ramanujan’s mathematical powers were absolutely phenomenal. Then 
again, in the popular imagination, he has become known as the man “who knew 
infinity”. The reason is the appearance of this expression in the title of a 
best-selling novel about his life and a popular movie with the same title derived 
from the novel.  

I do not subscribe to “the man who knew infinity” as a characterization of S. 
Ramanujan. S. Ramanujan knew an enormous amount. But he did not “know 
infinity”. He manipulated infinite series in astonishing ways. But he was una-
ware, I believe, of certain crucial subtleties of engaging the concept of infinity. 
Engaging the concept of infinity requires a critical appreciation of exactly what 
the brain can comprehend and what it cannot comprehend. Again, it seems 
eminently reasonable that the brain can do certain things and not other things. 
This distinction is critically relevant when it comes to engaging infinity.  

Nor is there any need to prove that sums of all positive numbers can have 
negative results. The above Equation is one example. There are infinitely many 
examples. Another example is the following Equation:  

3 9 27 811 2.
2 4 8 16

+ + + + + = −  

But that does not take away that anyone studying the Equation might not be 
tempted to doubt its veracity. And so did the present writer at some point.  

One potential advantage of doubting the veracity of the Equation at some 
point is that one is only much more convinced of its veracity as a result of mov-
ing through, and beyond, doubt than when one had never doubted it in the first 
place. Such has been the experience of the present writer.  

The Equation has been widely used in the popular media to astound and 
perplex the minds of the uninitiated. But these efforts run counter to the aim of 
mathematics itself, which is to offer as clear and simple an understanding of re-
ality as possible. There is much that remains to be done in regard to the Equa-
tion at hand. 
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In fact, the final design of the present paper is to put an end to the madness by 
presenting a simple, clear, and natural understanding of the Equation in ques-
tion. This understanding perhaps does not make the Equation as intuitively clear 
as the Equation  

1 1 2+ = . 

But it comes close.  
Then again, in order to achieve this pragmatic aim, it will be necessary to ad-

dress some issues affecting some of the deepest foundations of number theory 
and mathematics in general.  

To conclude, I wish to express my deep gratitude to two anonymous referees. 
One was unequivocally positive. The other had concerns and I wish to address 
them. The reviewer in question saw a lack of “genuine” mathematics in the 
present paper and repeatedly emphasized the need for rigor in mathematics. The 
two concerns basically come down to the same thing (see below).  

But first, it is true that I am strictly speaking not a mathematician and I have 
no intention of pretending to be. The reason that I am doing mathematics is that 
I am in need of mathematics to a certain limited degree in order to formulate a 
complete theory of rational human intelligence. And hardly anything is more 
fascinating to the cause of rational human intelligence than how the brain deals 
with the concept of infinity.  

The two concerns of the referee in fact come down to a single concern: lack of 
rigor implying lack of genuine mathematics is what characterizes the present 
paper. In reply, I should state that I am not very enthusiastic about the nine-
teenth century of efforts by A.-L. Cauchy and others to bring rigor to mathe-
matics after the age of L. Euler and J.-L. Lagrange. I also cannot appreciate N. 
Abel’s suspicion, yes even abhorrence, of divergent series. In fact, there is clear 
evidence from N. Abel’s writings that he could not deny that divergent series 
somehow make sense, in spite of everything. And he intended to make sense of it 
but died too young to ever do anything about it. It is time to catch up with the 
matter. I will discuss the tortured understanding of divergent series by such lu-
minaries as E. Borel, T. J. Bromwich, and G. H. Hardy in later papers. G. W. 
Leibniz already believed that is possible to evaluate all divergent series. I think 
that Euler did too. And so do I, but not necessarily in the capacity of a mathema-
tician. I quickly add my appreciation for the fact that the referee pointed out the 
significance of the researches of Terrence Tao on the subject.  

2. Core Designs Touching on Some of the Deepest  
Foundations of Number Theory and Mathematics:  
Elimination of 1) the Number Line and 2) Negative  
and Positive Infinity 

In order to render the Equation 

11 2 3 4 5
12

+ + + + + = −   
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intuitively more transparent, the need will be for first eliminating two interre-
lated deeply held beliefs of current mathematics and replacing them.  

If that seems audacious, the elimination of the beliefs in question involve in 
some way nothing less than executing the legacy of the most prolific mathemati-
cian of all time, Leonhard Euler (1707-1783). In that regard, the present paper is 
to some extent a vindication of some of L. Euler’s deeply held beliefs, beliefs that 
were dismissed after him. The time has come to rectify the record.  

What are the two interrelated beliefs?  
The first is that there is something like the number line. It is time to eliminate 

the number line and replace it with the number circle or cycle.  
The second belief is that there is such a thing as negative infinity and positive 

infinity. It is time to eliminate negative infinity and positive infinity and replace 
it with just infinity. The contrast between negative and positive is irrelevant 
when one reaches infinity.  

What is the number circle? And how does it relate to the irrelevance and eli-
mination of negative infinity and positive infinity?  

The number circle revolves entirely around the notion that numbers follow 
one another in the following manner:  

If one moves all the way up through the positive numbers to infinity and then 
proceeds beyond infinity, one ends up at the largest negative numbers.  

Conversely, if one moves all the way down through the negative numbers to 
infinity and then proceeds beyond infinity, one ends up at the largest positive 
numbers.  

In sum, there is no negative infinity and there is no positive infinity because it 
is one and the same infinity that one encounters at the end and is neither nega-
tive nor positive. Therefore, the symbols +∞  and −∞  can be eliminated.  

In the geography of numbers, what lies beyond infinity, as it is approached 
and reached from the positive numbers, is the negative numbers. Evidently, as 
one proceeds upward through the negative numbers from infinity, one reaches 
zero and returns to the positive numbers.  

The sequence of all the numbers can be represented by a circle: 0 and infinity 
are located at both ends of one if its diameters in Figure 1. 

As one can see, there is no need for negative infinity and positive infinity in 
this model.  

On this circle, there are two (2) points where one crosses from negative num-
bers to positive numbers or vice versa. They are  

 

 
Figure 1. The number circle or cycle. 
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1) zero (0) and  
2) infinity (∞), which is neither negative nor positive.  
The sequence of numbers is now universally conceptualized as a line, the 

so-called number line ending to the left in negative infinity ( −∞ ) and to the 
right in positive infinity ( +∞ ), with 0 located in the middle. The number line is 
represented in Figure 2. 

By contrast, I am convinced that the two ends are connected at infinity, which 
is neither negative nor positive. Proof of this fact will be provided. For example 
it will be shown that  

1 1 1 1 1 1 1 1 1 1+ + + + + = − − − − − −   

The number circle exhibits a remarkable property that the number line does 
not. If one keeps moving or rotating in one direction, clockwise, the numbers 
perpetually increase in quantity. If one moves or rotates in the opposite direction, 
counterclockwise, they perpetually decrease. The continuity is perfect. Perpetual 
rising occurs in one direction and perpetual descending in another direction. 

In addition to the number circle and infinity, it will also be necessary diver-
gent series as a name and as a concept.  

3. Excursus: J. Wallis, L. Euler, and the Number Circle 

The conception of the sequence of numbers as a number circle rather than as a 
number line may seem peculiar. And yet, as was said above, I am not the first to 
accept the veracity of the number circle. L. Euler was absolutely convinced of it. 
Evidently, I have been deeply influenced and inspired by L. Euler in accepting it 
myself.  

I cannot readily find any reflection of anything like the number circle in more 
recent mathematics. But the mathematical literature is vast and I have not un-
dertaken a large scale search. The number line and the concepts of negative and 
positive infinity seem so universally accepted that they would presumably in-
evitably stand in the way of anyone accepting the conception of the sequence of 
numbers as a circle rather than as a line. The conception involves completely 
abandoning the notions of negative infinity and positive infinity.  

In order to remove all doubt that L. Euler was firmly convinced that one en-
counters the negative numbers after rising to infinity through the positive num-
bers, it will be useful to quote him in full. He wrote about the matter in an article 
written in Latin published in 1760 in the acts of the Saint Petersburg academy 
when he was still at the Berlin academy [1]. To simplify the bibliographical trail, 
I take the liberty of simply quoting the English translation of the Latin original 
presented by E. J. Barbeau and P. J. Leah in a most helpful article [2].  

The following statement by L. Euler leaves no doubt about his firm conviction: 
 

 
Figure 2. The number line. 
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However, it seems in accord with the truth if we say that the same quantities 
which are less than zero can be considered to be greater than infinity. For not 
only from algebra but also from geometry, we learn that there are two jumps 
from positive quantities to negative ones, one through nought or zero, the other 
through infinity, and that quantities whether increasing from zero or decreasing 
come back on themselves and return to the same destination 0, so that quantities 
greater than infinity are thereby less than zero and quantities less than infinity 
coincide with quantities greater than zero. 

Dixit Euler. But L. Euler does not provide proof at this juncture. I am not suf-
ficiently familiar with L. Euler’s massive output to locate a proof anywhere else 
in his work. I have not undertaken any systematic search. Perhaps someone else 
might be able locate one somewhere in his works. I therefore believe that I will 
do nothing superfluous in presenting further below what I believe to be positive 
proof that one arrives at the negative numbers after rising to infinity through the 
positive numbers and leave it to speculation what Euler would have thought of 
the proof or what proofs he himself had in mind.  

The question arises: If someone of the caliber of L. Euler, whose great 
strengths specifically included number theory, was so convinced that one passes 
from the negative numbers to the positive numbers and vice versa at infinity, 
then why is it so difficult to find any reflections of this conviction in later ma-
thematics? 

The answer seems fairly obvious. There is this universally accepted notion 
about the history of mathematics that a lot of order and rigor was added to ma-
thematics in the nineteenth and early twentieth century. By this notion, up to 
that time, mathematicians had raced forward headlong making countless disco-
veries. But they had never stopped to bring their house in order and provide ri-
gorous definitions of all their concepts. By this same notion, there is an impres-
sion that L. Euler was sometimes a little methodically loose in how he did ma-
thematics and that nineteenth century mathematicians cleaned up after him, as 
it were. I do not subscribe to this view. 

Notions such as infinity and the infinitesimally small came under special scru-
tiny in the nineteenth century. The result was the creation of the concept of the 
limit. I have elsewhere voiced my own opinion about the concept of the limit in 
calculus [3]. I personally do not see a need for it. I approach the whole matter 
from an entirely different angle, namely from the angle of rational human intel-
ligence.  

This is not the place to get into any detail. Suffice it to note that all my efforts 
directed towards the study of rational human intelligence are entirely subordi-
nated to the notion that, as with any mechanical tool, there are certain things 
that the brain can do and there are certain things that the brain cannot do. 
Where is the line between the two?  

In that regard, the concept of the limit involves an imperfect effort to make 
sense of notions that are simply beyond human intelligence. Limits imply the 
false implication that it is possible to grasp infinity. But enough about limits 
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here.  
In my understanding of infinity, I find myself completely aligned with L. Eu-

ler’s views, as contrasted with dominant modern views—except in one respect. I 
am constantly explicitly in search of the very real line that separates what the 
brain can do from what the brain cannot do. It cannot be entirely excluded that 
L. Euler believed that a certain level of understanding of mathematical reality 
transcends the abilities of the brain. But he does not give explicit expression to 
this distinction. The acceptance of the line and any efforts to try to find it and 
clearly define it make it easier to accept something that may seem perplexing. It 
seems so easy to accept that there are things that the brain can do and things that 
the brain cannot do. But where is the line between the two?  

Before proceeding to a proof of the number circle, it is useful to note that Eu-
ler was not entirely alone in stumbling upon the negative numbers after rising 
up to infinity through the positive numbers.  

Before L. Euler, John Wallis (1616-1703) had already run into negative num-
bers when going beyond infinity after passing through the positive numbers. In 
that regard, he was in my opinion 100% correct. J. Wallis concluded that the 
negative numbers in question are “greater than infinity (plusquam infinitam)” 
[4].  

But J. Wallis never reconciled this notion with the fact that negative numbers 
can also be viewed as smaller than positive numbers. Who could possibly disag-
ree that –1 is smaller than +1?  

Moreover, if there are numbers that are larger than positive infinity, should 
there not also be numbers that are smaller than negative infinity? Negative 
numbers are often metaphorically presented as debt, money that is owed. I per-
sonally believe that, if one could run up debts that are larger than infinity, one 
would in fact be impossibly wealthy.  

As an indispensable precursor to the works of the mighty I. Newton and so 
many others, J. Wallis simply does not occupy the place in the history of science 
that he deserves. Who among the wider public has heard of J. Wallis? 

I have not examined the matter in detail, but it is possible that J. Wallis was 
the first ever to use the representation of the number line, though perhaps only 
with the positive numbers. This is not the place to investigate the matter in more 
detail. But it was not R. Descartes who was first.  

The most important study of the mathematical work of J. Wallis is, as far as I 
know, a book by J. F. Scott already referenced in note 4 [5]. I find it symptomatic 
of the current state of mathematics that J. Wallis’s view that one encounters the 
negative numbers when rising through the positive numbers to infinity and 
moving beyond is deemed to be an “error” in this book [6]. This is a clear indi-
cation that the view propounded in the present article radically departs from any 
current mathematical orthodoxy. And yet, it is a view endorsed by L. Euler him-
self. 

Consequently, it is all the more important to prove positively that the se-
quence of numbers does not behave like a line but rather like a circle. Providing 
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proof is what is next.  
In addition, various interesting facets of the geography of infinity and of the 

number circle will be described. It is these facets that will do much to fulfil the 
main design of the present paper, that is, to make the Equation  

11 2 3 4 5
12

+ + + + + = −  

much more intuitively clear. These facets will involve more than one new critical 
insight into the sequence of the numbers as it relates to infinity.  

From an intuitive perspective, there is a distinct kind of harmony to the 
number circle that the number line does not have. As one moves in one direc-
tion on the circle, one always rises in quantity; in the opposite direction, one al-
ways descends in quantity.  

Throughout what follows, an effort will be made to carefully distinguish be-
tween what is accessible to rational human intelligence and what is not. It is not 
possible, I believe, to attain an adequate understanding of the concept of infinity 
and the number line without making this distinction. The distinction is other-
wise never made in mathematics. But mathematics is something done by the 
human brain. The distinction between what the brain can do and what it cannot 
do means everything to mathematics, I believe. Where exactly is the line between 
what the brain can do and what it cannot do? 

4. The Tool Needed 1) to Prove the Veracity of the  
Number Circle and 2) to Eliminate Negative Infinity  
and Positive Infinity: Two Dimensional Infinite Series  
or Infinite Series of Infinite Series 

The need and desire is for a single mathematical tool or technique that demon-
strates—not only strictly mathematically but, if possible, also fully intuitive-
ly—that as one  

1) proceeds upward through the positive numbers,  
2) continues all the way to infinity,  

and  
3) then proceeds onward beyond infinity,  

one will end up at the largest possible negative numbers and gradually move up 
through them to zero and rise again through to the positive numbers to infinity. 
The progression applies in reverse in the opposite direction. 

Demonstrating the veracity of such a progression would also eliminate the 
need for negative infinity and positive infinity.  

As was noted above, this progression can be represented as a circle, the num-
ber circle. It may seem awkward that one ends up in negative territory at the end 
of positive territory. The two seem like opposites. But the opposition vanishes if 
one considers the following remarkable circumstance, also noted above.  

If one keeps moving in clockwise direction on the number circle, one never 
ceases rising in terms of quantity. That is because, when one ends at infinity af-
ter traversing the positive numbers, one has done nothing but rising. But as one 
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proceeds through the negative numbers after having moved beyond infinity, one 
just keeps rising.  

That is the beauty and consistency of the number circle: the infinite progres-
sion of always rising in one direction and the infinite progression of always des-
cending in the opposite direction. It makes for a certain kind of remarkable 
harmony. 

But is there a mathematical technique to demonstrate this infinite progression 
and eliminate the need for negative infinity and positive infinity.  

Such a mathematical technique exists and is introduced below. I call it the two 
dimensional infinite series. 

The infinite series is one of the most important mathematical discoveries of all 
time, dating to the seventeenth century with traces of its use going all the way 
back to Archimedes and antiquity. In fact, the sum featuring in the title of the 
present article is an infinite series.  

It is not easy to impress Euler when it comes to mathematical inventions. But 
he was mightily impressed by the potential of infinite series and in a rare expres-
sion of genuine admiration for a mathematical phenomenon states the following 
[7]:  

It should be… observed, that, from this branch of mathematics [that is, infi-
nite series] inventions of the utmost importance have been derived; on which 
account the subject deserves to be studied with the greatest attention. 

It is infinite series that make it possible to prove the veracity of the number 
circle. But one has to deploy them in not one, as has been done until now, but in 
two dimensions.  

A two dimensional infinite series is an infinite series of infinite series.  
Infinite series in one dimension is one thing. Taking them into two dimen-

sions is another. How does one take infinite series into two dimensions? The 
matter is discussed and clarified next.  

In sum, finite series have been exploited with enormous success in all kinds of 
contexts in the past three to four centuries or so. Euler thought the world of 
them. However, they have been used in only one dimension. It is time to use 
them into a second dimension to perform the critically important function of 
proving the existence and veracity of the number circle and eliminate negative 
infinity and positive infinity once and for all. 

5. The One Dimensional Infinite Series 

A well-known example of a one dimensional infinite series is as follows: 

1 1 1 11 .
2 4 8 16

+ + + + +                      (1) 

In fact, all the infinite series that have ever been studied by mathematicians 
are one dimensional. What a two dimensional infinite series looks like is clari-
fied below.  

The present paper is strictly limited to the contemplation of infinite series that 
are equal to a rational number. The reason is simply that this type of infinite se-
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ries amply provides what is needed for the designs of the present paper, which is  
1) to prove the existence of the number circle or cycle and  
2) eliminate negative infinity and positive infinity in favor of infinity tout 

court,  
all this with the ulterior design of making the Equation 

11 2 3 4 5
12

+ + + + + = −  

seem like the most normal thing on earth—or close to it. 
There is so much more to infinite series than the little that is exploited here. 

But none of is needed for the purpose at hand.  
The infinite series (1) above is equal to a rational number. The number is 2.  
It is not all that difficult to establish that the infinite series approaches ever 

closer to 2 as one keeps adding terms. It is also intuitively clear that one can al-
ways keep adding terms. One can always double 16, 32, 64, and so on. There is 
no reason to ever stop.  

What is not intuitively clear is that the result of the sum is actually 2 if one 
never stops, or if one stops after having gone on forever as it were. In other 
words, the following Equation applies:  

1 1 1 11 2
2 4 8 16

+ + + + + = .                  (2) 

Here is where the line is located between what the brain can do and what it 
cannot do. It can easily imagine never stopping. Why stop if you can just keep 
going on? But arriving somewhere specific, like at the number 2, and yet going 
on forever, that is what the brain cannot imagine. As the brain experiences real-
ity, arriving somewhere always involves the end of a journey and stopping. But 
in the case of the infinite series cited above, one arrives somewhere and kind of 
stops without the journey ever coming to an end. How can one arrive some-
where if the journey keeps on going?  

In any event, in spite of the inability of the brain to wrap itself around the no-
tion of infinity, no one has ever doubted the veracity of Equation (2).  

The veracity of Equation (2) can easily be established inductively by adding up 
a sufficiently large number of terms and seeing the instances of the number 9 
accumulating as the number takes on a form such as 1.9999… The absence of 
any reduction in the instances of the number 9 makes it clear where this is going. 
Clearly, it is going to 2, even it is impossible to get there by keeping adding 
terms. It would evidently be possible to get to 2 if one could keep adding forever. 
That is obvious, even if it is not possible to understand what it means to keep 
adding up forever. 

6. One Way of Proving or Verifying Infinite Series Equal  
Rational Numbers: Algebra 

As is well-known, there are ways other than induction to verify, or prove, that 
the sum of Equation (2) is 2, at least two.  
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A first way is algebraic, namely by means of multiplying and subtracting Equ-
ations. It begins by assuming that  

1 1 1 11 .
2 4 8 16

x+ + + + + =                     (3) 

If one multiplies this Equation by 2, then the result is as follows:  

1 1 1 12 1 2 .
2 4 8 16

x+ + + + + + =                   (4) 

Evidently, if one subtracts the right-hand side of Equation (3) from the right- 
hand side of Equation (4), the result is as follows:  

2 .x x x− =  

Moreover, if one subtracts the left-hand side of Equation (3) from the left- 
hand side of Equation (4), one obtains 2. Consequently, x equals 2. QED.  

This technique makes it possible to control, and feel confident about, the exact 
value of the sum of an infinite series. The technique cannot be applied to all infi-
nite series.  

For completeness’ sake, I mention here another obvious way of making clear 
that Equation (1) equals 2. It was noted that the Equation gradually takes on the 
form 1.9999… The focus is on the component 0.9999… Consider the following 
sequence:  

1 0.1111
9
=  ; 

2 0.2222
9
=  ; 

… 

7 0.7777
9
=  ; 

8 0.8888
9
=  ; 

9 0.9999 1.
9
= =  

The sequence suggests an equivalence between 0.9999… and 1 and therefore 
between 1.9999… and 2.  

7. Converting Rational Numbers into One Dimensional  
Infinite Series 

Another way of proving or verifying that an infinite series is indeed equal to an 
exact number is by converting a rational number into an infinite series. The re-
sulting infinite series is obviously equal to a rational number because it was de-
rived from it.  

It so happens that the technique of converting a rational number into one or 
more infinite series will play an absolutely critical role below in proving the ve-
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racity of the number circle and finally eliminating negative infinity and positive 
infinity once and for all from mathematics.  

The theory of infinite series has been enormously successful in both mathe-
matics and physics, as was already noted above. There is so much more to the 
theory of infinite series than what is taken from it here, including the resolution 
of irrational numbers into infinite series involving I. Newton’s binomial theorem. 
L. Euler really ran with infinite series for the benefit of physics.  

For the present purposes, infinite series that can be expressed by rational 
numbers will suffice to prove the veracity of the number circle and the futility of 
the concepts of negative infinity and positive infinity. There will be no need for 
infinite series featuring irrational or even transcendental results.  

8. A Well-Known Way of Converting Rational Numbers  
into One Dimensional Infinite Series: Infinite  
Decimal Fractions 

There is in fact more than one way of converting a rational number into an infi-
nite series. The best known way has been practiced by all who have even just 
some notion of elementary division.  

An example. It is obvious that dividing 2 by 3 results in 0.6666… This is high 
school, if not elementary school, arithmetic.  

Still, this expression by itself does not readily encourage one to contemplate 
infinite series. And yet, the following Equation applies:  

2 6 6 6 6 .
3 10 100 1000 10000
= + + + +  

Clearly, a rational number is resolved into an infinite series. The series is what 
L. Euler called “infinite decimal fractions”. He describes “infinite decimal frac-
tions” with his usual unsurpassed lucidity in his Elements of Algebra [8].  

L. Euler does not make a connection between “infinite decimal fractions” and 
what he describes elsewhere in his Elements of Algebra as “the resolutions of 
fractions into infinite series” [9]. I will make the connection explicitly further 
below.  

If one carries on the right-hand side of the Equation without ever stopping, 
one will arrive at the rational number found at the left-hand side of the Equation. 
It is safe to assume that elementary school students or high school students are 
hardly ever invited to reflect on what it means to go on forever without stopping 
and yet getting somewhere.  

9. Other Ways of Representing Rational Numbers by  
Means of One Dimensional Infinite Series 

There is an infinite number of ways of representing rational numbers, including 
all the rational fractions, by means of infinite series that consist themselves of ra-
tional numbers. As it happens, only one specific member of this infinite set will 
be needed to prove the veracity of the number circle and to eliminate negative 
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infinity and positive infinity. Nor will it be necessary to consider anything else 
but rational numbers in the present paper.  

L. Euler presents a lucid and delightfully concise description of this pheno-
menon in the chapter entitled “the resolution of fractions into infinite series” in 
his Elements of Algebra, which has been described as the second most popular 
mathematics book of all time, after Euclid’s Elements [10]. It has much inspired 
the following account. Then again, the following account will approach the 
phenomenon from a different angle in order to place it in wider context and to 
clarify what exactly happens when one turns any rational number into an infi-
nite number of infinite series. I believe, in fact, that L. Euler did not capture the 
phenomenon in its entire scope from first principles in the afore-mentioned ac-
count.  

It should be noted that any rational number can be resolved into an infinite 
series, not only fractions, but also round numbers such as 1, 2, 3, 4, etc. But ac-
cording to the technique described by Euler and discovered before him, the 
round number needs to be represented as a fraction. For example, the integer 2 
needs to be in a fractional form such as  

1 1 2
1 11
2 2

 
 
= = 
 −  
 

 

in order to be converted into an infinite series.  

In the previous section, the fraction 2
3

 was converted into the infinite series  

6 6 6 6 ,
10 100 1000 10000

+ + + +  

involving infinite decimal fractions.  
In infinite series involving decimal fractions, the numerators evidently do not 

all need to be the same. For example, 

1 1 4 2 8 5 7 ,
7 10 100 1000 10000 100000 1000000
= + + + + + +  

1, 4, 2, 8, 5, and 7 then repeat themselves in the numerator. Or 

1 0.142857.
7
=  

Infinite series involving decimal fractions result from dividing the numerator 
directly by the nominator according to the standard basic rules of long division 
in the decimal notation system. However, there are other ways of converting a  

rational fraction such as 2
3

 into infinite series, an infinite number of other  

ways in fact.  

In order to find other series, one needs to represent 2
3

 into equivalent but  

different fractional forms. Four such fractional forms are as follows:  
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1 ,
11
2

+
                            (5) 

1 ,
12
2

−
                            (6) 

2 ,
1 2+

                            (7) 

and 

2 .
2 1+

                            (8) 

Expression (5) yields the infinite sum  

2 1 1 1 11 .
3 2 4 8 16
= − + − + +                     (5') 

Expression (6) yields the infinite sum  

2 1 1 1 1 1 .
3 2 8 32 128 512
= + + + + +                  (6') 

Expression (7) yields the infinite sum  

2 2 4 8 16 32 .
3
= − + − + −                    (7') 

Expression (8) yields the infinite sum  

2 1 1 1 11
3 2 4 8 16
= − + − + − .                   (8') 

The infinite sum in (7') looks peculiar at first sight. A sum of integers produc-
es a fraction. However, it will be shown below that this is altogether expected. 
After all, the sum featured in this paper’s title is also a sum of integers resulting 
in a fraction, and a negative one at that.  

How are the infinite sums (5'), (6'), (7'), and (8') obtained? L. Euler explains 
the matter clearly. 

Generalized algebraic equivalents of the arithmetic fractions (5), 6), (7), and (8) 
are as follows:  

1 ,
1 a+

                            (5'') 

1 ,
2 a−

                            (6'') 

2 ,
1 a+

                            (7'') 

and  

2 .
2 a+

                            (8'') 

For the purposes of the present paper, only fraction 
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1
1 a+

                            (5'') 

and its negative counterpart  

1
1 a−

 

will be needed.  
L. Euler discusses fraction (5'') and its negative counterpart separately. But in 

what follows, it will be crucial to reduce the two to just one single fraction either 
by taking (5'') as  

( )
1

1 a− −
 

or by taking its negated counterpart as  

( )
1 .

1 a+ −
 

The reason is that it will be important to observe what happens when (–)a as-
sumes the form of any of the integers, negative or positive, in a continuous se-
ries.  

Again, there are an infinite number of fractions like (5''). But only (5'') and its 
negated counterpart will be needed in order to prove what needs to be proven.  

The fractions (5'), (6'), (7'), and (8') can be converted into infinite sums as fol-
lows: 

2 3 41 1 ;
1

a a a a
a
= − + − + −

+
                  (5''') 

2 3 41 1 ;
2 2 4 8 16 32

a a a a
a
= + + + + +

−
                 (6''') 

2 3 42 2 2 2 2 2 ;
1

a a a a
a
= − + − + −

+
                (7''') 

and  
2 3 42 1

2 2 4 8 16
a a a a

a
= − + − + −

+
 ;                (8''') 

The matter is clarified further below.  
Incidentally, the negative counterpart of fraction (5) yields the following re-

sult: 

2 3 41 1
1

a a a a
a
= + + + + +

−
  

The next step is to evaluate the four infinite sums if a has the values listed in 
fractions (5), (6), (7), and (8). These values of a are as follows.  

Fraction (5): 
1
2

a = ;  

fraction (6): 
1
2

a = ;  
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fraction (7): 2a = ; and  
fraction (8): 1a = .  
Inserting them into Equations (5'''), (6'''), (7'''), and (8''') yields the following 

results:  
2 3 42 1 1 1 1 1 1 1 1 11 1 ;

13 2 2 2 2 2 4 8 161
2

       = = − + − + − = − + − + −       
       +

     (5'''') 

2 3 41 1 11
2 1 1 1 1 1 1 12 2 22 ;

13 2 4 8 16 32 2 8 32 128 2562
2

     
     
     = = + + + + + = + + + + +

−
    (6'''') 

2 3 42 2 2 2 2 2 2 2 2 2 2 2 4 8 16 32 ;
3 1 2
= = − × + × − × + × − = − + − + −

+
     (7'''') 

and  

( ) ( ) ( )2 3 41 1 12 2 1 1 1 1 11 1
3 2 1 2 4 8 16 2 4 8 16
= = − + − + − = − + − + −

+
  .     (8'''') 

Again, Equation (7'''') may at first sight seem peculiar. A sum of integers has a 
fraction as its result. If one keeps adding up integers, how can one end up with a 
fraction? This result is in fact normal, all things considered. After all, in the Eq-
uation featured in the title of the present article, the sum of all the natural num-
bers is also a fraction. How is this possible? Upon closer inspection, it will ap-
pear that the result is hardly unexpected, however peculiar it may seem at first 
sight.  

All this leaves Equations (5''''), (6''''), (7''''), and (8'''') without an explanation. 
How are they obtained? 

The manner of dividing a fraction such as  

1 ,
1 a+

 

in which the divider does not divide the dividend, was presumably discovered 
some time in the seventeenth century, not too long before Euler. I have not en-
gaged in any detailed historical investigations as to its origins.  

How does one divide 1 by 1 a− ? In describing the matter, I will be much 
more explicit than is usual in a mathematics article, even more explicit than L. 
Euler’s description of the procedure, in order to make the proof of the number 
circle and the need for eliminating negative and positive infinity as transparent 
as possible.  

1
1 a+

 is an algebraic expression. For the sake of simplicity, I prefer to reason  

at first arithmetically in an inductive manner, and then move from arithmetic 
specificity to algebraic generality. I believe that, what an arithmetic argument 
loses in sophistication or the like (in comparison to an algebraic argument), it 
much gains in clarity. It should not be the case that only mathematicians can 
read mathematics. This was not the case in the time of the great Euler and the 
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great Lagrange.  
The general context of the present argument is division.  
If the dividend is divisible by the divisor, matters are quite simple. The quo-

tient is an integer. An example is as follows:  

10 2.
5
=  

But there are other ways of making the same division, with an infinite number 
of infinite sums as the result. L. Euler describes the phenomenon as the “resolu-
tion of fractions into infinite series” and he applies it “[w]hen the dividend is not 
divisible by the divisor” [9]. But this description does not cast the net wide 
enough. Any rational number can be converted into an infinite sum. That in-
cludes all the rational fractions. And it includes even those fractions in which the 
divisor is divisible by the dividend, such as 

10 .
5

 

I exclude infinite sums involving irrational numbers and transcendental 
numbers from the present discussion because they are not needed to meet the 
core designs of the present article, which are to prove the existence of the num-
ber circle, to eliminate negative infinity and positive infinity from mathematics, 
and to achieve a better appreciation of the nature of what is called divergent se-
ries.  

I believe that I cannot do anything better than—and will not do anything su-
perfluous by—developing the eminently simple fraction  

10 2.
5
=  

into an infinite sum and demonstrating that this simple fraction can be con-
verted into an infinite number of infinite sums. By not taking the conversion of 
numbers into infinite series down to this most elementary level, L. Euler may 
have missed an opportunity to evidence the truly vast scope of the phenomenon 
(even if he attached the highest importance to the theory of infinite series and 
developed it in unsurpassed fashion). Infinity is everywhere! Presenting the 
phenomenon in the following way might make it easier to introduce infinite se-
ries earlier into the mathematical curriculum.  

How does one turn the above fraction into an infinite sum?  
The most fundamental principle that underlies the development of rational 

numbers into an infinite number of infinite sums, not quite identified or articu-
lated as such by L. Euler or by anyone else as far as I know, is  
to divide the dividend by only PART of the divisor. 

Consider again the fraction  

10 2.
5
=  

What would happen if one divided the divisor 5 into two partial divisors 3 and 
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2 and divided the dividend 10 only by the first partial divisor 5, namely 3? The 
division can be presented as follows, in line with how divisions are always 
represented:  

10 3 2
x
+

 

In divisions, the quotient multiplied by the divisor yields the dividend. If the 
dividend is 10 and the divisor is 3, then the quotient is x in the Equation  

3 10.x× =  

The result is evidently as follows:  

10 .
3

x =  

Consequently, the division by just 3 instead of all of 5 may now be presented 
as follows: 

10 3 2
10
3

+
 

The next step is to multiply the quotient with the divisor to check the resulting 
dividend. The result is 10, as follows.   

10 3 10.
3
× =  

The division can now be presented as follows: 

10 3 2
1010
3

0

+

−
 

The remainder is 0. However, the actual divisor is not 3 but 5; 3 is only the 
partial divisor. Therefore, whereas it is possible to divide the dividend by a par-
tial divisor and obtain a result that multiplied with the divisor yields the divi-
dend, one still ought to multiply the quotient by the full divisor in order to eva-
luate how the resulting dividend differs from the actual dividend. 

10 3 2
20 1010
3 3

200
3

+

+

−

−

 

The remainder is 20
3

− . As a rule, in divisions, the final quotient is obtained  

by dividing the remainder by the divisor and adding the result, which is in this 
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case negative, to the temporary quotient. The result of dividing the remainder by 
the divisor is as follows:  

20
3

3 2
−

+
. 

The division now looks as follows:  

10 3 2
20

20 10 310
3 3 3 2

200
3

+

+ −
+

−

−

 

A more detailed description of how 

20
3

3 2
−

+
 is obtained is as follows. In order  

to obtain the dividend of a division, one multiplies the quotient by the divisor. 
The above division is by 5. In other words, the divisor is 5. However, since the  

initial quotient 10
3

 was obtained by division by 3, multiplying the quotient 10
3

  

by the divisor 5 does not yield the correct dividend 10. Still, eliminating the ini-  

tial quotient 10
3

 is not an option, since dividing by part of the divisor, namely 

by 3, is the whole intent of the operation. Consequently, the initial quotient 10
3

  

needs to be modified by an additional term. How is this additional term deter-
mined?  

One first multiplies the initial and incomplete quotient 20
3

 by the full divisor 

5. The result is an incorrect dividend, namely 50
3

. This result is too large by 

20
3

. It is obvious that the correct dividend should be exactly 5 times larger than 

the correct quotient because the divisor is 5. It is also obvious that the incorrect  

dividend 50
3

 is 5 times larger than the incomplete quotient 10
3

 because it was  

obtained by multiplying the latter by 5.  
It follows that the difference between the incorrect dividend and the correct  

dividend, namely the quotient 20
3

, will be 5 times larger than the difference 

between the incomplete quotient and the final quotient. Therefore, 

20
3
5

 needs  

to be subtracted from the incomplete quotient to obtain the final quotient.  
At this point, there are three possibilities: 1) one can stop; or 2) one can go on 

dividing by the partial divisor and then stop; or 3) one can go on forever.  
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1) If one stops, the quotient is  

( )

20
10 10 20 10 20 10 4 63 2.
3 3 2 3 3 3 2 3 15 3 3 3
− = − = − = − = =

+ × +
 

The result is 2, as it should be.  
2) Suppose that one goes on with one additional division and then stops. The  

need is for dividing 20
3

. If one divides it by 3 + 2 or 5, the result is 4
3

 (see 1)  

above) and one reaches an endpoint. If one divides again by the partial divisor 3, 
then the result is as follows: 

20 3 2
3

40
20 40 20 9
3 9 9 3 2

400
9

+

+ −
+

−

−

 

If one inserts this result for 

20
3

3 2+
 into the quotient on page 94 top above, the  

resulting quotient is as follows: 

40 40
10 20 10 209 9 .
3 9 3 2 3 9 3 2

 
 

− − = − + 
+ +  

 

 

If one stops here, the result is again 2, as follows:  

40
10 20 30 20 40 10 8 189 2.
3 9 3 2 9 9 45 9 9 9
− + = − + = + = =

+
 

One can keep dividing the remainder in this fashion as long as one wants. 
Whenever one stops, the result will be 2.  

3) There is also the possibility of never stopping dividing by the partial divisor 
3. The result is the following infinite sum:  

10 20 40 80 160 2.
3 9 27 81 243
− + − + − =  

I agree with Euler that, if one does not stop, there is no need for a final frac-
tion. In this connection, L. Euler makes the following statements, which appear 
to have been universally misunderstood or disregarded: 

Were we to continue the series without intermission, the fraction would be no 
longer considered; but, in that case, the series would still go on. [11] 

For once a series is said to be continued to infinity, it is contrary to [the 
afore-mentioned] idea if some term of the same series is thought of as last even if 
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it is infinitesimal. Therefore, the above-noted objection concerning the addition 
or subtraction of a remainder after the ultimate term disappears of its own ac-
cord. Since, therefore, we never reach the end of an infinite series, we never get 
besides to such a place where it is necessary to add that remainder; accordingly, 
this same remainder not only can be neglected, but also should be, because no-
where is a place for it found. [12]  

How misunderstood or disregarded? A footnote is added to L. Euler’s Ele-
ments, probably by the French translator, and directly contradicts the first 
statement quoted above.  

It may be observed, that no infinite series is in reality equal to the fraction 
from which it is derived, unless the remainder is considered. [13] 

The footnote is not in the original German edition of 1770.  
Seeking corroboration, the footnote then refers to the paragraph in which L. 

Euler makes the first statement quoted above. But L. Euler there states exactly 
the opposite (see above).  

It was noted above that there are an infinite number of ways of converting the 
fraction 

10
5

 

into infinite sums.  
Some of those infinite sums are as follows, all obtained by the method de-

scribed above:   

10 10 10 10 10 10 ;
4 1 4 16 64 256 1024

= − + − + −
+

  

10 10 30 90 270 810 ;
2 3 2 4 8 16 32

= − + − + −
+

  

and  

10 2 10 40 160 640 2560
1 4

= = − + − + −
+

  

This last Equation provides an interesting definition of the number 2.  
The number of ways of dividing a positive integer into two positive integers is 

finite and the subject of indeterminate algebra. In the case of 5, there are only 
two ways: 1 + 4 and 2 + 3. But since order matters presently, there are four ways: 
1 + 4, 2 + 3, 3 + 2, and 4 + 1. All are converted into infinite series above.  

It is not necessary to divide the divisor into a sum of two positive integers. 
One can also use negative integers. There are an infinite number of ways of di-
viding a divisor in this manner. Two examples may suffice:  

10 10 10 10 10 102 ;
6 1 6 36 216 648 1952

= = + + + + +
−

  

10 2 10 60 360 2160 12960
1 6

= = − − − − − −
− +

  

The second example looks peculiar at first sight. But the result makes perfect 
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sense in a wider context. More on this follows below.  
Nor is it necessary to divide the divisor into integers. It may also divided into 

rational fractions. Again, the ways of division are infinite in number. The fol-  

lowing example close to 10
3 2+

 may suffice:  

10 10 10 10 10 10
31 19 4 16 64 256 1024
10 10

= − + − + −
+

  

And so on into infinity. I refrain from pursuing irrational and transcendental 
numbers.  

In his chapter on the resolution of fractions into infinite series, L. Euler does 
not use arithmetical examples as has been done above in the present paper. He 
uses algebraic examples. Except for the number 1, all numbers are represented 
by symbols such as a, b, c, and x.  

Much of his chapter is taken up by what are the two most elementary cases, 
which he styles as follows:  

1
1 a−

 

and 

1 .
1 a+

 

Indeed, in any scientific endeavor, it is much preferable to move from the 
simple to the more complex. Beginning with the most simple is therefore by far 
the preferred modus operandi.  

L. Euler does not use the notations 

1
1 x−

 

and  

1 .
1 x+

 

Indeed, the symbols x and y are used for entities whose value is being sought, 
as derived from an Equation. For example, if  

2 1,ax =  

then what is x? The answer is  

.ax
a

=  

Then again, in the exercises at the end of L. Euler’s chapter added by someone 
else and describing the resolution of fractions into infinite series, the student is 
asked to resolve the fractions 

( )

2 2

2

1, , , ,   and   
1

ax b a x a
a x a x x b x a x

+
− + + − +
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into infinite sums [13]. The following representations would have been prefera-
ble: 

( )

2

2

1, , , ,     and    .
1

ab a a a a
a b b c b c a a b

+
− + + − +

 

The gist of L. Euler’s description is that alternative division is still possible 
whenever ordinary division is not because the dividend cannot be divided by the 
divisor. L. Euler focuses exclusively on algebraic expressions such as  

1 .
1 a−

 

There are three facts to which L. Euler’s account does not draw the attention. 
First, one should not forget that alternative division is also always possible 

when ordinary division is as well. Instances have been adduced above.  
Second, one should not forget that not only algebraic but also purely arith-

metic fractions that cannot be further divided by a divisor can be subjected to 
alternative division. An example is  

1 .
5

 

As was noted above, a fraction in which the dividend cannot be divided by the 
divisor can still be divided by part of the divisor, with an infinite sum as the re-
sult. The fraction above can be represented as   

1 .
2 3+

 

Division by 2 results in the following infinite sum:  

3 9 27 811 .
4 8 16 32

− + − + −  

Third, one should not forget arithmetic fractions can be subdivided in an infi-
nite number of ways. Examples have been adduced above.  

Fourth, one should not forget that all rational numbers, that means also in-
tegers, and not only rational fractions, can be divided in an infinite number of 
ways. Quite a few conversions of 2 into infinite sums have been illustrated above.  

It will not be superfluous to describe in more detail how one divides the divi-
dend by the divisor in the expression 

1 .
1 a−

 

L. Euler does not explicitly state that the key concept is to divide a dividend by 
part, and not all, of a divider. Instead, he simply states that the indivisibility of 
the dividend by the divisor  
does not prevent us from attempting the division according to the rules that 
have been given, nor from continuing it as far as we please; and we shall not fail 
thus to find the true quotient, though under different forms. [9]  

It might have aided the cause of clarity if the technique had been described 
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more explicitly. I believe that using arithmetical examples, as has been done, also 
promotes clarity.  

If the design is to divide the divisor by part of the divisor in the expression 

1 ,
1 a−

 

then there are evidently two options:  
1) dividing by just 1;  
2) dividing by just a− .  
If just 1 is the divisor, the division may be presented as follows.  

1 1 a−
 

If –a is the divisor, then the division may be presented as follows.  

1 1a− +
 

First 1 as divisor. The first step is to find the quotient that, if multiplied by the 
divisor 1, yields the dividend 1. In other words, the quotient is x in the Equation  

1 1.x× =  

The quotient is evidently 1. The result is as follows:  

1 1
1

a−
 

The next step is to multiply the initial quotient by the divisor, with an incor-
rect dividend as the result because an initial and incomplete quotient has been 
used. One next subtracts the resulting incorrect dividend from the correct divi-
dend in order to determine the difference between the two, as follows.  

1 1
1 1

0

a
a

a

−
−
−
+

 

The difference between the correct dividend and the incorrect dividend is a+ . 
The difference between the initial temporary coefficient and the final correct  

coefficient is therefore that very difference of +a divided by the divisor, or 
1

a
a−

.  

The matter has been described above in arithmetical fashion in relation to the 
division of 10 by 5 by the mediation of the partial divisor 3. All it takes is to add  

1
a

a−
 to the coefficient and the correct coefficient is obtained, as follows: 

1 1

1 1
1

0

a
aa

a

a

−

− +
−

−
+
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To leave no stone unturned and be as explicit as possible, it may be verified 
that multiplying the coefficient by the divisor indeed produces the dividend. The 
multiplication of the two is as follows:  

( )1 1 .
1

a a
a

 + − − 
 

And therefore also as follows:  

( ) ( )1
1 1 .

1
a a

a
a
−

− +
−

 

And also as follows:  

1 1.a a− + =  

In developing sums from a fraction in which the dividend cannot be divided 
by the divisor one can keep going and stop at any time. But one can also go on 
forever. In all cases, the result is the same.  

Taking the division one step further will need to suffice here. It means to re-
solve the division 

,
1

a
a−

 

which can also be presented as follows:  

1a a−
 

I refrain from explaining every single step in detail. Suffice it to note that the 
operation begins with dividing the dividend by part of the divider, in this case 1. 
The quotient that, if multiplied by 1, yields a is evidently a. The division may 
therefore be presented as follows:  

1a a
a
−

 

This expression is then readily developed into the following:  

2
2 2

2

1

1

0

a a
aa a a

a

a

−

− +
−

−
+

 

The division of 1 by 1 − a produced the result  

1 .
1

a
a

+
−

                           (9) 

The division of a by 1 − a produced the result  
2

1
aa

a
+

−
.                          (10) 

Inserting (10) into (9) yields the following result:  
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2

1 .
1
aa

a
+ +

−
 

It is quite justified to generalize the division as follows if the design is to stop 
it at any time:  

2 31 .
1

naa a a
a

+ + + + +
−

  

If there is no desire to stop it and the division is carried on into all infinity, 
then the result is as follows:  

2 31 .a a a+ + + +  

In dividing 1 by part of the divisor 1 − a, the component 1 has been chosen 
above. But it is also possible to choose the component a− . The division may 
then conveniently be represented as follows:  

1 1a− +
 

All it takes at this point is to ask what needs to be multiplied by a−  to yield  

1. The answer is evidently 1
a

− , as follows: 

1 1
1

a

a

− +

−
 

I refrain from detailing all the steps. The resulting infinite sum is as follows: 

2 3 4 5

1 1 1 1 1 .
a a a a a

− − − − − −  

10. Taking Infinity into a Second Dimension:  
Two Dimensional Infinite Series 

Rational fractions can be resolved into infinite sums. And some of these infinite 
sums can be converted into an infinite series in a second, additional, dimension.  

Consider, for example, the expression 1
1 a−

. One way of converting this frac-  

tion into an infinite sum is as follows: 

2 3 41 1 .
1

a a a a
a
= + + + + +

−
  

Let us assume that  

1 .
2

a =  

The result is as follows:  

1 1 1 12 1 .
2 4 8 16

= + + + + +  

It is possible, however, to expand this Equation into infinity in a second di-
mension by progressively changing the value of a in the following manner:  
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1 ;
2

a =  

2

1 1 ;
42

a = =  

3

1 1 ;
82

a = =  

4

1 1 ;
162

a = =  

5

1 1 ;
322

a = =  

and so on.  
Accordingly, the value of  

1
1 a−

 

successively becomes as follows:  
1 2;

11
2

=
−

 

1 4 ;
1 31
4

=
−

 

1 8 ;
1 71
8

=
−

 

1 16 ;
1 151

16

=
−

 

1 32 ;
1 311
32

=
−

 

and so on. 
Let us see where this is going. Take for example  

20

1 1 1048576 .
1 1 10485751 1

10485762

= =
− −

 

It is easy to see that the value is tending towards 1. The fact is that x in the ex-
pression  

1
11
x

−
 

is becoming ever larger.  
In the end, the expression becomes  

1 .
11−
∞
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It is now common in mathematics to describe the expression  

1
∞

 

as undefined. But L. Euler had no difficulty in simply declaring  

1 0.=
∞

                         (11) 

I definitely side with L. Euler. And I do so by bringing into the picture the 
critical dimension of rational human intelligence. After L. Euler, in the nine-
teenth century, mathematicians were uncomfortable with never stopping when it 
comes to making x in Equation (11) bigger. This discomfort implies the assump-
tion that everything should be intelligible to human reason. I firmly believe that 
it is not and that it is imperative to establish where the line is located between 
what is intelligible and what is not. In other words, I do not accept the notion of 
“undefined” in mathematics. The discussion of “undefined” needs to be taken to 
a whole different level, that of rational human intelligence. The critical distinc-
tion ought not to be between what is defined and what is not defined. It ought to 
be between what is accessible to rational human intelligence and what is not ac-
cessible.  

Where to begin? All mathematicians accept that, if one carries on the infinite 
sum  

1 1 1 11 ,
2 4 8 16

+ + + + +  

one will end at 2. This acceptance implies acceptance of something else, at least 
two matters, that is as a rule left unsaid. First, nobody ever mentions stopping. 
The unspoken implication seems to be that one goes on forever. Second, if one 
wants to reach 2, one has to stop adding. To stop adding means the same as 
adding zero. This is never said, but it is clearly implied.  

There is something totally inevitable about the following desired scenario. It 
needs to include two critical facts:  

1) one never stops;  
2) one ends up by adding nothing (how can one not overshoot 2 if one keeps 

adding?).  
The concept of infinity perfectly takes care of these two conditions at the same 

time. If one never stops, one will definitely end up adding  

1 .
∞

 

After all, never stopping brings one to infinity. What else could infinity be?  
Then again, after never stopping, one also wants to end up by adding nothing 

or zero. Defining the expression  

1
∞

 

as 0, as L. Euler does and I do too (and as apparently few if anyone after L. Euler 
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has), makes full allowance for the remarkable dual requirement that  
1) one has to keep increasing the denominator forever and  
2) end up by adding nothing. 
Indeed, 1), the expression ∞ fully guarantees that one has gone on forever. 

And, 2), dividing 1 by the infinitely large ∞ guarantees that one has reached 0.  
From about the nineteenth century onward, mathematicians generally felt 

very uncomfortable with all this. I impute this discomfort to the desire of ma-
thematicians to consider nothing off limits to rational human intelligence. There 
was this implied hope—so it seems to me—that, if one thought about the matter 
a little harder, one would understand it a little better. And if one kept doing this, 
one would reach a complete understanding. I personally believe that there are 
certain matters that, however hard one thinks about them, remain completely 
inaccessible to rational human intelligence. The alternative is to assume that 
there are no limits to what the brain can do. How could anyone think that this 
alternative conclusion is acceptable? 

The following inductive procedure is usually applied to infinite sums such as 

1 1 1 11 .
2 4 8 16

+ + + + +  

As one adds ever more terms, it soon becomes very apparent that the infinite 
sum assumes the value  

1.99999   

It is then only a small step—a key step universally accepted by all—to con-
clude that the result must be 2. 

A welcome confirmation of this fact is that the fraction  

1 ,
11
2

−
 

from which the above infinite sum was derived in the first place, is equivalent to 
2, as follows:  

1 1 2.
1 11
2 2

= =
−

 

Since 1.9999… and 2 result from equivalent mathematical expressions, they 
too must be equivalent. It remains a fact that there is something inaccessible to 
rational human intelligence about this equivalence. The reason is that one can 
never stop the infinite sum in order to arrive at 2. The notion of not stopping is 
accessible to rational human intelligence. Why stop if you can go on? But what 
does it mean to never ever stop? One thing is certain, if one never ever stops, one 
definitely arrives at 2. What is more, the denominator of the fractions keeps ris-
ing. When the denominator becomes infinitely large, the fraction becomes zero 
and one stops adding.  

The inductive approach can also be applied to the second dimension. In the 
second dimension, an infinite series of Equations is produced, with each Equa-
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tion resolving a fraction into an infinite series of the first dimension, as follows:  

1 1 1 1 12 1 ;
1 2 4 8 161
2

= = + + + + +
−

  

1 4 1 1 1 11 ;
1 3 4 16 64 10241
4

= = + + + + +
−

  

1 8 1 1 1 11 ;
1 7 8 64 512 40961
8

= = + + + + +
−

  

1 16 1 1 1 11 ;
1 15 16 256 4096 655361

16

= = + + + + +
−

  

1 32 1 1 1 11 ;
1 31 32 1024 32768 10485761

32

= = + + + + +
−

  

.... 

20

2 3 4 5

1 1 1048576
1 1 10485751 1

10485762
1 1 1 1 11 .

1048575 1048575 1048575 1048575 1048575

= =
− −

       = + + + + + +       
       



 

And so on.  
And finally, when one reaches infinity.  

2 3 4 51 1 1 1 1 11 .
11

       = + + + + + +       ∞ ∞ ∞ ∞ ∞       −
∞

  

This infinite series does not end at 2 like the one dimensional infinite sum 
from which it is derived, but rather at 1.  

I personally have no problems with rewriting  
1

11−
∞

 

as 
1 1.

1 0
=

−
 

One might look at it this way. There is no doubt that the two dimensional in-
finite series ends in 1 if one goes on forever. But the fraction at hand can only 
turn to 1 if one accepts the following Equation as real:  

1 0.=
∞

 

I am not denying that handling infinity is a very delicate matter. But that 
should not lead mathematicians to drop it like some kind of hot potato. It should 
encourage them to establish through accepted mathematical procedures what ra-
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tional human intelligence can know about infinity and what it cannot know. 

11. J. Wallis, L. Euler, and Infinity 

It seems to me that there is so much more to be known about the constitution of 
infinity in a systematic way than is generally assumed to be the case in the field 
of mathematics. Then again, at the same time, there is no doubt that infinity is in 
some fundamental way inaccessible to human intelligence. The quest of the hu-
man brain that is endowed with rational intelligence must therefore always be to 
be aware of the line that separates what can be known about infinity and what 
cannot be known about infinity and explicitly keep pointing to the distinction 
between the two in order to gain a proper appreciation of the phenomenon.  

The design of this paper is to definitively prove a number of facts all relating 
to infinity. The present section is concerned with what may well concern the 
most important fact about infinity, that is, the abolishment of the number line 
once and for all in favor of the number circle.  

It needs to be demonstrated that there is an undeniable undisrupted continui-
ty that runs from infinitely large positive numbers to infinitely large negative 
numbers through infinity and vice versa. If this is the case, then it is impossible 
to characterize infinity as either negative or positive because it can be demon-
strated that the very same infinity is undoubtedly bordered on one side by ex-
tremely large positive numbers and on the other side by extremely large negative 
numbers.  

In this conviction, I am hardly alone. L. Euler, the most prolific mathemati-
cian of all time, subscribed to the same view. And the ideas of J. Wallis, without 
whose work the epochal achievements of I. Newton would have been impossible, 
lead to the same conclusion. However, all kinds of discomfort regarding dealing 
with infinity led mathematicians of the nineteenth century to reject, if not con-
demn, such concepts as divergent series with a precise result, and therefore the 
notion that there is no such thing as positive and negative infinity.  

To be sure, J. Wallis himself had not quite abandoned the notions of positive 
infinity and negative infinity. That is why he believed that there are numbers 
that are larger than infinity. How can anything be larger than infinity? Nothing 
is larger than infinity. That is why it is infinity. In fact, if one moves from ex-
tremely large positive numbers to infinity itself and then goes on, one ends up in 
extremely large negative numbers. How can extremely large negative numbers 
be larger than infinity? J. Wallis does not provide an answer to this question. But 
L. Euler did, more or less along the following lines.  

The key notion is that of rising in quantity if one moves to extremely large 
positive numbers to infinity and beyond. There is no doubt that, if extremely 
large negative numbers lie beyond infinity, then—as one continues from ever 
larger positive numbers to infinity to the largest possible negative numbers and 
moves towards zero through the negative numbers—one just keeps rising in 
quantity.  

L. Euler very cleverly states that “the same quantities that are less than zero 
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can be considered to be greater than infinity” [2]. Modern mathematicians 
would define the infinity in question as negative infinity. Still, it is infinitely 
smaller than all the negative numbers because, if one starts from it, one rises in 
quantity through the negative numbers.  

There is something very satisfyingly coherent about the number circle. There 
are two ways of moving on a circle, clockwise and counterclockwise. If the 
number circle is real, as I believe that I can prove that it is, then there is some-
thing eminently consistent about movement in one direction always involving 
an increase in quantity and movement in the other direction always involving a 
decrease in quantity. This is exactly what happens in the number circle. By con-
trast, in the number line, one ascends to positive infinity and all ends there and 
one descends to negative infinity and all ends there. What happens when one 
tries to go on? The answer to this question cannot be found.  

There are two models at stake. One is the number line. The other is the num-
ber circle. The number line is now universally accepted by all. Does the number 
circle even stand a chance? I believe that, on closer inspection, the mathematical 
facts all support the veracity of the number circle as opposed to the number line. 
These facts will be laid out below. Then why is the number line so completely 
dominant in the history of mathematics? Dealing with the difference between 
the number circle and the number line involves addressing the matter of infinity. 
Again, I have the impression that mathematicians across the ages exhibit a cer-
tain aversion in dealing with infinity. They prefer to identify it as undefined or 
the like. Then again, L. Euler had no problem with confronting infinity head-on. 
His approach was completely abandoned soon after him. Then again, later on, 
there was a sense that he may have been far ahead of his time. One of the sub-
sidiary designs of the present paper is to show that he indeed was.  

12. A First Application of Two Dimensional Infinite Series 

Making the Equation 1 1 1 1 1 .− + − + − 
1
= 1

2
 Fully  

Intuitively Apparent 

The great G. W. Leibniz already accepted “without any hesitation”—to use L. 
Euler’s expression [14]—that the Equation  

1 1 1 1 1 1 1 .
2
= − + − + − +  

is valid.  
I have not tried to find the original sources documenting G. W. Leibniz’s view. 

The task would take some effort. I instead rely on L. Euler’s testimony. Clearly, 
one could rely on less trustworthy testimonies.  

There was much discussion in the eighteenth century and presumably beyond 
as to whether the above Equation is valid or not. G. W. Leibniz was convinced 
that it is. So was L. Euler. And so am I, beyond a doubt.  

One does not easily find any reflections of this controversy after the eigh-
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teenth century. Engaging infinity was more or less conceived of as dealing with 
the devil in nineteenth century mathematics. I have not been able to find en-
gagement with the Equation at hand after the eighteenth century. Then again, I 
have not performed a systematic search.  

But let there be no mistake. The Equation  

1 1 1 1 1 1 1
2
= − + − + − +  

is the truth and nothing but the truth, however improbable it may look at first 
sight. The design of the present section is to demonstrate once and for all the 
veracity of this truth by making the Equation intuitively more transparent.  

L. Euler noted [14], as G. W. Leibniz already did, that the Equation is evident 
if one considers it to be an expansion of the fraction  

1 .
1 1+

 

This fraction is but one manifestation of the more general expression 

1 .
1 a+

 

It was noted above that this expression can be resolved into an infinite series, 
with the following Equation as the result:  

2 3 41 1 .
1

a a a a
a
= − + − + −

+
                   (12) 

The technique of obtaining the series is described in detail above. If a = 1, then 
the fraction becomes  

1 1 .
1 1 2

=
+

 

This fraction can be resolved into an infinite series, with the following Equa-
tion as the result: 

1 1 1 1 1 1 1 .
2
= − + − + − +                     (13) 

There are various ways in which the veracity of this Equation has been de-
fended. But what is needed is an explanation that not only renders intuitive, but 
also serves to prove, the fact that the Equation must be true. I believe that two 
dimensional infinite series make such an explanation possible.  

As regards one dimensional series, it seems intuitively more than obvious that 
the following Equation is true:  

1 1 1 11 2.
2 4 8 16

+ + + + + =                      (2) 

The matter has been discussed above. The way in which the sum gradually 
turns into 1.9999999… can be considered an inductive proof of sorts. Then 
again, it needs to be acknowledged that there is something elusive about an ad-
dition that never stops. Indeed, as has been suggested more than once above, 
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fully comprehending infinity is ultimately inaccessible to rational human intelli-
gence.  

I believe that two dimensional infinite series can be used to make Equation 
(13) as transparent as—with the exception of a full understanding of infinity— 
Equation (2). How so?  

Consider the fraction  

1 1 .
2 1 1
=

+
                          (14) 

As was noted above, (14) can be converted into an infinite series in a first di-
mension by resolving the fraction according to the technique described above 
with the following Equation as the result:  

1 1 1 1 1 1 1− + − + − + − .                   (15) 

How to introduce infinity in a second dimension into Equation (15)? The 
value of the individual terms of the infinite series in Equation (15) is determined 
by the component a in the fraction  

1 .
1 a+

 

In fraction (14), this component is 1.  
It is possible to manipulate a so that it is transformed into an infinite series in 

a second, additional, dimension. In what way?  
If a is 1, then the infinite series adopts the peculiar form 1 1 1 1 1 1− + − + − + . 
The design of what follows is to establish by means of infinite series what 

happens  
1) as a comes ever infinitely closer to 1 from what is smaller than 1 by ever in-

creasing and  
2) as a comes ever infinitely closer to 1 from what is bigger than 1 by ever de-

creasing.  
For the present purpose, it will suffice to determine what happens when a  

1) approaches 1 by rising from 
1
2

  

or  

2) approaches 1 by descending from 
3
2

.  

At the same time, 1
1 a+

  

1) approaches 
1
2

 by descending from 2
3

  

or  

2) approaches 
1
2

 by rising from 2 .
5

  

Evidently, when a rises, 1
1 a+

 descends and vice versa.  
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As regards 1), four somewhat randomly selected values will be assigned to a,  

namely 
1
2

, 
3
4

, 999999
1000000

, and 999999999
1000000000

. It is easy to imagine how a infi-  

nitely keeps growing bigger while ever approaching 1 if one keeps adding an 
equal number of nines to the numerator as one adds zeros to the denominator of 
the fourth fraction. This is the dimension of infinity.  

As a increases in quantity towards 1 from 
1
2

, the fraction  

1
1 a+

 

decreases in quantity towards 
1
2

. The fraction assumes the following forms: 

1 1 1 1; ; ; .
1 3 999999 9999999991 1 1 1
2 4 1000000 1000000000

+ + + +
 

Equivalent values of these four fractions are as follows:  

2 4 1000000 1000000000; ; ; .
3 7 1999999 1999999999

 

As one can see, the infinite series of fractions of the type 1
1 a+

 gradually de-

creases—starting from 2
3

—and infinitely approaches 
1 ,
2

 while a at the same 

time gradually increases starting from 
1
2

 and infinitely approaches 1.  

As regards 2), four somewhat randomly selected values will be assigned to a,  

namely 
3
2

, 
5
4

, 1000001
1000000

, and 1000000001
1000000000

. It is easy to imagine how a infi-  

nitely keeps growing smaller while ever approaching 1 if one keeps adding an 
equal number of zeros to the numerator as one adds zeros to the denominator of 
the fourth fraction.  

Since a starts by a quantity of 
1
2

 below 1 in 1), namely at 
1
2

, it is only har-

monious or congruous or the like for a to start by a quantity of 
1
2

 above 1 in 2), 

namely at 
3
2

.  

It is easy to imagine how a infinitely keeps growing smaller while ever ap-
proaching 1 if one keeps adding an equal number of zeros to the numerator and 
the denominator of the fourth fraction.  

As a decreases in quantity towards 1, the fraction  

1
1 a+

 

increases in quantity towards 
1
2

. The fraction assumes the following forms:  
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1 1 1 1; ; ; .
3 5 1000001 10000000011 1 1 1
2 4 1000000 1000000000

+ + + +
 

Equivalent values of these four fractions are as follows: 

2 4 1000000 1000000000; ; ; .
5 9 2000001 2000000001

 

As one can see, the infinite series of fractions of the type 1
1 a+

 gradually in-

creases—starting from 2
5

—and gradually and infinitely approaches 
1 ,
2

 while a 

at the same time gradually decreases starting from 
3
2

 and infinitely approaches 

1.  
What does all this mean for what happens at a = 1?  
It is first necessary to observe what happens when a infinitely approaches 1. 

But in order to make this truly possible, there is need for another dimension of 
infinity, which is obtained by converting the fractions defined above into infinite 
series, more specifically infinite sums. These conversions, to which the conver-
sion for a =1 has been added, are as follows:  

1
2

a = :  

1 2 1 1 1 1 11 ;
1 3 2 4 8 16 321
2

= = − + − + − +
+

  

3
4

a = :  

1 4 3 9 27 81 2431 ;
3 7 4 16 64 256 10241
4

= = − + − + − +
+

  

999999
1000000

a = :  

2 3 4

1 1000000
999999 19999991

1000000
999999 999999 999999 9999991 ;

1000000 1000000 1000000 1000000

=
+

     = − + − + −     
     



 

999999999
100000000

a = :  

2 3 4

1 1000000000
999999999 19999999991

1000000000
999999999 999999999 999999999 9999999991 ;

1000000000 1000000000 1000000000 1000000000

=
+

     = − + − + −     
     


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1a = : 

1 1 1 1 1 1 1 1 ;
1 1 2

= = − + − + − +
+

  

1000000001
1000000000

a = :  

2 3 4

1 1000000000
1000000001 20000000011
1000000000

1000000001 1000000001 1000000001 10000000011 ;
1000000000 1000000000 1000000000 1000000000

=
+

     = − + − + −     
     



 

1000001
1000000

a = :  

2 3 4

1 1000000
1000001 20000011
1000000

1000001 1000001 1000001 10000011 ;
1000000 1000000 1000000 1000000

=
+

     = − + − + −     
     



 

5
4

a = :  

1 4 5 25 125 6251 ;
5 9 4 16 64 2561
4

= = − + − + −
+

  

3
2

a = :  

1 2 3 9 27 811 .
3 5 2 4 8 161
2

= = − + − + −
+

  

One could further increase the value of a, say to 2. The result is the following 
Equation:  

1 1 1 2 4 8 16 .
1 2 3

= = − + − + −
+

  

This result seems quite peculiar at first sight. It will be explained further below. 
One is reminded of the following true Equation, equally peculiar:  

1 1 2 4 8 16 .− = + + + + +  

The true nature of these unusual Equations will be clarified further below.  
At this juncture, the task at hand is to make sense of the sequence of Equa-

tions listed above. I have the impression that the sequence makes fully transpa-
rent, or brings to the surface, what is happening in the seemingly elusive Equa-
tion  

( )
1 1 1 1 1 1 1 1 .

1 a 1 2
= = − + − + − +

+ =
  

Three empirical observations are possible.  
First Empirical Observation  
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As the value of a rises towards 1 on an infinite trajectory, so do the terms of 
the infinite sum.  

Second Empirical Observation  
As the value of a rises towards 1 on an infinite trajectory, the individual terms 

of the infinite sum oscillate down and up—away from the initial term 1—by an 
infinitely growing quantity and the infinite series reaches the rational number 
that is its final sum by ever more densely distributed terms. 

Third Empirical Observation  
As the individual terms of the infinite sum oscillate down and up—away from 

the initial term 1—by an infinitely growing quantity while themselves ap-  

proaching 1, the sum of the Equation grows ever more closely to 
1
2

. How is this  

possible? One has the impression of two contradictory movements. In one re-  

spect, the individual terms are clearly getting farther away from 
1
2

. In another 

respect, the sum of the individual terms is clearly approaching 
1
2

. How can an  

evolving sum at the same get farther away and get closer to a certain number?  

The answer is as follows. As the individual terms get farther away from 
1
2

, there  

are ever more of them at ever smaller intervals. This dynamic clearly overcomes  

the dynamic of the individual terms growing away from 
1
2

. But how can we be 

certain of the fact that the removal of the individual terms from 
1
2

 goes hand in 

hand with their sum approaching 
1
2

? The value of the fractions from which  

the infinite sums have been derived clearly proves it. One might object and state 
that there is something elusive about this proof. This is exactly where the main 
point of the present paper comes into play. All the numerical dynamics de-
scribed above happen in the dimension of infinity, which is ultimately inaccessi-
ble to rational human intelligence. All positive indications are that the individual  
terms can gradually grow closer to 1 as their sum approaches 1/2. It may there-  
fore be very easily anticipated already now that, in the dimension of infinity, the  
individual terms reach the value 1 as their sum reaches 1/2 beyond a doubt,  
even if a complete and final understanding of this critical fact is ultimately 
beyond rational human intelligence because it involves an understanding of in-
finity. And comprehending infinity is clearly beyond rational human intelligence. 
The crucial search remains, as before, the line that divides what rational human 
intelligence can know from what it cannot know.  

To illustrate and confirm these three empirical observations, I produce again 
one of the Equations listed above: 

2 3 41 1000000 999999 999999 999999 9999991 .
999999 1999999 1000000 1000000 1000000 10000001

1000000

     = = − + − + −     
     +

  
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There is no doubt about the veracity of this Equation. It is easy to verify in-  

ductively that the infinite series comes ever closer to 1000000
1999999

 as one keeps  

adding and subtracting ever more terms in the infinite series. The fraction  
1000000
1999999

 corresponds to the decimal notation  

0.50000025000012500006250003125002… 

The notation shows an interesting multiplication by 5 and a gradual reduction 
of the number of zeros. I have not investigated how the decimal notation 
proceeds.  

The end scenario seems obvious. Two things happen as a rises towards—and 
reaches—1:  

1) every individual term of the infinite series turns into 1 and  

2) the fraction from which the infinite series is derived turns into 
1
2

, 

as can be seen in the Equation  

1 1 1 1 1 1 1 1 .
1 1 2

= = − + − + − +
+

  

It is fairly easy to accept that the following expression equals 1: 

1 1 1 1 1 1 1 1 11 ,
2 4 8 16 32 64 128 256 512

+ + + + + + + + + +  

even if it remains elusive how a sum that never stops results in an integer in the 
dimension of infinity.  

It seems just as easy to accept that  

1000000000
1999999999

 

turns into  

1
2

 

as  

999999999
1000000000

 

turns into  

1 

in the Equation 

2

3 4

1 1000000000
999999999 19999999991

1000000000
999999999 9999999991

1000000000 1000000000

999999999 999999999 .
1000000000 10

  
00000000

=
+

 = − +  
 

   − + −   
   


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It is also clear that the end results 1 and 
1
2

 are obtained in the dimension of  

infinity. Comprehending them is therefore inaccessible to rational human intel-
ligence.  

So far, the rise of a from 
1
2

 to 1 has been documented in detail to prove—  

and at the same time to render fully transparent and intuitive (excluding a com-
prehension of infinity, which cannot be transparent or intuitive)—that the fol-
lowing Equation is the most natural thing in the world:  

( )
1 1 1 1 1 1 1 1 .

1 a 1 2
= = − + − + − +

+ =
  

So far, a has risen from 
1
2

 to 1. At the same time, the value of the fraction 

1
1 a+

 has fallen from 
3
2

 to 
1
2

. As a result, the individual terms of the infinite  

sum following the initial 1 have all risen to 1. One therefore expects all the indi-
vidual terms of the infinite sum following the initial 1 to rise above 1 when a ris-
es above 1.  

In the following Equation, a rises to 1000000001
1000000000

, just above 1:  

2

3 4

1 1000000000
1000000001 20000000011
1000000000

1000000001 10000000011
1000000000 1000000000

1000000001 1000000001 .
1000000000 1000000000

=
+

 = − +  
 

   − + −   
   



 

As expected, the value of the fraction 1
1 a+

 drops just below 
1
2

. And the in-  

dividual terms of the infinite sum following the initial 1 have all risen above 1. 
The terms grow infinitely. But the infinite series of additions is counteracted by  

an infinite series of subtractions. In the end, the term 
1
2

 is reduced by just 

1
400000002

.  

Additional proof of the veracity of  

1 1 1 1 1 1 1
2
= − + − + − +  

involves the notion of continuity. 
It cannot be denied that there is perfect continuity in the transition from  

1 1000000000
999999999 19999999991

1000000000

=
+
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to 

1 1
1 1 2

=
+

 

and on to 

1 1000000000 .
1000000001 20000000011
1000000000

=
+

 

Then why would there not be perfect continuity between the undeniable ma-
thematical equivalents of these three expressions, the following three infinite se-
ries: 

2 3 4999999999 999999999 999999999 9999999991 ;
1000000000 1000000000 1000000000 1000000000

     − + − + −     
     

  

1 1 1 1 1 1 ;− + − + − +  

and 
2 3 41000000001 1000000001 1000000001 10000000011 .

1000000000 1000000000 1000000000 1000000000
     − + − + −     
     

  

There are infinite Equations of the same type as  

1 1 1 1 1 1 1 .
2
= − + − + − +                     (16) 

By dividing the dividend −1 by part of the divisor 1 + 1, namely just 1, ac-
cording to the method described above, one obtains  

1 1 1 1 1 1 1 .
2

− = − + − + − + −  

By multiplying (16) by any number, say by 2 or by 
1
2

, one obtains 

1 2 2 2 2 2 2= − + − + − +  

and  

1 1 1 1 1 1 11 .
4 2 2 2 2 2 2
= − + − + − + −  

And so on.  

13. Sequences Suggesting the Veracity of the Number Circle 

Consider the following sequence of fractions.  

( ) ( ) ( )1 1 1 1 1 1( 1) 2 1000 1000000
1 1 13 2 1
2 1000 1000000

= = = =  

( )1 ? ?
0
= ∞ +∞  

( ) ( ) ( ) ( )1 1 1 1 1 11000000 1000 2 1
1 1 1 1 2 3

1000000 1000 2

= − = − = − = −
− − −

− − −

  (17) 
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Any high school student will easily notice that the numerator of these frac-
tions continuously decreases. The numerator is located on an uninterrupted 
continuous downward path.  

But what happens at the same time to the fraction as whole? In the first half of 
the sequence, the fractions are positive and their value keeps rising towards in-
finity. Then the numerator turns to 0. Immediately after it has turned to 0, the 
fractions are hugely negative and keep rising towards 0.  

But what happens at 1
0

 itself? The crucial question is as follows: Is there con-

tinuity at the fraction 1
0

 just as there is continuity at the numerator 0? If it is 

certain that there is continuity at 1
0

, then there is an uninterrupted continuum 

from infinitely large positive numbers to 1
0

 and then on to infinitely  

large negative numbers.  

As it happens, there are various issues with the matter of continuity at 1
0

.  

These issues are discussed below.  
But let us assume for the sake of the argument that there is indeed continuity  

at 1
0

. What does this mean?  

If there is continuity at 1
0

, then 1
0

 is bordered on one side by infinitely  

large positive numbers and on the other side by infinitely large negative num-  

bers. The fraction 1
0

 borders both infinitely large positive numbers on one  

side and infinitely large negative numbers on the other side.  

At the same time, it is easy to think of 1
0

 as infinitely large even if mathema-  

ticians—in the wake of nineteenth century mathematics—would label it as “un-  

defined”. L. Euler had no difficulty whatsoever in equating 1
0

 with infinity.  

Nor did J. Wallis. Nor do I.  

To anyone accepting that 1
0

 equals infinity, as L. Euler and I do, it becomes  

extremely tempting to assume—as L. Euler does and I do too—that one passes 
from infinitely large positive numbers through infinity to infinitely large positive 
numbers, and vice versa.  

That means that infinity is neither negative nor positive. It is rather a point at 
which one passes from the positive numbers to the negative numbers and vice 
versa. In the same way, there is no negative zero and no positive zero. In that 
regard, infinity and zero are two points at which one passes from the positive 
numbers to the negative numbers and vice versa.  

Again, the beautiful harmony of all this is as follows. If one moves in one di-



L. Depuydt 
 

118 

rection on the number circle, one always rises in quantity. If one moves in the 
other direction, one always falls in quantity. Quantity behaves perfectly as a kind 
of clockwork. 

L. Euler—and apparently no one after him as far as I know (until now)— 
stated very clear that 

not only from algebra but also from geometry, we learn that there are two 
jumps from positive quantities to negative ones, one through nought or zero, the 
other through infinity, and that quantities greater than infinity are thereby less 
than zero and quantities less than infinity coincide with quantities greater than 
zero. 

To prove the veracity of the number circle, one wishes that two conditions 
were met, the following: 

1) one wished that one could prove that there is continuity at 1
0

 in sequence  

(17);  
2) one wished that the proof in 1) would not involve any need to make a  

commitment as to the true nature of 1
0

. I have no problem defining 1
0

, along 

with L. Euler, as an expression of infinity neither negative or positive. But 1
0

 is  

mostly described as undefined and I therefore refrain from identifying it as in-
finity as far as the proof is concerned.  

Proof of the number circle is provided in section 14 below. This proof leaves  

no doubt, I believe, that there is continuity at 1
0

. And the proof does not require 

any commitment as to the true nature of the expression 1
0

. Before pro-  

ceeding to section 14, some problems with sequence (17) may be noted.  
Is it possible to rearrange sequence (17) as follows?  

1 1 1 1 1 1 1 11 2 1000 1000000 1000000 1000 1 2
3 2 0 0 0 0 2 3

   = + = − − − − −   + − − −   
 

And therefore also as follows?  
1 1 1 1 1 1? 1000000 1000 1 2 0 1210001000000 ?
0 2 3 3 2 0

− − − − − +
− −

 

This sequence accords with the reigning concept of the number line starting at 
minus infinity at one end and ending at plus infinity at the other end.  

All is not clear. Someone trying to use sequence (17) as proof of the number  

circle may be accused of circular reasoning by equating 1
0

−  with 1
0

+ .  

Also, there is another type of continuity that needs to be taken into considera-
tion. What happens if, in the sequence of fractions listed above, 1 is systemati-
cally replaced by −1? The resulting sequence is as follows:  

( ) ( )1 1 1 1 1 11 2
13 3 2 2 1
2

− − − −   = − = − = − = −   
   
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( ) ( )1 11000 1000000
1 1

1000 1000000

− −
= − = −  

( )1 ? ?
0
−

= ∞ −∞  

( ) ( )1 11000000 1000
1 1

1000000 1000

− −
= + = +

− −
 

( ) ( )1 1 1 1 1 12 1
1 1 2 2 3 3
2

− − − −   = + = + = =   − − −   −
 

The numerator again decreases gradually across the entire sequence. In the 
first half of the sequence, the fractions are negative and their value keeps rising 
towards infinity. Then the numerator turns to 0. Immediately after, the fractions 
are hugely positive and keep rising towards zero and to what is in effect the be-
ginning of the sequence. In other words, there is continuity from the end of the 
sequence to the beginning of the sequence.  

But what happens at 1
0
− ? This fraction borders both infinitely large positive  

numbers on one side and infinitely large negative numbers on the other side. At  

the same time, it is easy to think of 1
0
−  as infinitely large even if mathemati-  

cians—in the wake of nineteenth century mathematics—would label it as “unde-  

fined”. L. Euler had no difficulty whatsoever in equating 1
0
−  with infinity.  

In sum, one is faced with two types of continuity. One type of continuity  

passes through 1
0

 and the other passes through 1
0
− . The fraction 1

0
−  could 

also be written as 1
0−

. But is there such a thing as minus zero?  

The two rivaling sequences presented above make it tempting to equate 1
0

 

with 1
0
− . Equating the two would solve the problem. But can one do this? 

And what is the relation between 1
0

− , 1
0
− , and 1

0−
 exactly?  

In the end, there is a lot of conflict surrounding the sequences described above. 
Perhaps, someone will be able to derive from these sequences a kind of proof of 
L. Euler’s belief. I personally am not at this time. I see much that is extremely 
suggestive. But I do not discern anything that constitutes positive proof.  

J. Wallis already noted the remarkable properties of a sequence like (17). He 
may have been the first to note that huge negative numbers can follow huge pos-
itive numbers. His views are discussed in section 17 below. But J. Wallis did not 
prove the number circle. In fact, he did not conceive of it. He describes negative 
numbers that following huge positive numbers as “greater than infinity”. By the 
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same token, he should have come to the conclusion that there are also positive 
numbers that are smaller than infinity.  

I do not agree with J. F. Scott, the principal student of J. Wallis’s mathematical  

work, when he writes that “[h]is error lay in the fact that he assumed 1
a

 to in-  

crease continually as a by units diminished, and that this increase persisted when 
a = 0” [6]. Rather, I believe J. Wallis noticed something remarkable. But he could 
not explain it. J. F. Scott writes as follows: 

Thus Wallis arrived at a position which he did not understand, namely, the 
transition from a positive to a negative quantity by way of infinity [6].  

And also as follows:  
But here a formidable obstacle presented itself, which not even the genius of 

Wallis was able to overcome [15].  
L. Euler provided an explanation. It is time to prove the explanation. 

14. First Proof of the Number Circle or Cycle: Inductive,  
by Means of Two Dimensional Infinite Series 

What is it that needs to be proven in order to prove the veracity of the number 
cycle? The QED needs to be defined precisely because the danger of producing a 
circular proof is great. It is clear that there is continuity from negative to positive 
numbers and vice versa at zero (0), as follows: 

1 1 1 1 1 15 2 1 0 1 2 5 .
2 5 1000000 1000000 5 2

− − − − − − −               

The sequence could also be presented as follows:  

1 1 1 1 1 15 2 1 0 1 2 5 .
2 5 1000000 1000000 5 2

− − − − − −               

At 0, the transitions from negative to positive numbers and from positive to 
negative numbers happen at the smallest possible negative numbers and the 
smallest possible positive numbers.  

What needs to be proven is that there is likewise continuity from negative to 
positive numbers and vice versa across infinity, infinity being neither negative 
nor positive: 

1 2 5 1000000 1000000000
1000000000 1000000 5 2 1 .

∞
− − − − −

     

     

         (18) 

Sequence (18) could also be represented as follows:  
1 2 5 1000000 1000000000

1000000000 1000000 5 2 1 .
− − − − − ∞     

     

 

In other words, all that separates the largest possible negative numbers from 
the largest possible positive numbers is infinity. In every other regard, there is 
continuity.  

To be successful, the anatomy of the desired proof is best performed in two 
steps, as far as I can see. Why?  
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It is clear that the largest possible negative numbers and the largest possible 
positive numbers are not continuous in that the largest possible negative number 
is immediately adjacent to the largest possible negative number or the largest 
possible negative number immediately adjacent to the largest possible positive 
number. They do not touch, as it were. Rather, they are adjacent in that they 
share a common boundary. To use a metaphor, they are like two gardens that 
can be viewed as continuous because all that separates them is a fence.  

It is therefore necessary to prove two matters distinctly and separately from 
one another: 

1) that there is continuity from the largest possible positive numbers to the 
largest possible negative numbers, and vice versa, involving a common boun-
dary; 

2) that the identity of the common boundary is infinity, which is neither nega-
tive nor positive.  

Towards delivering proof of 1) and 2), it is necessary to perform two conver-
sions.  

The first conversion is as follows. The numbers in sequence (18) can be con-  

verted into the form 1
1 a−

 as follows:  

1 1 1 1 1
3 6 1000001 10000000011 2 1 1 1 1
2 5 1000000 1000000000

− − − − −
       

1
1 ?−

   

1 1 1 1 1 .
999999999 999999 4 1 1 01 1 1 1

1000000000 1000000 5 2
−− − − −

           (19) 

I have left ∞  out of consideration for the time being in converting sequence 
(18) into sequence (19). It is part of what needs to be proven. Still, it is possible  

to determine the value of a, 1), as 1000000001
1000000000

 becomes ever smaller in a 

rightward direction on an infinite trajectory toward 10000.0000 1
1000000000





 by adding  

an equal number of zeros at… in both numerator and denominator and, 2), as  
999999999

1000000000
 becomes ever larger in a leftward direction on an infinite trajecto-

ry toward 999999999
1000000000





 by adding as many 9 s to the numerator of  

999999999
1000000000





 as 0s to the denominator. Totally independently from any con-  

sideration of ∞, it seems more than obvious inductively that a becomes 1 in the  

dimension of infinity. Accordingly, the expression 1
1 ?−

 at this point is as fol-  

lows:  
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1 .
1 1−

 

Importantly, with the addition of 1
1 1−

, sequence (19) seems to become fully 

continuous. But the problem is the interpretation of 
1

1 1−
. It is not clear what to  

make of it. An obvious equivalent is as follows:  

1 .
0

 

For reasons laid out in section 13 above, I try to avoid this expression if I can. 
There has been much controversy about it and it is common for mathematicians 
to leave it undefined.  

In agreement with L. Euler and J. Wallis, I have no doubt that 

1  .
0
= ∞  

But verifying this Equation is in fact part of what needs to be proven and as-
suming it to be true at this point would therefore constitute circular reasoning.  

I therefore leave the expression  

1
1 1−

 

as it is.  

The need is for an unambiguous proof of continuity that does involve 
1

1 1−
 

but makes it unnecessary to deal with 1 .
0

  

Towards that purpose, a second conversion may be applied converting the  

fractions in sequence (19), including 
1

1 1−
, into infinite series. Again, hardly  

any mathematical technique has proven as successful as infinite series. And it 
will appear that the technique will be indispensable in trying to understand the 
geography of infinity itself better. It takes infinity to explain infinity, as it were.  

The technique of converting fractions into infinite series has been laid out at 
great length above. Accordingly, there is no doubt that each of the infinite series 
of fractions in Equation (19) can be converted into an infinite series as follows, 
as infinity is expanded into a second dimension:  

11 1 2 4 8 16 ;
1 2

− = = + + + + +
−

  

2 3 41 3 3 3 3 3 9 27 812 1 1 ;
3 2 2 2 2 2 4 8 161
2

     − = = + + + + + = + + + + +     
     −

   

2 3 41 6 6 6 6 6 36 216 12965 1 1 ;
6 5 5 5 5 5 25 125 6251
5

     − = = + + + + + = + + + + +     
     −

   
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2 3 4

11000000
10000011
1000000
1000001 1000001 1000001 10000011 ;
1000000 1000000 1000000 1000000

− =
−

     = + + + + +     
     



 

2 3 4

11000000000
10000000011
1000000000
1000000001 1000000001 1000000001 10000000011 ;
1000000000 1000000000 1000000000 1000000000

− =
−

     = + + + + +     
     



 

( ) ( ) ( )2 3 41 1 1 1 1 1 1 1 1 1 1 ;
1 1

== + + + + + = + + + + +
−

   

2 3 4

11000000000
9999999991

1000000000
999999999 999999999 999999999 9999999991 ;

1000000000 1000000000 1000000000 1000000000

=
−

     = + + + + +     
     



 

2 3 41 999999 999999 999999 9999991000000 1 ;
999999 1000000 1000000 1000000 10000001

1000000

     = = + + + + +     
     −

  

2 3 41 4 4 4 4 4 16 64 2565 1 1 ;
4 5 5 5 5 5 25 125 6251
5

     = = + + + + + = + + + + +     
     −

   

2 3 41 1 1 1 1 1 1 1 12 1 1 ;
1 2 2 2 2 2 4 8 161
2

     = = + + + + + = + + + + +     
     −

   

( ) ( ) ( )2 3 411 1 0 0 0 0 1 0 0 0 0 .
1 0

= = + + + + + = + + + + +
−

   

It seems to me that this two dimensional representation of infinity provides 
the proof that is sought.  

The expression 
1

1 1−
 has vanished and is now just one infinite series among  

an infinite series of infinite series. Each infinite series is equivalent to an integer 
because the series was converted from an integer through the mediation of a 
fraction.  

A crucial property of the infinite series is that all the numbers are positive, as 
one can see from the following presentation:  

1 2 4 8 16 ;+ + + + +  

3 9 27 811 ;
2 4 8 16

+ + + + +  

6 36 216 12961 ;
5 25 125 625

+ + + + +  
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2 3 41000001 1000001 1000001 10000011 ;
1000000 1000000 1000000 1000000

     + + + + +     
     

  

2 3 41000000001 1000000001 1000000001 10000000011 ;
1000000000 1000000000 1000000000 1000000000

     + + + + +     
     

  

1 1 1 1 1 ;+ + + + +  
2 3 49999999999 999999999 999999999 9999999991 ;

1000000000 1000000000 1000000000 1000000000
     + + + + +     
     

  

2 3 4999999 999999 999999 9999991 ;
1000000 1000000 1000000 1000000

     + + + + +     
     

  

4 16 64 2561 ;
5 25 125 625

+ + + + +  

1 1 1 11 ;
2 4 8 16

+ + + + +  

1 0 0 0 0 .+ + + + +  

It is therefore abundantly obvious that the infinite series descends conti-
nuously through positive numbers. Consider, for example, just the second term, 
as follows: 

1 2 ;+ +  

31 ;
2

+ +  

61 ;
5

+ +  

10000011 ;
1000000

+ +  

10000000011 ;
1000000000

+ +  

1 1 ;+ +  

9999999991 ;
1000000000

+ +  

9999991 ;
1000000

+ +  

41 ;
5

+ +  

11 ;
2

+ +  

1 0 .+ +  

The second term descends continuously from 2 to 0. There is no disruption of 
the continuity whatsoever at any point.  

This undeniable continuity makes it possible to prove Part One of the sought 
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proof. It is that infinitely large positive numbers and infinitely large negative 
numbers are continuous in that they share a single common boundary, as fol-
lows: 

1 1 2 ;− = + +  

32 1 ;
2

− = + +  

65 1 ;
5

− = + +  

10000011000000 1 ;
1000000

− = + +  

10000000011000000000 1 ;
1000000000

− = + +  

? 1 1 ;= + +  

9999999991000000000 1 ;
1000000000

= + +  

9999991000000 1 ;
1000000

= + +  

45 1 ;
5

= + +  

12 1 ;
2

= + +  

1 1 0 .= + +  

This infinite series of infinite series on the right-hand, 1), guarantees the ve-
racity of continuity and, 2), also reveals the identity of the common boundary in 
terms of an infinite series. The common boundary is as follows:  

1 1 1 1 1 .+ + + + +  

QED, as far as Part One is concerned.  
The second part of the proof concerns the identity of the common boundary  

1 1 1 1 1 .+ + + + +  

It is tempting to equate this infinite series with ∞ because the infinite series  

was derived from the expression 
1

1 1−
 and this expression can be rewritten as 

1
0

, which J. Wallis and L. Euler equated with ∞ . The problem, however, as was 

already pointed out, is that equating 1
0

 with ∞  is what needs to be proven.  

In fact, two universally held tenets currently completely dominate mathemat-
ics, the following:  

1) there is such a thing as negative infinity ( )−∞  and there is such a thing as 
positive infinity ( )+∞ ;  

2) the expression 1
0

 is undefined (I do not know who first promoted this  
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concept, presumably in the nineteenth century).  
By sharp contrast, the design of the present paper is to demonstrate once and 

for all the following opposite tenets: 
1) infinity is neither negative nor positive;  

2) 1
0
= ∞ .  

I have the impression that this set of two tenets has been either positively 
proven or positively disproven. Therefore, the question arises: What does the 
evidence tell us?  

Consider again an excerpt of the infinite series of infinite series already men-
tioned above:  

10000011000000 1 ;
1000000

− = + +  

10000000011000000000 1 ;
1000000000

− = + +  

? 1 1 ;= + +  

9999999991000000000 1 ;
1000000000

= + +  

9999991000000 1 .
1000000

= + +  

The infinite sums on the right-hand side leave no doubt about the identity of 
the boundary between the largest possible positive numbers and the largest 
possible negative numbers. It is, as was noted above,  

1 1 1 1 1 .+ + + + +  

But what about expressing this boundary in terms other than by an infinite 
series? Let us consider the numbers on the left-hand side of the above sequence.  

It is clear from the left-hand side of the above sequence that the expression 
1 1 1 1 1+ + + + +  is obtained after increasing positive numbers in all infinity. 
Everyone now assumes that, if one increases a quantity forever, one finds an in-
finitely large quantity or positive infinity. At the same time, it is clear from the 
left above sequence that the expression 1 1 1 1 1+ + + + +  is obtained after de-
creasing positive numbers in all infinity. Everyone now assumes that, if one de-
creases a quantity forever, one finds an infinitely large quantity or positive infin-
ity.  

A problem arises at this time. There is only one expression 1 1 1 1 1+ + + + + . 
The above sequence makes clear that the expression is encountered when mak-
ing positive numbers infinitely larger, that is, at infinity. But identifying the in-
finity in question as positive contradicts the fact that the same expression is also 
encountered in the same sequence when making negative numbers infinitely 
smaller, that is, at infinity. Then again, identifying infinity instead as negative 
contradicts the notion that the same expression is also encountered in the same 
sequence when making positive numbers infinitely larger.  
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Defining infinity as either positive or negative is absurd in the mathematical 
sense. The simple conclusion is that infinity is neither positive nor negative. But 
it is still infinity. QED, as far as Part Two of the proof is concerned.  

This proof may be in need of some extra confirmation. Such confirmation is 
derived from the following consideration.  

In the expression 1 1 1 1 1+ + + + + , one has the impression of rising towards 
positive infinity. And yet the facts evidence that this expression is located where 
both negative numbers descend to infinity and positive numbers rise to infinity 
at the same time.  

The attention turns to the expression 1 1 1 1 1− − − − − − . One has the im-
pression that this expression rises towards negative infinity. And yet, the facts 
evidence that it too is located where both negative numbers descend to infinity 
and positive numbers rise to infinity at the same time. It has already been estab-
lished that infinity, which is neither positive nor negative, is the boundary be-
tween the largest possible positive numbers and the largest possible negative 
numbers.  

Consider again an excerpt of the infinite series of infinite series already men-
tioned above:  

10000011000000 1 ;
1000000

− = + +  

10000000011000000000 1 ;
1000000000

− = + +  

1 1 ;= + +  

9999999991000000000 1 ;
1000000000

= + +  

9999991000000 1 .
1000000

= + +  

It is quite legitimate to multiply all the terms in these equations with 1− . The 
result is as follows:  

10000011000000 1 ;
1000000

+ = − − −  

10000000011000000000 1 ;
1000000000

+ = − − −
 

? 1 1 ;= − − −  

9999999991000000000 1 ;
1000000000

− = − − −  

9999991000000 1 .
1000000

− = − − −  

Evidently, the expression 1 1 1 1 1− − − − − −  exhibits the exact same proper-
ties as the expression 1 1 1 1 1+ + + + + + . It ends where both negative numbers 
decrease to infinity and positive numbers rise to infinity. It therefore reaches an 
infinity that cannot possibly be defined as either negative or positive if one is to 
avoid absurdity in the mathematical sense.  
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Therefore, not only 1 1 1 1 1+ + + + + + , but also 1 1 1 1 1− − − − − − , needs 
to be defined as infinity being neither positive nor negative.  

The inevitable conclusion is that  

( )1 1 1 1 1 1 1 1 1 1 .+ + + + + + = − − − − − −    

Then again, there may be those that view this Equation as an argument for 
refusing to accept the veracity of the number circle. It should be noted at this 
point that I feel that what precedes provides sufficient mathematical proof of the 
number circle. I have therefore no doubt that the above Equation is true. But 
realizing that not everyone may be easily convinced, I will present a completely 
independent algebraic proof that the Equation is indeed true. This proof is pre-
sented in section 17 below. 

15. +2 Both Larger and Smaller than −2 

If the number circle is true, as I firmly believe that it is (as a consequence of ma-
thematical proof presented above and below), then one of its most remarkable 
implications is that every number is at the same time both smaller and larger 
than any other number.  

On a circle, there are two ways of reaching one point from any other point, 
clockwise and counterclockwise. The same must therefore be true of the number 
circle.  

It will be useful to illustrate this fundamental point with a simple example.  
Let us take two points on the number circle, 2+  and 2− . Anyone who ac-

cepts the veracity of the number circle, as I do, needs to be able to specify in 
strict mathematical terms: 

1) how 2+  is larger than 2−  and  
2) how 2+  is smaller than 2− .  
What does it mean for one number to be both larger and smaller than another 

number? This is the challenge. 
Evidently, if 2+  is larger than 2− , then it should be possible to subtract 

something from 2+  and obtain 2− . In this case, the solution is more than ob-
vious. If one subtracts 4 from 2+ , one obtains 2− . In subtracting 4 from 2+ , 
one passes through zero. In sum, 

2 4 2.− = −  

But what does one need to add to 2+  to obtain 2− , in order to demonstrate 
that 2+  can also be thought of as being smaller than 2− ? The answer is: one 
adds 

1) a certain number  
2) and an infinite series that is shortened at the beginning.  
This number and this infinite series are obtained as follows.  

2−  can be written as follows:  

1 1 1 2.
3 2 3 11
2 2 2 2

= = = −
− − −
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The fraction  

1
31
2

−
 

can be converted into the following infinite series according to the techniques 
laid out above: 

9 27 81 2431 .
4 8 16 32

+ + + + +  

This infinite series can be rewritten as follows: 

5 27 81 243 7291 1 .
4 8 16 32 64

+ + + + + +   

It follows that, if one adds  

5
4

 

as well as an infinite series from which the term is removed, namely 

27 81 243 2187
8 16 32 128
+ + +   

to 2+ , one obtains 2− . 
Or the following Equation applies:  

( ) 5 27 81 2432 2.
4 8 16 32

+ + + + + + = −  

In adding the expression  
5 27 81 243 2187
4 8 16 32 128
+ + + +   

to 2+ , one obtains 2− . 
In adding said expression to 2+  to obtain 2− , one passes through infinity. 

In adding 4−  to 2+ , one passes through zero. In adding  
5 27 81 243 2187 ,
4 8 16 32 128
+ + + +   

one passes through infinity. Therefore, it is clear that there are two ways of 
moving on the number circle, clockwise and counterclockwise as it were.  

But moving through infinity is quite different from moving through 0. There 
are in fact an infinite number of ways of moving from one number to another 
number through infinity, and all are equally mathematically exact according to 
proven mathematical techniques.  

For example, it is a fact that  

2 2 4 8 16 32 .− = + + + + +  

Therefore, the difference between 2+  and 2−  can also be defined by the 
following infinite series:  

4 8 16 32 64 .+ + + + +  

The remarkable thing about infinity is that all processes involving infinity 
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happen in an infinite number of ways and each of these ways is fully mathemat-
ically precise.  

It is time to map the geography of infinity. Some of this will be proposed in 
what follows. But a fuller account of the geography of infinity will need to be 
postponed to future papers. 

16. Second Proof of the Number Circle or Cycle:  
Demonstration that  1+1+1+1+1+ = -1-1-1-1-1-  

It was demonstrated above that both  

1 1 1 1 1+ + + + +  

and  

1 1 1 1 1− − − − − −  
are identical in both bordering at the same time the largest possible negative 
numbers and the largest possible positive numbers. It was concluded above that 
both are equal to infinity, which is neither negative nor positive. I believe this 
proof to be sufficient.  

But it is possible to deliver a different kind of proof that the two are indeed 
equal to one another. The first of the two has been obtained by resolving the 
fraction  

1
1 1−

 

into an infinite series according to accepted techniques. The essence of the tech-
nique is to divide 1 by only part of the fraction, namely 1.  

It is altogether acceptable to restyle the above expression as 

1 .
1 1− +

 

This expression invites the attempt to divide 1 by the other part of the deno-
minator, namely 1− , according to the same proved and time-honored tech-
nique described above. I refrain from developing the division here in detail. I 
hope that the technique has been described in sufficient detail so that it is abun-
dantly clear that the result of the division is no doubt  

1 1 1 1 1 .− − − − − −  

If one does not wish to do this longhand, one shorthand definition is to use 
the definition already obtained above that the fraction  

1
1a− +

 

can be turned into the following infinite fraction:  

2 3 4 5

1 1 1 1 1 .
a a a a a

− − − − − −  

It follows that the expression  

1
1 1− +
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is equivalent to  

2 3 4 5

1 1 1 1 1 ,
1 1 1 1 1

− − − − − −
 

or  

1 1 1 1 1 .− − − − − −  

In sum, there is mathematically no doubt whatsoever that  

1 1 1 1 1 1 1 1 1 1 1 .− − − − − − = + + + + + +   

This second proof only confirms what was already conclusively proven in the 
first proof: Positive infinity is the same as negative infinity and there is therefore 
only one infinity neither negative nor positive. 

17. Towards a Complete Mapping of the Geography of  
Infinity in Number Theory in the Footsteps of L. Euler:  
Preview of Forthcoming Topics 

Much has been left incomplete in what precedes. Some topics are as follows. 
First, there is the matter of J. Wallis’s “numbers greater than infinity” and how 

closely it approaches the truth of the matter.  
Second, there is still the task of making the Equation  

11 2 3 4 5
12

+ + + + + = −  

part of a comprehensive map of infinity in the realm of numbers. To this com-
prehensive map belongs the following Equation, which will be proven algebrai-
cally and inductively in a forthcoming article:  

( ) ( ) ( )2 3 40 1 .= +∞ + ∞ + ∞ + ∞ +  

I also note in the margin that 

1+∞ +∞ +∞ +∞ + = ∞  

and that 

 .∞+∞ +∞ + = ∞  

Or also that  

2 3 4 .n×∞ = ×∞ = ×∞ = ×∞ = ∞  

Another Equation is as follows:  

1 1 4 16 64 256 1024
5
= − + − + − +  

This type of Equation has been more or less universally condemned since the 
nineteenth century. It is said to diverge. Clearly, it moves ever farther away from  
1 .
5

 So how does it finally end up at 1
5

? How does it have a rational number as  

its result, as so-called convergent numbers do?  
Other Equations, already mentioned above, that need to be brought into per-

fect harmony with the Equation  
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11 2 3 4 5
12

+ + + + + = −   

are as follows:  

1 1 1 1 1 1 ;
2
= − + − + −   

1 1 1 1 1 1 1 1 1 1 .∞ = + + + + + = − − − − − −    

All these Equations need to become gears in a fully comprehensive and fully 
coherent geography of infinite in numerical terms.  

In conclusion, at stake is the geography of infinity in numerical terms. And 
that seems like a task that is too large for the present paper. Such a geography 
will be presented in subsequent papers.  

In that regard, the need is to follow in the footsteps of L. Euler, the most pro-
lific mathematician of all time. The most remarkable thing is that his approach 
to the nature of infinity has been completely abandoned after him. The present 
effort therefore presents very much a return to L. Euler, after what looks a little 
like a total abandonment. 

In terms of style when it comes to writing mathematics, there is much inspira-
tion to be derived from what the distinguished mathematician Georg Pólya 
wrote about L. Euler, as follows [16]: 

Euler seems to me almost unique in one respect: he takes pains to present the 
relevant inductive evidence carefully, in detail, in good order. He presents it 
convincingly but honestly, as a genuine scientist should do. His presentation is 
“the candid exposition of the ideas that led him to those discoveries” and has a 
distinctive charm. Naturally enough, as any other author, he tries to impress his 
readers, but, as a really good author, he tries to impress his readers only by such 
things as have genuinely impressed himself.  
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