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Abstract 
We dealt in a series of previous publications with some geometric aspects of 
the mappings by functions obtained as analytic continuations to the whole 
complex plane of general Dirichlet series. Pictures illustrating those aspects 
contain a lot of other information which has been waiting for a rigorous 
proof. Such a task is partially fulfilled in this paper, where we succeeded 
among other things, to prove a theorem about general Dirichlet series having 
as corollary the Speiser’s theorem. We have also proved that those functions 
do not possess multiple zeros of order higher than 2 and the double zeros have 
very particular locations. Moreover, their derivatives have only simple zeros. 
With these results at hand, we revisited GRH for a simplified proof. 
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1. Introduction 

The study of general Dirichlet series has its origins in the works [1]-[18] of E. 
Cahen, J. Hadamard, E. Landau, H. Bohr, G. H. Hardi, M. Riesz, T. Kojima, M. 
Kuniyeda, G. Valiron, etc. A lot of contemporary mathematicians created a 
diversified theory of general Dirichlet series, some insisting on the connection 
with the Laplace-Stieltjes transforms [19]-[24] as J. Yu, Y. Kong, S. Daochun, X. 
Luo, Y. Yan, C. Singhal, G. S. Srivastava, etc., others as P.K. Kamthan, S. K. 
Shing Gautam, L.H. Khoi, [25] [26] endowing them with some topological 
structures, extending to them the Nevanlinna theory (too many to be cited) or 
dealing with vector valued Dirichlet series [27]-[32] as A. Defant, M. Maestre, D. 
Perez-Garcia, J. Bonet, B.L. Srivastava, A. Sharma, G. S. Srivastava, etc. 

We will use normalized series defined as follows. To any sequence  
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( )1 21 , ,A a a= =   of complex numbers and any increasing sequence  
( )1 20 λ λΛ = = < <  such that limn nλ−>∞ = ∞  we associate the series 

( ), 1 e ns
A nns a λζ ∞ −
Λ =

= ∑                        (1) 

Λ  is called the type of the series (1) and the series defined by the same Λ  
will be called series of the same type. When lnn nλ = , we obtain the ordinary 
(proprement dites, [18]) Dirichlet series. 

Suppose that A  and Λ  are such that the abscissa of convergence (see [14] 
[18]) of the series (1) 

1

1lim logsup n
c kn k

n

aσ
λ−>∞ =

= ∑  is finite.             (2) 

Then (see [1]) ( ),Az sζ Λ=  is an analytic function in the half plane ( ) us σℜ > , 
where uσ  is the abscissa of uniform convergence of (1), and where uσ  is at 
most c Dσ +  with 

loglimsupn
n

nD
λ−>∞=                       (3) 

For the ordinary Dirichlet series 1D =  and it is known that in the case of 
Dirichlet L-series defined by imprimitive Dirichlet characters 0cσ =  and 

1uσ = , while in the case of primitive characters 0c uσ σ= = . 
In general, when 0D =  then u cσ σ= , and the series (1) is an analytic 

function in the half plane ( ) cs σℜ > . 
Suppose that this function can be continued analytically to the whole complex 

plane, except possible at 1s =  which is a simple pole. We keep the notation 
( ),A sζ Λ  for the function obtained by analytic continuation. 

With the exception of a discrete set of points from the complex plane, this 
function is locally injective, i.e. it maps conformally and hence bijectively small 
neighbourhoods of every point onto some domains. Enlarging these neigh- 
bourhoods, the image domains get bigger. How big can they get? The answer is: 
they become the whole complex plane with some slits (see [33] [34] [35] [36]). A 
region with this property is called fundamental domain of ( ),A sζ Λ . 

Our aim is to show that the complex plane can be divided into a countable 
number of sets whose interiors are fundamental domains of this function. We 
have done this previously for the Riemann Zeta function [37] [38] as well as for 
Dirichlet L-functions [35]. To do the same thing for functions obtained by 
analytic continuations of general Dirichlet series we made [36] the assumption 
that (1) satisfies a Riemann type of functional equation. We will show next that 
such a strong assumption is not necessary and we can obtain the same result by 
using just elementary properties of the conformal mapping. 

It has been proved [36] that for normalized series (1) the limit  
( ),lim 1A itσ ζ σ→+∞ Λ + =  is uniform with respect to t . This means that for any 

0>  there is cσ σ≥  such that σ σ>   implies ( ), 1A sζ Λ − <  , therefore 
the whole half plane ( )s σℜ >   is mapped by ( ),A sζ Λ  into a disc centred at 

1z =  of radius  . 



D. Ghisa 
 

3 

An immediate consequence of this fact is that the abscissa of convergence of a 
normalized series is less than +∞ . Moreover, for 1<  there is no zero of 

( ),A sζ Λ  in the half plane ( )s σℜ >  . Also, if ( ),A sζ Λ  satisfies a Riemann 
type of functional equation, then there cannot be non trivial zeros of ( ),A sζ Λ  
in the half plane ( )s σℜ < −   neither. 

2. Pre-Images of Lines and Circles 

Suppose that, for a point 0s  with ( )0 cs σℜ >  the function ( ),A sζ Λ  has a real 
value ( ), 0 1A sζ Λ > . The continuation from 0s  along the interval [ )1,+∞ , is a 
curve k′Γ  such that when ( ),Az sζ Λ=  tends to 1, we have that σ  tends to 
+∞  on k′Γ , or there is a point ,k ju  such that ( ), , 1A k juζ Λ =  and the con- 
tinuation can be carried along the whole real axis giving rise to a curve ,k jΓ . We 
will show later that when ( ),Az sζ Λ=  tends to +∞  on the real axis then σ  
tends to −∞  on k′Γ , or on ,k jΓ , in other words these curves cannot remain in 
a right half plane. 

Let us notice first that ( ),A sζ Λ  are transcendental functions and s = ∞  is 
an essential singular point for them. The value 0z =  cannot be a lacunary  

value for ( ),A sζ Λ  since then 
( ),

1

A sζ Λ

 would be a non polynomial integer  

function for which s = ∞  is an essential singular point and hence 0s =  
would be also an essential singular point for ( ),A sζ Λ , which is not true. Then, 
by the Big Picard Theorem, ( ),A sζ Λ  has infinitely many zeros in every neigh- 
bourhood of s = ∞ . 

Given a bounded region of the plane, there is 0r >  such that the pre-image 
of the circle rC  centred at the origin and of radius r  has only disjoint com- 
ponents, which are closed curves containing each one a unique zero of ( ),A sζ Λ  
belonging to that region. When r  increases those curves expand and they can 
touch one another at some points kv  (see Figure 1(b)). These are branch 
points of the function, since in every neighbourhood of kv  the function takes at 
least twice any value on the image circle. Therefore the derivative of ( ),A sζ Λ  
cancels at kv . It is obvious that any zero of the derivative, which is not a zero of 
the function itself, can be obtained in this way. Indeed, if v  is such a zero, we 
can take ( ),Ar vζ Λ=  and necessarily at least two components of the pre-image 
of rC  will pass through v . 

What happens with those components of the pre-image of a circle rC  when 
1r = ? We have proved [36], Theorem 1 that there is at least one unbounded 

component of the pre-image of the unit circle. That proof did not use the as- 
sumption of ( ),A sζ Λ  satisfying a Riemann type of functional equation and 
therefore it is true for any function ( ),A sζ Λ . 

Let us notice that two curves k′Γ  and l′Γ  cannot intersect each other. Indeed, 
if 0s  would be a common point of these curves, then when ( ),Az sζ Λ=  moves 
on the interval I  between ( )0 , 0Az sζ Λ=  and 1 the point s  describes an 
unbounded curve which bounds a domain mapped by ( ),A sζ Λ  onto the 
complex plane with a slit alongside the interval I . That domain should contain  
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Figure 1. Pre-images of circles and the birth of a strip. 

 
a pole of ( ),A sζ Λ  which is not true. Therefore an intersection point 0s  of the 
two curves cannot exist and consecutive curves k′Γ  and 1k+′Γ  bound infinite 
strips kS . We suppose that 0S  is the strip containing the point 1s =  and for 
every integer k , the curve 1k+′Γ  is situated above k′Γ . Figure 1(e) illustrates 
the birth of a strip kS  when the pre-image of a ray making a small angle α  
with the positive real half axis is taken and then we let 0α → . 

We have also proved [36], Theorem 2 that every unbounded component of 
the pre-image by ( ),A sζ Λ  of the unit circle is contained between two con- 
secutive curves k′Γ  and 1k+′Γ  and vice-versa, if 0k ≠  between two con- 
secutive curves k′Γ  and 1k+′Γ  there is a unique unbounded component of the 
pre-image of the unit circle. It has been shown that the respective component 
does not intersect any one of these curves. For 0k ≠  every strip kS  contains 
also a unique curve ,0kΓ  which is mapped bijectively by ( ),A sζ Λ  onto the 
interval ( ),1−∞  of the real axis, as well as a certain number of curves ,k jΓ , 

0j ≠  which are mapped bijectively by ( ),A sζ Λ  onto the whole real axis. There 
are infinitely many strips kS  covering the whole complex plane [36], Theorem 
4. Therefore, there are infinitely many unbounded components of the pre-image 
by ( ),A sζ Λ  of the unit circle. Some strips kS  can contain also bounded 
components of the pre-image of the unit circle as well as bounded components 
of the pre-image of rC  with 1r > . Figure 1(d) portrays the strip 5S  of 
( )sζ  containing two components of the pre-image of the unit circle: the 

unbounded one containing two zeros and the other bounded, containing one 
zero. 

The use of the pre-image of the real axis can be traced back to Speiser’s work 
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[39] on the Riemann Zeta function. After that the pre-image of the real axis does 
not appear any more in literature as a tool except for the paper of Arias-de-Reina 
[40], who revisits Speiser’s theorem. In the same year John Derbyshire uses both: 
the pre-image of the real axis and that of the imaginary axis in his popular book 
Prime Obsession and declares that they are at the heart of that book. The 
classification of the components of the pre-image of the real axis by the Riemann 
Zeta function appears for the first time in [37], where the strips kS  are also 
introduced and a method is devised of partitioning them into fundamental 
domains. Later, such a classification has been extended to Dirichlet L-functions 
and finally to functions defined by general Dirichlet series. 

A different approach, namely that of phase diagram, has been used by Elias 
Wegert for visual exploration of complex functions [41] [42]. Applied to the 
Riemann Zeta function, his phase plots revealed interesting patterns pertaining 
to the universality property of that function. It is known that such a property 
extends to more general Dirichlet series and probably it can complement our 
fundamental domains approach. 

An even better way to visualize the complexity of conformal mappings by 
analytic functions of a complex variable is to use an orthogonal mesh in the 
z-plane formed with rays issuing from the origin and circles centred at the origin. 
Moreover, a spectre of colors can be superposed to the mesh as seen in Figures 
2(a)-(c). By taking the pre-image of that mesh we obtain a coloured orthogonal 
mesh in the s-plane in which the color of every point coincides with that of its  
 

 

Figure 2. Colour-visualization of the conformal mapping by ( )sζ . 



D. Ghisa   
 

6 

image. In this way we can locate the corresponding points in the two planes and 
have also a global view of the mapping. The pre-image of the real axis and the 

kS -strips are still identifiable. Figures 2(d)-(f) above illustrates the mapping by 
the Riemann Zeta function in the rectangles [ ] [ ]20, 20 30,30− × − ,  

[ ] [ ]1,5 1,000;1,020− ×  and [ ] 9 90.4,1.4 10 ,10 20 × +  . By comparing them, one 
can notice the increasing number of zeros in the strips with increasing t . The 
pattern we can see here is proper to any function ( ),A sζ Λ . 

Theorem 1 No zero of ( ),A sζ Λ  or of ( ),A sζ Λ′  can belong to a curve k′Γ .  
Proof. The affirmation of the theorem is obvious for the zeros of ( ),A sζ Λ  

since 0 does not belong to the interval [ )1,+∞  of the real axis. A more intricate 
argument guarantees that the same is true for the zeros of the derivative of 

( ),A sζ Λ . Indeed, even if 1r > , no bounded component of the pre-image of rC  
can reach k′Γ , despite of the fact that rC  intersects the interval [ )1,+∞ . 
Indeed, in the contrary case, the respective component should intersect k′Γ  at 
lest twice, or it should be tangent to it, fact which requires that rC  intersects 
the interval [ )1,+∞  the same number of times or to be tangent to it, which is 
not possible. The fact that rC  intersects the interval [ )1,+∞  has as effect the 
pre-image of rC  intersecting the curves ,k jΓ  (and not k′Γ ). It results that no 
two bounded components of the pre-image of rC  can meet on k′Γ , neither 
can one of these components meet on k′Γ  an unbounded component of the 
pre-image of rC  into a zero of ( ),A sζ Λ′ . 

Remark: Theorem 1 does not imply that ( ),A sζ Λ′  cannot have zeros on some 

,k jΓ . Such zeros appeared as possible for the Dirichlet L-function ( )5, 2,L s  as 
seen in Figure 3 when t  has approximately the values 169.2 and 179.2. 
However, we suspected that this was due to the poor resolution of the picture 
and indeed, when we zoomed on the respective points, we obtained configu- 
rations which show clearly that ( ),A sζ Λ′  does not cancel there. However, as we 
will see later, the possibility of such zeros cannot be excluded. 

We have seen that the unbounded components of the pre-image of the unit 
circle do not intersect any k′Γ . On the other hand the bounded components of 
the pre-image of the unit circle intersect curves ,k jΓ  at points ,k ju  where  

( ), , 1A k juζ +
Λ −= . In the same way the bounded components of the pre-image of  

rC  with 1r >  will intersect ,k jΓ  at points u  where ( ),A u rζ +
Λ −= . However 

the story of the unbounded components of the pre-image of rC  is a little more 
complicated. 

When increasing r  past 1 all the unbounded components of the pre-image 
of 1C  fuse together into a unique unbounded curve rγ  intersecting every 
curve k′Γ , hence they do not generate by this fusion zeros of ( ),A sζ Λ′  . Indeed, 
since the mapping of k′Γ  onto the interval ( )1,+∞  is bijective, there should be 
a unique point ks  on every k′Γ  such that ( ),A ks rζ Λ = . The continuation over 

rC  from each one of these points can be made clockwise and counter clockwise 
into kS , respectively 1kS − , for every k , giving rise to that unbounded curve. 
The final conclusion is that ( ),A sζ Λ′  does not cancel on any k′Γ . ■ 
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Figure 3. Possible zeros of ( ),A sζ Λ′  on ,k jΓ  which are not double zeros of ( ),A sζ Λ . 

 
Given any bounded domain in the plane ( )s , we can take 1r >  close 

enough to 1 such that rγ  does not touch any bounded component of the 
pre-image of rC  included in that domain. However, for bigger values of r  the 
curve rγ  comes into contact with bounded components which were turning 
around one or several zeros ,k js  of ( ),A sζ Λ , fusing with them and getting to 
the left of those zeros, hence intersecting also the curves ,k jΓ  which contain the 
respective zeros. The curve rγ  is orthogonal to every component of the pre- 
image of the real axis if it intersects that component at a point where ( ),A sζ Λ′  
does not cancel. 

Since a point turning around the origin in the same direction on an arbitrary 
circle rC  centred at the origin will meet consecutively the positive and the 
negative real half axis, the components of the pre-image of rC  (including rγ  
when 1r > ) should meet consecutively the pre-image of the positive and the 
negative half axis (coloured differently). This is [33] [35] the so-called color 
alternating rule. 

An immediate consequence of this rule is that in every strip kS  the first and 
the last curve ,k jΓ  should be such that the pre-image of the negative real half 
axis faces the corresponding k′Γ . Then, consecutive ,k jΓ  have the same orien- 
tation, as long as they are on the same side of ,0kΓ . A zero 0s  of ( ),A sζ Λ′  
being on ,k jΓ  and not being a zero of ( ),A sζ Λ  (where the colors are changing) 
implies that different components of the pre-image of a circle rC  fuse (for a 
value 0r  of r ) on ,k jΓ . The respective components must obey the color 
alternating rule for every 0r r<  and we realize that after fusion the component 
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can be such that the rule is still in force. Indeed, if ,k jΓ  and ,k j′Γ  have the 
same color at 0s  then this curve can continue to meet the respective color 
without affecting the color alternation by simply switching the branches of ,k jΓ  
and ,k j′Γ  which come to 0s . However, as we will see next, the position of 0s  
with respect to the two zeros of ( ),A sζ Λ  on these curves cannot be arbitrary. 

Theorem 2 For k  different of 0, there is no zero of the derivative of ( ),A sζ Λ′  
at the left of the leftmost zero of ( ),A sζ Λ  in kS   

Proof. We can reproduce the proof of Theorem 1 from [43] for arbitrary 
functions ( ),A sζ Λ . Let ,k js  be the leftmost zero of ( ),A sζ Λ  from kS  and 
suppose that the simple zero ,k jv  of ( ),A sζ Λ′  is a progenitor of ,k js , i.e. a 
component of the pre-image of the circle rC  with ( ), ,A k jr vζ Λ=  contains the 
point ,k js . It is obviously enough to deal with the case where 0j > , i.e. where 

,k jΓ  is above ,0kΓ . Then ( ), ,A k jvζ Λ  (indicated in Figure 4 as ( ),k jL v , since it 
has been partially computer generated by a Dirichlet L-function) belongs to the 
upper half plane and 0 πα≤ < , where ( ), ,arg A k jvα ζ Λ= .  

The pre-image of the ray determined by ( ), ,A k jvζ Λ  contains two curves 
which are orthogonal at ,k jv . The angles at ,k jv  are doubled by ( ),A sζ Λ , 
hence the four arcs of the pre-image of that ray make angles of 2α , π 2 2α+ , 
π 2α+  and 3π 2 2α+  with a horizontal line whose image passes through 

( ), ,A k jvζ Λ . The angle π 2 2α+  made by the second arc (which ends in ,k js ) 
with this line is less than the angle β  made by the tangent to the pre-image of 
the respective ray at any point between ,k js  and ,k jv  with the same horizontal 
line. If ( ) ( ), ,k j k jv sℜ ≤ℜ , then there must be a point on that arc for which 

π 2β = , therefore 0α < , which is absurd. ■ 
Corollary: If ( ),A sζ Λ  satisfies RH, then the zeros of ( ),A sζ Λ′  from every 

strip kS  are at the right side of the critical line. When ( ),A sζ Λ  is the Riemann  
 

 

Figure 4. The location of the zeros of ( ),A sζ Λ′ . 
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Zeta function this corollary represents the Speiser’s theorem [39]. 
The existence of multiple zeros of functions obtained by analytic con- 

tinuations of Dirichlet series has been documented (probably for the first time) 
in [44], where double zeros of a linear combination of Dirichlet L-functions have 
been found (see Figure 5 below). 

We have shown that all those double zeros are located on the critical line. In 
this example the function is ( ) ( )7, 2, 0.34375 7, 4,L s L s+  and the double zero 
is obtained for the approximate value of s  of 0.5 31.6i+ . The double zeros we 
have found for all the functions of this type were located at the intersection of 

,0kΓ  and ,1kΓ  or of ,0kΓ  and , 1k −Γ . We can make now a much more general 
affirmation about the multiple zeros of functions obtained by analytic con- 
tinuation of general Dirichlet series. 

Theorem 3 In every strip kS  of a function ( ),A sζ Λ  this function has at 
most one double zero. Such a zero is found at the intersection of ,0kΓ  and ,1kΓ  
or of ,0kΓ  and , 1k −Γ . There is no multiple zero of ( ),A sζ Λ′  in kS  and hence 
no zero of a higher order than two of ( ),A sζ Λ .  

We need to postpone the proof of this theorem for a while. 

3. Intertwining Curves 

When studying functions ( ),Az sζ Λ=  it is useful to consider besides the planes 
( )s  and ( )z  also a plane ( )w , where ( ),Aw sζ Λ′= . Sometimes the planes ( )z  
and ( )w  will be identified in order to make more obvious certain relations 
between the configurations defined by the two functions in the respective planes. 
The configurations we have in view are pre-images by both ( ),A sζ Λ  and by  

 

 

 
Figure 5. A double zero of a linear combination of dirichlet L-functions. 



D. Ghisa   
 

10 

( ),A sζ Λ′ , of some curves or domains. 
Regarding the pre-image by ( ),A sζ Λ  and by ( ),A sζ Λ′  of the real axis it has 

been found [34] [36] that the components of these pre-images are paired in such 
a way that only the components of the same pair can intersect each other. The 
respective pairs form the so-called intertwining curves. 

Three kinds of intertwining curves have been distinguished [33] [34] [35] [36], 
namely: 

1) k′Γ  and k′ϒ , k ∈ , which are mapped bijectively by ( ),A sζ Λ  and by 
( ),A sζ Λ′  onto the interval ( )1,+∞ , respectively ( ), 0−∞ , 

2) ,0kΓ  and ,0kϒ , k ∈ , which are mapped bijectively by ( ),A sζ Λ  and by 
( ),A sζ Λ′  onto the interval ( ),1−∞ , respectively ( )0,+∞  

3) ,k jΓ  and ,k jϒ , 0j ≠ , k ∈ , { }\ 0kj J∈ =  (a finite set of integers), 
which are mapped bijectively by ( ),A sζ Λ , respectively by ( ),A sζ Λ′  onto the 
whole real axis. 

Theorem 4 The intertwining curves touch each other at the points where the 
tangent to ,k jΓ , respectively k′Γ  is horizontal. Vice-versa, if at a point of such 
a curve the tangent is horizontal, then a component of the pre-image of the real 
axis by ( ),A sζ Λ′  passes also through that point. 

Proof. Indeed, suppose that ( )s s x=  is the equation of a curve k′Γ  or of a 
curve ,k jΓ  such that ( )( ),A s x xζ Λ = . Then (see Figure 6 below) 

( )( ) ( ), 1A s x s xζ Λ′ ′ = .                       (4) 

 

 

Figure 6. Intertwining curves of ( )itζ σ +  for [ ]0,100t∈ . 
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The Equation (4) shows that the argument of ( )( ),A s xζ Λ′  is opposite to that 
of ( )s x′ , therefore they cancel simultaneously, and when one is π , the other 
should be π− . Yet these values of the argument of a point mean that the 
respective point is on the real axis, therefore ( )s x  belongs to both pre-images 
of the real axis, by ( ),A sζ Λ  and ( ),A sζ Λ′  which completely proves the theorem.  

■ 
Remark: The Theorem 4 is a corollary of a much more general property 

which says that if ( )z f s=  is an analytic function in a domain D  of the 
complex plane and γ  is the image by ( )f s  of a smooth curve ( ): s s zΓ = , 
then denoting by ϒ  the pre-image by ( )f s′  of γ , at every point 0s  where 
Γ  and ϒ  intersect each other we have ( ) ( ) ( )0 0arg arg 0 mod 2πf s s z′ ′+ = , 
where ( )0 0s s z= . 

Indeed, suppose that the planes ( )z  and ( )w  are identified, where 
( )w f s′=  and write ( )S S w=  for the curve ϒ . Then at an intersection 

point 0s  of Γ  and ϒ  we have ( ) ( )( )0 0 0s s z S f s′= =  and ( )( )f s z z=  
implies ( )( ) ( ) 1f s z s z′ ′ = , hence ( ) ( )0 0 1f s s z′ ′ = , etc. 

We can show now that: 
Theorem 5 No strip kS  can be included in a right half plane.  
Proof. The formula (4) written for k′Γ  tells us that when ( )s x′  tends to 

∞  then ( )( ),A s xζ Λ′  must tend to 0. Yet, there is no zero of ( )( ),A s xζ Λ′  on 
any k′Γ . On the other hand, ( )( ),A s xζ Λ′  is an unlimited continuation of 

( ),A sζ Λ′  alongside k′Γ  , hence when ( )s x  tends to ∞  we have that 
( )( ),A s xζ Λ′  tends to ∞  not to 0 and this is a contradiction. The conclusion is 

that the geometry of the pre-image of the real axis is in the whole complex plane 
similar to that we can see in a bounded region of the plane in Figure 2, Figure 3, 
Figure 6, Figure 7. ■ 

Summarizing these facts and having in view [36] we can say: 
Theorem 6 The variable σ  takes any real value on every curve k′Γ . Con- 

secutive curves k′Γ  form infinite strips kS  which are mapped (not necessarily 
bijectively) onto the whole complex plane with a slit alongside the interval 
[ )1,+∞  of the real axis. If kS  contains km  zeros of the function ( ),A sζ Λ , 
then it will contain 1km −  zeros of ( ),A sζ Λ′ . For any given k , the function 

( ),A sζ Λ  either has a finite number of zeros ,k js  in kS , or ,lim j k js→∞ = ∞ . If 
( ),A sζ Λ  satisfies a Riemann type of functional equation, every strip kS , 0k ≠  

contains a finite number of zeros of this function. The strip 0S  may contain 
infinitely many zeros of ( ),A sζ Λ .  

Proof. We only need to justify the numbers km  and 1km −  to which the 
theorem makes reference. We have seen that every zero of ( ),A sζ Λ′  is obtained 
when two components of the pre-image of some circle rC  centred at the origin 
and of radius r  come into contact. If we consider the zeros of ( ),A sζ Λ  as the 
leafs of a binary tree whose internal nodes are obtained in this way, that tree is a 
complete binary tree and it is known that it must have exactly 1km −  internal 
nodes. Figure 7 illustrates this situation for ten strips of the Riemann Zeta 
function. The location of the zeros of ( )sζ  and those of its first two derivative  
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Figure 7. The zeros of ( )sζ  and of its first two derivatives for [ ]0,100t∈ . 

 
are also clearly indicated. If there is a double zero of ( ),A sζ Λ  in kS , then the 
respective leaf is counted twice as a leaf and once as an internal node, etc. When 
the number of zeros ,k js  in kS  is infinite we must have ,lim j k js→∞ = ∞ , 
otherwise ,k js  would have an accumulation point in kS  and hence ( ),A sζ Λ  
would be identically zero. ■ 

We can prove now also the Theorem 3. 
Proof. Exactly 2 curves ,k jΓ  and ,k j′Γ  should meet at a double zero 0s  of 
( ),A sζ Λ  belonging to kS . But 0s  is also a simple zero of ( ),A sζ Λ′  and 

therefore a curve, say ,k jϒ  should pass through 0s . Yet, ,k j′Γ  intertwines 
with a curve ,k j′ϒ  and unless this curve is ,0kϒ , which does not contain any 
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zero of ( ),A sζ Λ′ , the point 0s  would be a double zero of for ( ),A sζ Λ′ , and this 
is impossible. 

Hence , necessarily one of the curves ,k jΓ  passing through 0s  is ,0kΓ . This 
shows that there can be only one double zero in kS  and the other curve passing 
through 0s  in that case is either ,1kΓ , or , 1k −Γ . 

We notice that the curve ,0kϒ  does not contain any zero of ( ),A sζ Λ′ , hence 
it cannot pass through a multiple zero of order m  of ( ),A sζ Λ′ . Since every 
curve passing through that zero has an intertwining curve defined by the second 
derivative of ( ),A sζ Λ , the respective point should be a multiple zero of order 
m  of this second derivative, which is absurd. Therefore ( ),A sζ Λ′  has no 
multiple zero and then ( ),A sζ Λ  cannot have any zero of the higher order than 
2. ■ 

4. Fundamental Domains 

For 0j ≠ , the curves ,k jΓ  as well as ,k jϒ  are parabola like curves with 
branches extending to infinity as σ → −∞ . Therefore we can distinguish 
between the interior and the exterior of such curves. They can be viewed as 
oriented curves, with the same orientation as the real axis whose components of 
the pre-image they are. By the same rule k′Γ  and k′ϒ , as well as ,0kϒ  are also 
oriented, the positive orientation of k′Γ  and of ,0kϒ  being from the right to 
the left, while that of k′ϒ , is from the left to the right. Some curves ,k jΓ , 0j ≠  
can contain in interior some other curves of the same type (embraced curves) 
and by the color alternating rule the orientation of the embracing curve and that 
of the embraced curves must be different. We did not find any instance where an 
embraced curve is in turn embracing, yet there is no reason to believe that such a 
situation is impossible. 

Theorem 7 If the strip kS  contains km  zeros counted with multiplicities, 
then kS  can be partitioned into km  sub-strips which are fundamental do- 
mains for ( ),A sζ Λ   

Proof. Suppose that curves ,k jΓ  and ,k j′Γ  are containing the simple zeros 

,k js  and ,k js ′  and two components of the pre-image of a circle rC  which are 
going around each one of these zeros touch at a point ,k jv . This is a zero of 

( ),A sζ Λ′ . The pre-image of the segment of line connecting 1z =  and 
( ), ,A k jvζ Λ  has as component an arc ,k jη  connecting the points on the two 

curves where ( ), 1A sζ Λ =  and passing through ,k jv . If one of these curves is 

,0kΓ  then the respective point is ∞  and ,k jη  is an unbounded curve. The 
strip ,k jΩ  bounded by this curve and the branches of ,k jΓ  and ,k j′Γ  corre- 
sponding to the interval [ )1,+∞ , turns out to be a fundamental domain of 

( ),A sζ Λ . Indeed, ,k jΩ  is mapped conformally by ( ),A sζ Λ  onto the whole 
complex plane with a slit alongside the interval [ )1,+∞  followed by a slit 
alongside the segment from 1z =  to ( ), ,A k jvζ Λ . If ,k jΓ  embraces ,k j′Γ  then 

,k jΩ  is bounded to the right. 
Suppose now that one of the two zeros is a double zero of ( ),A sζ Λ . We know 

that ,0kΓ  must pass through that zero and the part of ,0kΓ  corresponding to 
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the interval [ ]0,1  becomes part of the boundaries of adjacent fundamental 
domains. One of them will have as image the complex plane with a slit alongside 
the positive real half axis and for the other one a slit from 1z =  to 

( ), ,A k jz vζ Λ=  should be added, where j  is 1 or −1. 
We know that ,k js  cannot have a higher order of multiplicity and therefore 

the cases analysed exhaust all the possibilities. Having in view Theorem 6, we 
conclude that the strip kS  can be always divided into km  fundamental 
domains. ■ 

Figure 8 below illustrates this theorem for the case of the Riemann Zeta  
 

      
(a)                                                          (b) 

 
(c) 

Figure 8. Two fundamental domains and their images. 
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function and the strip 2S . 
As seen in the case of Dirichlet L-functions (including the Riemann Zeta 

function) the strip 0S  has infinitely many zeros, yet following the same 
technique we can divide it into infinitely many fundamental domains. 

If four different colors are used, say color 1 and 2 for the pre-images by 
( ),A sζ Λ  of the positive and of the negative real half axis and 3 and 4 for the 

pre-images by ( ),A sζ Λ′  of the same half axes, then two simple topological facts 
can be established [33]: 

a) The color alternating rule, which states that as a point turns indefinitely in 
the same direction on a circle centred at the origin, the pre-images of this point 
by each one of the functions ( ),A sζ Λ  and ( ),A sζ Λ′  will meet alternatively the 
colors 1 and 2, respectively 3 and 4. 

b) The color matching rule, which states that when intertwining curves meet 
each other, then if these are not ,0kΓ  and ,0kϒ  color 1 will always meet color 4 
and color 2 will always meet color 3. Only the curves ,0kΓ  and ,0kϒ  can 
intersect each other at points where color 2 can meet color 4. 

The series (1) which are Euler products display special important properties. 

5. Euler Products 

It is known that the Dirichlet L-functions are meromorphic continuations of 
ordinary Dirichlet series defined by Dirichlet characters and these series can be 
expressed as Euler products. This property is a corollary of the fact that the 
Dirichlet characters are totally multiplicative functions (see for example [33]. Yet 
the property of being total multiplicative can be extended to general Dirichlet 
series, as done in [35], and therefore some of the general Dirichlet series 

( ),A sζ Λ  (see the details in [35]) can also be written as Euler products: 

( ) ( ) 1

, p1 e 1 e pn ss
A n pns a a λλζ

−∞ −−
Λ ∈=

= = Π −∑  ,            (5) 

where   is the set of prime numbers. This convention will be kept in the 
following for all the products and sums involving the subscript p . The product 
has the same abscissa of convergence as the series itself. 

Looking for counterexamples to the Grand Riemann Hypothesis (GRH), some 
Dirichlet series satisfying a Riemann type of functional equation have been 
found, whose analytic continuation exhibit off critical line non trivial zeros, 
namely the Davenport and Heilbronn type of functions and linear combinations 
of L-functions satisfying the same functional equation. Although these are not 
counterexamples to GRH, their study allowed us to draw interesting conclusions. 
We have seen in [36] that if ( ),A sζ Λ  does not satisfy the GRH, then for every 
two distinct non trivial zeros 1s itσ= +  and 2 1s itσ= − +  there is 0τ , 

00 1τ< <  such that ( )( ), 0 0A sζ τΛ′ = , where ( ) ( ) 1 21s s sτ τ τ= − + , i.e. the 
derivative of ( ),A sζ Λ  cancels at a point ( )0 0s s τ=  of the interval I  deter- 
mined by 1s  and 2s . Moreover, ( )0 1 2sℜ < . 

Let us rephrase and give a simplified proof to [36], Theorem 3. 
Theorem 8 Suppose that the function (5) satisfies a Riemann type of func- 
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tional equation and the respective series has the abscissa of convergence 
1 2cσ < . Then for every non trivial zero itσ +  of ( ),A sζ Λ  we have 1 2σ = .  

Proof. Suppose that there is a zero itσ +  of ( ),A sζ Λ  for which 1 2σ > . 
Then, due to the functional equation, 1 itσ− +  is also a zero of ( ),A sζ Λ  (see 
Figure 9 below). There is 0r >  such that in the components 1D  and 2D  of 
the pre-image of the disc centred at the origin and of radius r  containing the 
respective zeros the function ( ),A sζ Λ  is injective. Then we can define the 
function 1 2: D Dφ →  as follows:  

( ) ( ) ( )1
, ,2A ADs s sφ ζ ζ−
Λ Λ=                      (6) 

The function φ  can be continued as an analytic involution of the union 
′Ω∪Ω  of the fundamental domains Ω  and ′Ω  of ( ),A sζ Λ  containing the 

respective zeros. The boundaries of the domains Ω  and ′Ω  have a common 
component L  and the union L′Ω∪Ω ∪  is a simply connected domain H . 
The function φ  can be continued to an analytic involution of H  having 0s  
as a fixed point. We have ( )( )s sφ φ =  in H , in particular  
( ) 1it itφ σ σ+ = − +  and ( )1 it itφ σ σ− + = + . Moreover,  

( )( ) ( ), ,A As sζ φ ζΛ Λ=  in H . Let us define the function Φ  by  

( ) ( ) ( )( ), ,A As s sζ ζ φΛ ΛΦ =                    (7) 

Since the numerator and the denominator of Φ  are analytic functions in 
H  and the denominator cancels only at itσ +  and 1 itσ− + , the function 
Φ  is analytic in H  except at these two points. Since ( ) ( )( ), ,A As sζ ζ φΛ Λ= , 
we have that ( ) 1sΦ =  for s  not equal to one of these points. Yet they are 
removable singularities, and we can set ( ) 1sΦ =  in H . By the formula (5) we 
have 

( ) ( )( ) ( )1 e 1 ep ps s
p p ps a aλ φ λ− −
∈Φ = Π − −            (8) 

for s∈H, ( )sℜ  > σc. In particular,  
 

 
Figure 9. Symmetric zeros with respect to the critical line. 
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( )
( ) ( )

( )

1

1

1

1 e 1 e

e e

p p

p p p p

it it
p p p

ti ti
p p p

it

a a

e a e a

λ σ λ σ

λ λ σ λ λ σ

σ
− − + − +

∈

− − −
∈

= Φ +
   = Π − −   
   = Π − −  





 

The arguments of these ratios represent the angles under which the segment 
between ( )1e p

pa λ σ− −  and e p
pa λ σ−  is seen from the point e ptiλ  on the unit 

circle. If a Ramanujan type condition is fulfilled, namely A  and Λ  are such 
that for every 0>  we have lim e 0n

n na λ ε−
→∞ = , then the respective angles 

tend to zero as p →∞ . This appears to be a necessary condition for the 
convergence of the series.  

( )1arg e e e ep p p pti ti
p pp a aλ λ σ λ λ σ− − −

∈
   − −  ∑   

However, the condition is implicitly satisfied since we know that ( )sΦ  is 
well defined in the domain H . The series is a continuous function of σ , yet it 
can take only integer multiple values of 2π , which is possible only if it is a 
constant. Since lim e 0,n

n na λ δ−
→∞ =  the series can remain constant only if there  

is p0 such that for p > p0 we have ( )1arg e e e e 0.p p p pti ti
p pa aλ λ σ λ λ σ− − −   − − =     

This can happen in two situations: either the three points e ptiλ , e p
pa λ σ−  and 

( )1e p
pa λ σ− −  are collinear, or ( )1e ep p

p pa aλ σ λ σ− − −=  and in this last case 1 σ σ− = , 
i.e. 1 2σ = . In the first case, a shift in t will not affect the real part of the zeros, 
yet it will destroy the collinearity of the three points and therefore this situation 
can be ignored. The final conclusion is that ( ),A sς Λ  cannot have any non trivi-
al zero itσ +  with σ  strictly greater than 1/2. The zero 1 2 it+  can be 
either a simple zero and then we have only one fundamental domain Ω , or a 
double zero and then it is the fixed point of the involution ( )sφ . In both cases it 
is located on the critical line, which completely proves the theorem.  

■ 
We need to point out the fact that Figure 9 above illustrates a situation in 

which the Equation (5) is not satisfied. 
Remark: In all of our publications we understood by trivial zeros of an L- 

function those zeros which can be trivially computed. In this respect, the non 
trivial zeros of the alternating Zeta function ( ) ( ) ( )11 2 s

a s sζ ζ−= −  are the 
same as those of ( )sζ  and ( )a sζ  satisfies the conditions of Theorem 8, 
therefore its non trivial zeros are located on the critical line. Thus, RH is also 
true for ( )sζ .  

Similarly, the non trivial zeros of a Dirichlet L-function  
( ) ( ) ( )1,1, 1 sL q s q sζ−= −  defined by the principal character modulo q  are the 

non trivial zeros of the Riemann Zeta function.  
Also, the non trivial zeros of a Dirichlet L-function induced by an imprimitive 

character are the non trivial zeros of the function defined by the associated 
primitive character. Consequently, the RH for any Dirichlet L-function is 
fulfilled. With this understanding of the concept of non trivial zeros, Theorem 8 
represents the proof of GRH for a wide class of functions. 
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