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Abstract

We use B. Randol’s method to improve the error term in the prime geodesic theorem
for a noncompact Riemann surface having at least one cusp. The case considered is a
general one, corresponding to a Fuchsian group of the first kind and a multiplier
system with a weight on it.
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1. Introduction

The Selberg trace formula, introduced by A. Selberg in 1956, describes the spectrum of
the hyperbolic Laplacian in terms of geometric data involving the lengths of geodesics
on a Riemann surface. Motivated by analogy between this trace formula and the explicit
formulas of number theory relating the zeroes of the Riemann zeta function to prime
numbers, Selberg [1] introduced a zeta function whose analytic properties are encoded
in the Selberg trace formula. By focusing on the Selberg zeta function, H. Huber ([2], p.

386; [3], p. 464), proved an analogue of the prime number theorem for compact Rie-
3

2 1
mann surfaces with the error term O(X4 (log x) 2} that agrees with Selberg’s one.

Using basically the same method as in [4], D. Hejhal ([5], p. 475), established also the

prime geodesic theorem for non-compact Riemann surfaces with the remainder

3 1
@) (X“ (logx) ZJ . However, in the compact case there exist several different proofs (see,

B. Randol [6], p. 245; P. Buser [7], p. 257, Th. 9.6.1; M. Avdispahi¢ and L. Smajlovi¢
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3
[8], Th. 3.1) that give the remainder O[X4 (Iog X)_lj. Thanks to new integral repre-

sentations of the logarithmic derivative of the Selberg zeta function (cf. [9], p. 185; [10],
p- 128), M. Avdispahi¢ and L. Smajlovi¢ ([11], p. 13) were in position to improve

3 1 3
" = " -1
0 [X“ (logx) 2] error term in a non-compact, finite volume case up to O[X4 (log x) ] .

Whereas the authors in [8] and [11] approached the prime number theorem in various
settings via explicit formulas for the Jorgenson-Lang fundamental class of functions,
our main goal is to obtain this improvement for non-compact Riemann surfaces with

cusps following a more direct method of B. Randol [6].

2. Preliminaries

Let X be a non-compact Riemann surface regarded as a quotient T'\H of the upper
half-plane H by a finitely-generated Fuchsian group I' < PSL(2,R) of the first

kind, containing n, 21 cusps. Let 3 denote the fundamental region of I". We shall

assume that the fundamental region 3 of I' has a finite non-Euclidean area |3| We

— a b
T= eSL(2R): 20 r
c d cz+d
and denote by v the multiplier system of the weight meR for T". Let y be an ir-

reducible Ixr unitary representation on I' and W (T) = l//(T )V(T) , TeTl. For
an r dimensional vector space Vover C we consider an essentially self-adjoint oper-

put

ator

A, =Y iz+i2 —imyi
ox= oy OX
on the space D, of all twice continuously differentiable functions f :H —V , such

that fand A, (f) are square integrable on 3, and satisfy the equality

f (52 (cz+d)"

- ) w(s)f(2), foranzeHand5=[a bJeF.
|cz +d| c

The operator —A, has the unique self-adjoint extension —A,, to the space D,,a
dense subspace of L2 (F \ H) . Let TJ- , J=1---,n be the set of parabolic transforma-
tions corresponding to n, cusps of I'. W (Tj) does not depend on the choice of a
representative of the parabolic class {TJ—} and can be considered as a matrix from

C™. By mM; we will denote the multiplicity of 1 as an eigen-value of the matrix

n
w (TJ- ) ,and n = ; m; will be the degree of singularity of W. We mention that oper-

ator —A,, has both the discrete and continuous spectrum in the case n, >1, and only
the discrete spectrum in the case N, =0. The discrete spectrum will be denoted as
{/q‘n}n>0 (0=4, <4, <= <A, > ). The continuous spectrum is expressed through
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zeros (or equivalently poles) of the hyperbolic scattering determinant (see, [12]).

3. Selberg Zeta Function

Let PI', denotes the set of I'-conjugacy classes of a primitive hyperbolic element P,
in ', and T, denotes the set of I -conjugacy classes of a hyperbolic element P in
' that satisfy property Tr(P)>2. Assume that |m| <1. We define the Selberg zeta
function associated to the pair (I, ) by

Ze (s)= TT TTdet(1, W (R)N(R) ™).

PyePT, k=0

Z. (s) is absolutely convergent for Re(s)>1. Analytic considerations given in
([5], pp- 499-501) yield that the Selberg zeta function in this setting satisfies the func-

tional equation
Zew (S)¥(s)=Zpy (1-59)

with the fudge factor

S
w(s)=p()n(3 )| [ L) W
1
2
Here, ¢ denotes the hyperbolic scattering determinant. It can be represented in the

form

JEF(S)F(S—;) ' .
§8)=| | T
F(s+jl‘[s—j n Gn

2 2

where the coefficients a, and ¢, depend on the group I' (see, [5], p. 437). Here,
n, denotes the degree of singularity of W (see Section 2). An explicit expression for
the fudge factor 7 in the Equation (1) is given in ([5], p. 501, Equation (5.10)).
The logarithmic derivative of the Selberg zeta function Z,, (S) is given by
25 MP) i o))
Z.y(8) #x N (F’)S

IogN(PO
N(P)

tive element P, suchthat P =P/ for some neN.We will omit the indicesin Z,

where N(P) denotes the norm of the class Pand A(P)= )1 for a primi-

in the sequel.

4. Counting Functions y, (x,W)

Lemma 1. For Re(s)>1,
Z'(s) B ; S Z'(s+1)
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where A, (P)=logN(PR)) for a primitive element P, such that P =P, for some

neN.
Proof
Z'(s) _ A (P)Tr(W(P))(l_N(P)_l)—l N(P)"
Z(S) Pely, '
:P;:Al(P)Tr(W(P))N (P)° +P§A1(P)Tr(W(P))(N (P)-1)* N (P)*
= ZA(P)TIW (P)N(P) "+ XA, (P)Tr(W (P)(L-N (P),l)-l N (P)

We shall spend the rest of this section to derive a representation of , (x,W) in the
form (11) bellow. We choose not to write it in a separate statement because of the
length of expressions involved. However, it will serve as a base for the proof of the
prime geodesic theorem in Section 5.

Let us recall the following theorem given in ([13], p. 51, Th. 40).

Theorem 1. If the Dirichlets series f(s)=Zae ™ =3al.° is summable (1K)

for s=f and ¢>0, c> f, then
1 o C(k+1)T(s)

™ éﬁ‘n (0-1,)" =2_7tic;[wf (S)mw ds. 2)
By Lemma 1,
Z'(s) Z'(s+1) )
Z(s) Z(s+n) 2P TTWEINEP)
We have,

1 m[zf(s) _Z'(s +1)J51(S+1)1...(5+k)1 x°ds

2ni 2\ Z(s) Z(s+)
11 N(P)) " |T(k+1)r(s)
_EZ_T:iC_iw[p;hAl(P)Tr(w(P))[ X J JF(k+1+s) ds

Therefore, substituting w =1, f(s)= zperhAl (P)Tr (W (P))(@j , and hence

N(P)

a :Al(P)Tr(W(P)), I, = ” in (2), we get

n

i“iw Z’(S)_ZI(S"_]') Sfl S+ 1. S+ 71XS S
i (Z(s) Z(s+1) (5417 (s +k) X

K2
%0

906 S
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Then,
icmz'(s)s’l(s+1)71-~-(s+k)71 x°ds
2mi %, Z(S)
1 N(P)Y'
= 2 A(P)Tr(W(P))| 1-—— (3)
K! (P X
i°“°°2’(s+1) . _1”' a4
2 ) Z(s+1) sT(s+1) -o(s+k) xds.
Now, put
(W)= ()T (P)
and

vy (W) = i (W)t
0
for j=12,---. Using ([14], p. 12, Th. 1.3.5), it is easy to get that

vy (W) == ZA()((WW—MHV (4)

NP<><

1 . . /
For 0<ﬂn<z, let Sn:%—lrn:%—l ﬂn—%, n=12,---,K, be the zeros of Z(S)

in [%,1}. Let p,, k=0,1,---,M, denote all zeros of the hyperbolic scattering de-
. . 1
terminant in (E,l]
1 . < 1.
Assume T>2, Txl#r,, leN,where s, =—+ir, and § ==-ir, for
2 2

. 1
r=-i E—Z , /1H>Z.Following([5],p. 468), we may also assume T xl=y, leN,

n n

where, 1-p, 1-p are the zeros of the Selberg zeta function Z(s) for each zero

p= % +n+iy, 720, y>0, of the hyperbolic scattering determinant ¢. Let A, 2%

be a large constant such that A ¢Z, A0+%éZ, A)igeZ.We put A=A +1.

Without loss of generality we may assume that c=1+g, £>0, x22. Let
R(AT)=[-A.c]x[-T,T]. By the Cauchy residue theorem one has

cHT 77
L Z—(S)s’l(s +1) (s +k) " x'ds
2 2 Z(9)
—Ag+T 7 —&+iT —+g+|T CHT +g iT —s iT T CALT
- I+I*-J+I*-J+I*-I+I (5)
TCl —AHT ~AHT 1 —eHT —+g+|T T +£ —iT ——g i AT
2 2

NI - BTy

2mi 7 2eR(AT) Z(S)

KD
+%%, Scientific Research Publishing
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and

— [ S (s+1) (s +k) T xds

1 AT 3 —&+iT —+g+|T T —+s iT ——g iT A-iT AT
AT T e
—AHT AT 1 c—iT 1 —A-iT

—e+iT —+g+|T —+e—iT ——5 iT
2 2 2

2

1 —A+iT

B> RessZ(Msl(s+l)l---(s+k)lxsj.

_AT  zeR(AT) z (S +l)

Arguing as in [5] (p. 474) and [4] (pp. 105-108), we easily find that the sum of the
l+e

X
first eight integrals on the right hand side of (5) is O( =
g

Z'(s)
Z(s)

1+¢e
integrals on the right hand side of (6) is O( X j Following [5] (p. 474) and [4] (p. 85,

] . Similarly, taking into ac-

count that

is bounded for Re(s)>1, we obtain that the sum of the first eight

Prop. 5.7), we obtain that the ninth resp. the third integral on the right hand side of (5)
resp. (6) are O(X’A). Now, if we take k =2, (5) and (6) will give us
1 c+HIT Z '(S) XS

2 ) 29 5662

(7)
_ -A Xt Z’(S) X’
=(x >+°[8T2Jie%ﬂms“[z<s> s<s+1><s+2>j
and
iwiT Z’(S+l) x° ds
2mi 7 Z (S+l) s(s+l)(5+2)
(8)

N

-ofe)o 52+ & o (FeD reaea)

Z'(s
Bearing in mind location of the poles of 5 (( )) given in ([5], p. 439, Th. 2.16; or [5],
S

p- 498, Th. 5.3) and the fact that |m| <1, we may assume without loss of generality that

Gom o m (8 4] g m g m [, 8]
2 2 4 2 2 2 2

Calculating residues and passing to the limit T — +o0, A — +c0 in (7) and (8) we get

908
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1 C+im Z’(S) XS 1 X5 K X§n M, Xl—pk
- ds==
2ni CLz(s) s(s+D)(s+2) 6X+[nz_:{sn 600,52 25 6062 R -p)G-n)
m L m
2 2 2
+ A X +A X + B, X
e N T DR e
2 2 2 2 2 2 2 2 2
2 8 N: 8L L
+Bl( m)(mj(m j+ETr('r‘D(EDXZ§“1X291”1X1”1Xl log x
“1+— || = || =+1
2)\2)\ 2
3 n n x5 X%
-z I | 9
5 )3 QJ 250542 &5 (5005 +2) Y
Lnfiy Lmi}'
X2 X2
R ) S T e
5 n—-1y 2 n—-1y 2 n—-ry 2 n+y 2 n+y 2 n+y
_z_g —2+g 8 3 8 5 3 n* n*
+| A, X +B, X +=nx 2 ——nfx2+(—+f1j—1x2+—lx2 log x
( mj( mj( mj ( mj( mjm 3 15 2 2 2
BUJLLL | TR L 24
2 2 2 2 2)2
and
1 ctie Z’(S+1) X° K Xsn—l K X§n—1 X_g_l
= ds=| Y e e ot A
2mi %, Z(s+1) s(s+1)(s+2) (s, —1)s, (s, +1) m2(5,-1)5, (5, +1) (_m_lj(_mj[_mﬂj
2 2 2
7l+m 1 M -
X 2 8 1)) - & X « .
+B ——Tr| 1, -®| = ||x 2+ —g/n x*—n x " log x
’ (_1+mjm£m+1j 3 ( (ZJJ §(_Pk )(=p +1)(=p +2) o '
2)2\2
ifnfiy
3 11 Xt x5t 2
N e
*( 2" jz*z"gx i s ) SE D) AT T (o
—5—7747 5—77—'7 5"7"7
X—E—rﬁiy X—Z—g
+ +
D e e I e e
2 2 2 2 2 2
2 3 n n, 8 . 8 .-
+B +(—+ fl’j—lszr—lx2 logXx+—=nx 2 ——n'x 2
( mj( m)m 2 2 2 3 15
2+— || -1+— | =
2 2)2

The implied constants on the right sides of (9) and (10) depend solelyon I', mand W.With k=2 in(3), j=2 in(4),
Equations (4), (3), (9) and (10) yield

KD
+%%, Scientific Research Publishing 909
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S s(5+0)(5+2) " ) Z(s41) s(se0)(s+2)

1 5 K Xsn+2 K Xs“n+2 M, X3—pk
=X+ + +
6 nZ:;sn(sn+l)(5n+2) §§H(§n+1)(§n+2) g)(l—pk)(Z—pk)(?;—pk)
-g+2 1-% g+2
+ A X +A X + B, X
e e
2\ 2 2 2 2 2 2\ 2 2
<2 8 1) 2 8.2 3\
—Tr| | —®| = | [x2—=n/x2 —g,n, X+| —— — x?
+Bl( m}[m)[m j+15 r( . (ZDX 3n1x gln1x+( 2+hl) ) X
“1+— || = || =+1
2 )\2 )\ 2

X§n +1 X 2

F X e e ) &5 1), (§n+1)‘A°(__

N3
[BEN
N
|
N3
NI
|
N3
+
N

1+m
X 2 8 ( (1D 31, Me XA+
-B +=Tr[ L, —®| = ||x2 ==x*logx—)_
| (_1+mjm(m+1) : ? 2 = (=2) (A +D)(-p +2)
(11)
+ 'n*x—(—§+ hl'jlx2 + Y X +3 xo
i 2 2 >0 Sy (Sn +1)(Sn +2) >0 §n (§n +1)(§n +2)
5 . 5 .
PR Xz*’l“?

2

Ja R G e e e

3 .
Xsn+1 X§n+1 E"]"V
Al Ds (500 A D8 () &1 Y1 3
—Z—n-iy || S-n-iy || S -n-iy
2 2 2
EH]H}/ _n
X2 X 2
- +
[N (AP R S Y )
2 n+ly 5 n+ly 5 n+ly 5 5 5
+B, X +(%+fljn?l+%‘Iogx—A1 X
S S
2 2)2 2 2 2
-B, X —(g fl’j LI log x
S
2 )2

K2
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where the first sum ranges over the finite set of poles s of
Z'(s) X® Z'(s+1) X®
Z(s) s(s+1)(s+2) Z(s+1) s(s+1)(s+2)

with Re(s) > —%, Im(s) =0, the second sum ranges over the set of poles s of the
same functions with Im(s)>0, and the third sum ranges over the finite set of their

poles swith Re(s)< —%.

5. Prime Geodesic Theorem

In our setting, the prime geodesic counting function is defined by

T (xW)= Y Tr(W(R,)),x21,

N(Ry)<x

where the sum on the right is taken over all primitive hyperbolic classes P, € PI', with
respectto T (see, [5], p. 473, [11], p. 13).
Theorem 2. For X > 2, the formula

o)~ 2(1) o g

n=0

holds true, where, S, :%+‘[%—ﬂn for 0< 4, <%, and the implied constant de-

pends solelyon T', mand W.
Proof. Following [6] (p. 245) and [15] (p. 11), for a positive number d >0, we de-
fine the second difference operator A, by

x+d y+d
Ay f(x)= [ [ f(t)dtdy. (12)
Xy
Here, dis a constant which will be fixed later. By the mean value theorem, we have
Ax" =d*0(6-1)%"* (13)
for some X e[x, x+2d]. Itis easy to verify that
Ay f(x)=f(x+2d)-2f(x+d)+ f(x). (14)

Reasoning as in [5] (p. 475), we may assume without loss of generality that (X,W)

is non-decreasing. Hence, (12) implies

wo (X W) <d2Asp, (X, W) <y, (x+2d,W). (15)

Since (14) holds true, one can easily deduce that A,Cf (X) =CA,f (X) , A,C=0,

1 3
Ajx=0, d?A;x*=0(1), dzAgleogx=O[x4 Iongzo[x“], d?A; logx=0(1),

d A} [% X3j =x+0(d). Thus, (13) and finiteness of the sums contained in ) on

the right hand side (11) yield

KD
+%%, Scientific Research Publishing
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Sn 3
d‘ZA;[%x3+Zj:x+O(d)+ix +O(x4j. (16)

I =1 S,
Similarly,

3
dzA;zzo(sz. (17)

In order to estimate d A} Y. ', we will first consider

>

Ay —
2 Za s, (s, +1)(s, +2)

Sp+2

By (14) it is evident that

Sp+2 5
d’2A+X—=O d2ls [°x2 |.
5. (5, +1)(s, +2) ( 5l XJ (18)
On the other hand, the mean value theorem (13) gives us
Xsn+2 . 1
d?A;, ———————=0||s,[ x* |.
5. (5, +1) (5, +2) [|5“| X J (19

1 .
Let N(t) be the number of roots of Z(s) on the critical line E+ iX in the inter-

ri3
val 0<x<t. It is known ([5], p. 477, Th. 3.8) that N(t)'*%tz. Taking M >1
T

and following ([3], pp. 463-464; [6], p. 246), we use (19) resp. (18) in the sums over s,

%< |Sn| <1, 1< |Sn| <M resp.sumover S, |Sn| >M (below) to get

Sp+2
d-2A} X
2,% s, (s, +1)(s, + 2)|
Sn+2 )
< d72A+ X |+ d—2A+ X |
;an:d 25, (s, +1)(s, + 2)| K\§M 25, (s, +1)(s, +2)|
_ Xsn+2
+ d— A
\sn\Z>M 25, (s, +1)(s, +2)|
1 1 5
SCIXE Z |Sn|71+01XE z |Sn|7l+C2d’2xE Z |sn|f3
Sl 1fsp|<M [sa[>M

5 +o0

1 1Y 5
= o{x2 J +Cx? [tdN (1) +C,d ?x2 [t %dN (t)
1 M

1 1 5
:O[x2J+O(Mx2J+O[d2x2MlJ.

Xsn+2

1 1 5
d2A: =0 x2 |+0O| Mx2 |+0|d?x2M ™ |. 2
LTI OB

K2
912 0:52: Scientific Research Publishing
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Similarly,

x5n+2 1 1 5
d2A0Y —— _ =0| x2 |[+0| Mx? [+0| d?*x2M ™ |. (21)
e |
Observe that Z‘V‘Sg:O(tz) (see, [5], p. 437, Prop. 2.13). Thus, application of
d A} to the third and the fourth sum in Z” gives us

1 1 5
O[XZJ+O(MXZJ+O[dZXZM1J.

3L

where 21 denotes the sum of the first four sums in Z“ and 22 denotes the sum
of the last four sums in Z" . Now, Equations (11), (16), (17), (20), (21) and (22) give

us

Let us write

n=1 Sn

d?Ay, (X, W)= x+O(d)+zK: X +O(X4J+O[szj
(23)

2

5
+O[d2x2M1J—d2A§Z.

1 3
Putting M =x*, d =x*, the Equation (23) becomes

3
+o(x4]—d2A;Z. (24)

2

Py K x®
d2Asp, (X W) =X+ S
=1

n

3
Since the left sides of Equations (20), (21) are O(X“] for such choice of M and d,

3 1

we get d*zA;ZI =0 (X“] . Now, it is obvious that d’zAzzl =0 (X“] . Finally, Equ-

ation (24) gives us

K Sn E
d’zAgz//z(x,W):x+z); +O[x4}
n=1 S,

Returning to (15), we conclude that inequality

K Xsn E
WO(X,W)SX-‘:-ZS +O(x4j
n=1 S,

holds true. Following ([15], p. 11), we analogously obtain that

K XSn §
X+ ——+0[ x* |<yy(xW).

n=1 Sn
Xsn E
S +0 [x“ J (25)

Hence,

K
'//o(XvW): X+Z
n=1

n

KD
+%%, Scientific Research Publishing 913



M. Avdispahi¢, Dz. Gusi¢

Arguing as in [5] (p. 475) and [4] (p. 113), one immediately sees that equality (25)

proves the theorem.
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