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Abstract

The aim of this work is to study the existence of a periodic solution for some neutral
partial functional differential equations. Our approach is based on the R-boundedness
of linear operators Z/-multipliers and UMD-spaces.
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1. Introduction

Motivated by the fact that neutral functional differential equations (abbreviated, NFDE)
with finite delay arise in many areas of applied mathematics, this type of equations has
received much attention in recent years. In particular, the problem of existence of pe-
riodic solutions has been considered by several authors. We refer the readers to papers
[1]-[8] and the references listed therein for information on this subject.

In this work, we study the existence of periodic solutions for the following neutral

partial functional differential equations of the following form

% X(t)=L(%)]= A[X(t)~ L(x)]+G %)+ f (t) forte R, )
where A:D(A)c X — X s a linear closed operator on Banach space (X,]]) and
feLp(']T,X) for all p=1. For r, :=2aN (some NeN ) L and G are in
B(Lp([—rZH,O],X);X) is the space of all bounded linear operators and X, is an

element of LP ([—rZR,O], X ) which is defined as follows
X (0)=x(t+0) for 0 e[-r,,0].
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In [4], Ezzinbi et al. established the existence of periodic solutions for the following

partial functional differential equation:

%w x,t)=%w(x,t)+b(t)jfwe(e)w(x+a,t)dx+ F(x.1),

where b:R —>R is a continuous @-periodic function, f: [0,7{] xR—>R is a con-
tinuous function @-in £ periodic and Gis a positive function.
In [1], Arendt gave necessary and sufficient conditions for the existence of periodic
solutions of the following evolution equation.
d
ax(t) = Ax(t)+ f(t) forteR,
where A is a closed linear operator on an UMD-space Y.
In [2], C. Lizama established results on the existence of periodic solutions of Equation

(1) when L =0, namely, for the following partial functional differential equation

%x(t): AX(t)+G(x)+ f () forte R

where (A,D(A)) isalinear operator on an UMD-space X.
In [3], Hernan et al, studied the existence of periodic solution for the class of linear

abstract neutral functional differential equation described in the following form:
%[x(t) -Bx(t-r)]=Ax(t)+G(x )+ f(t) forteR

where A:D(A)—> X and B:D( B) — X are closed linear operator such that
D(A)cD(B) and GeB(L"([-27,0],X);X).

The organisation of this work is as follows: In Section 2, we present preliminary
results on UMD spaces. In Section 3, we study the existence of periodic strong solution
for Equation (1) with finite delay and we discuss the existence of mild solutions of
Equation (1). In Section 4, we give the main abstract result [Theorem 4.1] of this work,
and some important consequence when A generates a C,-semigroup [Theorem 4.2].

The last section is devoted to some examples.

2. UMD Spaces

Let X be a Banach space. Firstly, we denote By T the group defined as the quotient
R /2nZ . There is an identification between functions on T and 2n-periodic func-
tions on R. We consider the interval [0, 2117) as amodel for T.

Given 1< p<o, we denote by L°(T;X) the space of 2n-periodic locally p-inte-

grable functions from R into X, with the norm:

111, = (2 o a)”

For fel’(T;X),wedenoteby f(k), keZ the k-th Fourier coefficient of fthat
is defined by:

f (k) :injoz"e*ik‘f (t)dt fork eZandteR.
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Definition 2.1 Let ¢ € ]0,1[ and 1< p<oo. Define the operator H, by for all
felP(R;X)

1 f(t—s
(H.f)(t):= ;LG{%dS

if limH_f = Hf exists in L’ (R;X) Then, Hf is called the Hilbert transtorm of f
on LP (R; X ) .

Definition 2.2 [2]

A Banach space X is said to be UMD space if the Hilbert transform is bounded on
LP (]R; X) forall 1<p<ow.

Example 2.1 [9] 1) Any Hilbert space is an UMD space.

2) L* (0.1) are UMD spaces for every 1< p<w.

3) Any closed subspace of UMD space is an UMD space.

R-Bounded and Lr-Multipliers

Let Xand Y be Banach spaces. Then B(X,Y) denotes the space of bounded linear ope-
rators from Xto Y.

Definition 2.3 [1]

A family of operators T = (Ti)jeN* c B(X ,Y) is called R-bounded (Rademacher
bounded or randomized bounded), if there is a constant C>0 and pe [1, oo) such
that for each neN,T; €T, X;e X and for all independent, symmetric, {—1,1}—Va—
lued random variables r; on a probability space (UM, 1) the inequality
i hTiX
i

n

2 niX;

j=1

<C

LP(0.1Y)

LP(0,3;,X)

is valid. The smallest C is called R-bounded of (T i )jeN* and it is denoted by Rp (T ) .

Lemma 2.1 ([2], Remark?2.2)
DIfFT= (Tj )J_EN, c B(X Y ) is R-bounded then it is uniformly bounded, with

sup{|T,|: T, eT|<R,(T).

2) The definition of R-boundedness is independent of P € [1, oo).

Definition 2.4 [1] For 1< p<w, a sequence {Mk}kGZ c B(X ,Y) is said to be an
L? -multiplier if for each f € L°(T,X), there exists ueL’(T,Y) such that
(k) =M, fA(k) forall kKeZ.

Proposition 2.1 ([1], Proposition 1.11) Let X be a Banach space and {M k}
LP -multiplier, where 1< p <oo. Then the set {M K }keZ is R-bounded.

Theorem 2.1 (Marcinkiewicz operator-valud multiplier Theorem).

Let X, Y be UMD spaces and {Mk}kGZ c B(X Y). Ifthe sets {Mk }ksZ and
{k(My,; =M,)},_ are R-bounded, then (M}, isan " -multiplier for 1< p<o.

Theorem 2.2 [2] Let f eL"(T,X). Then

f=limo,(f)

n—oo

‘ez be an

kez

in LP(T,X) where
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ou(f)=—=Y Ye.f (k)

- n +lrn:0k:—m
with e, (t)=e".
Theorem 2.3 (Neumann Expansion) Let A€ B(X,X ), where X is a Banach space.
If "A" <1 then | —A isinvertible, moreover

(1-A) = YA

3. Periodic Solutions for Equation (1)

Lemma 3.1 Zer f el (T;X).If g(t) =L:f (s)ds and keZ,k=0. Then
- iz iz
K) =L (0)=1F (k).
-7 (0)-11(k)
Proof. Let g(t)= J; f (s)ds . Then by applying the Fourier transform, we obtain that

G(k)=2[ e ™g(t)dt = ijz"e“k‘j;f (s)dsdt.

1
210 2m 0

Integration by parts we obtain that

The proof is complete.
Lemma 3.2 [1] Let 1< p<o and u,velP(T;X). Then the following assertions

are equivalent:

1) IOZHV(S)dS =0 and there exists X e X such that

u(t)= x+'|';v(s)ds.
2) V(k)=ikl(k) forany keZ.
Let
HP(T;X)={ueL’(T,X):3ve L’(T,X),0(k)=iki(k)for all k e Z}.
By a Lemma 3.2 we obtain that
(a): ue Hl’p(']T;X ) Sue Lp(']T;X ),EIV elf (']T; X) such that joznv(s)ds =0 and
there exists x e X with u(t)=x+ J'(;v(s)ds.

Definition 3.1 [2]. For 1< p<w, we say that a sequence {M,}, . cB(X,Y) isan
(L”, H 1"’) -multiplier, if for each f e L”(T,X) there exists ueH Le (T.Y) such that

G(k)=M,f (k) forallk e Z.

Lemma 3.3 [2] Let 1< p<o and (Mk)keZCB(X) (B(X) is the set of all boun-

ded linear operators from X to X). Then the following assertions are equivalent.

K2
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1) (Mk)keZ isan (Lp,Hl'p)—mu]tlplier.
2) (ikMk)k€Z isan (LP,LP)-multlplieﬁ

3.1. Existence of Strong Solutions for Equation (2)

Let Dy =¢(0)-L(p).
Then the Equation (1) is equivalent:

%(Dxt):A(DXt)+G(xt)+f(t)forteR. @)

Denote by L, (X):= L(ekx); Gk(X)Z=G(ekX) and €,(0):=e*’,D, =1-L, for all
k €Z.We define

A, =(ikD - AD, -G, ) and o,(A)={k eZ:A, is not bijective].

We begin by establishing our concept of strong solution for Equation (2).

Definition 3.2 Let f eL’(T;X). A function xeH"?(T;X) is said to be a 2n-
periodic strong L? -solution of Equation (2) if DX, € D(A) forall t>0 and Equation
(2) holds almost every where.

Lemma 3.4 Let G:L"(T,X)— X be a bounded linear operateur. Then
G(u)(k)=G(e(k))=G,a(k) forallk e Z.

Proof. Let 0 ¢€[-r,,,0]. Then

(e(K))(8) = — [“6***lu(s)ds

"1
:i Zne—ik(s—e
210
1 (2z-0

=1 e u(s'+0)ds,(s'=s-0)

)u(s)ds

1o —iks’ ' ' 1 con —iks' 2 2
:EJ:HG u(s'+0)ds +zj'0 e ™ u(s'+8)ds

N (s'+6)ds"
271: 2n
Moreover
Zi Zznfge‘”‘s'u (s'+6)ds’
T 7
- zi [ ‘e u(2n-t+o)dt, (t=2n-5)
T
- zij‘fe‘“u (~t+0)dt, (u is 2n-periodic)
i
1o ik
= EJ‘OG u(s+6)dt, (-t=s).
It follows
(e0(K))(6) = zi g ey (s)ds = 2i ey, (6)ds.
T T

Since Gis bounded, then
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Then
G(e (k) =G (u)(k) ie Gii(k)=G(u)(k)
Lemma 3.5 [1] Let X be a Banach space, neN,x ;eX,r independent, symmetric,

{—1,1} -valued random variables on a probability space (Q,M, ,u) , and a;,pB;€C
such that |aj|£|ﬂj| for each j= ,N . Then

“Z,l ifiX; ”ZJ 11311 j

Proposition 3.1 Let A be a closed linear operator defined on an UMD space X.

LP(0,1;X) LP( 01x)

Suppose that oy (A) =@ . Then the following assertions are equivalent.

1) (ik(ika - AD, -G, )71) isan L° -multiplier for 1< p <o

keZ

is R-bounded.

keZ

2) (ik(ikD, - AD, -G, ) ")

Proof. 1) = 2) As a consequence of Proposition 2.1
2) = 1) We claim first that the set {G} is R-bounded. In fact, for X j € D(A) we

keZ
have:
p L p
G X = [ 12 ()G (ex)| dt
= LP(0.LX) i= X
1 u P
=, G(_ r (t)ejxj] dt
= M
p
dt
= Lp([_rhvo];x)
p
100 u
S”G"pjo,[_rz” Z;r,- (t)e; (s)x,| dsdt
j= X
p
0 &
s||G||pJ'_r2”j0 Z;rJ (t)e; (s)x;| dtds.
j= X
Since
1 n P n P
,fg Zri (t)eJ(S)XJ dt= Zriej(S)XJ
= X = LP(0.1;X)
Then
N p p
‘erijj <|e|” .[ e;(s)x; ds.
= LP(0,1:X) LP(0,1:X)
By Lemma 3.4, we obtain that
N p p p
2.1iGx <2|g|’ .[rh : =%
i=t LP(0,1X) LP(0.LX) LP(0LX)

We conclude that

718
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R, ((Gk )kez) <(2n, )1/p IG]-

Next define M, =ik(C, — AD, )7l , where C, :=ikD, —G, . By Theorem 2.1 it is su-

fficient to prove that the set {k(M,; - M, )}kEZ is R-bounded. Since

K[My—M,]= k[i(k +1)(C,,, - AD, ) " —ik(C, - AD, )’1}

1

=k(C,.; —AD,,) [i(k+1)(C, - AD,)-ik(C,,, ~ AD,,,) |(C, —~AD, )"

1

Cei— AD,,) ik (C, —C,.;)(C, ~ AD, ) " +i+ik (AD, ., - AD, )(C, — AD, )‘1]

1

( ) Li(

=Kk(Cy.s—AD,,) '[ik(C, ~C,.,)+i(C, — AD, ) +ik(AD,,, — AD,)](C, - AD,) "
( )ik )
( ) (

=k(Cyy~AD.;) (C,—Cy,,)ik(C, ~AD,) i ik(Cy., — AD,, )71

+k(Cy,, — AD,.,) " (AD,., - AD, )ik(C, — AD, )"

we have
C. —Cy,, =ikD, —i(k+1)D,,, +G,, —G,
=1k(Dy ~Dya) 1Dy +(Gya =Gy
=ik (L, — L ) +(Gs =G ) +iLy —il.
Therefore

k(C,.—AD,,,)" (AD,., - AD,)ik(C, — AD,)"”
=k (Ck+1 —AD, )_1 AD, ik (Ck —AD, )_1
~k(C,., — AD,,,) " ikAD, (C, — AD, )

—k [ckﬂ (Co—AD, ) +1 Jik (C,-AD,)*

~K(Cyy—AD, ;) .k[ (ck_ADk)‘l].

Since products and sums of R-bounded sequences is R-bounded [10. Remark 2.2].
Then the proof is complete.

Lemma 3.6 Let 1< p<oo. Suppose that o, (A) =¢ and that for every
f eLP(T;X) there exists a 2n-periodic strong L° -solution x of Equation (2). Then, x
is the unique 2r-periodic strong L" -solution.

Proof. Suppose that X, and X, two strong L -solution of Equation (2) then
X=X, —X, is a strong L"-solution of Equation (2) corresponding to f =0. Taking
Fourier transform in (2), we obtain that

ika)A((k) = ADk)A((k) + Gk)A((k),k el
Then
(ika - AD, —Gk))A((k) =0.

It follows that ﬁ(k) =0 forevery keZ and therefore x=0.Then X =X,.
Theorem 3.1 Let X be a Banach space. Suppose that for every f eL” (’11‘; X) there

exists a unique strong solution of Equation (2) for 1< p <. Then

KD
+%%, Scientific Research Publishing

719



R. Bahloul et al.

1) forevery keZ the operator A, =(ikD, — AD, —G,) has bounded inverse
2) {ikA;l}k , s R-bounded.
Before to give the proof of Theorem 3.1, we need the following Lemma.

ikt

Lemma 3.7 if (ika - AD, —Gk)(X)ZO for all keZ, then u/(.)=e"e ()X isa

2n-periodic strong L -solution of the following equation

d

E(Dxt)= A(Dx, )+ Gx,.
Proof of Lemma 3.7 (ikD, — AD, -G, )(x)=0=>ikD,x = AD X+ G,X .
Then

ikx = ikL, x + AD, X + G, X.
We have U, =€"e X and
u; = ike™e, x =e"e, (ikx)
=e"e, [ikL x+ AD X + G, X]
=ike™e, L, x+e"e AD, x +e*e, G, x
=ikL (e*'e,x)+ AD (e*e,x)+G (e"e,x)
=ikL(u, )+ A(Du,)+G(u,)
=(Lu,) +A(Dy,)+G(u,)
(u, - Lut)' = A(Du,)+G(u,)

(Dut)' :A(Dut)+G(ut)'

Proof of Theorem 3.1: 1) Let keZ and ye X . Thenfor f(t)=e"y, there exists

xeH""(T;X) such that:
%Dxt = A(DX)+G (%) + (1)

Taking Fourier transform, Gand D are bounded. We have

— —

(Dx )' (k)= )/(\’(k) —(Lx )' (k) byLemma 3.2 and Lemma 3.4, we deduce that:

—

X' (k)= (Lx ) (k) = ik& (k) - ikL & (k) = ik (1 = L, ) % (k) = ikD, % ().

Consequently, we have

ikD, % (k) = AD,X(k) + G, % (k) + f (k)
(ikD, — AD, —G, )%(k) = f (k) = y = (ikD, — AD, ~Gy) is surjective.

If (ikD, — AD, -G, )(u)=0, then by Lemma 3.7, X, =€'gU is a 2n-periodic strong
L® -solution of Equation (2) corresponing to the function f (t) =0 Hence X, =0 and
u=0 then (ikD,—AD,—-G,) is injective.

2) Let f eL?(T;X). By hypothesis, there exists a unique x € H""(T,X) such that

the Equation (2) is valid. Taking Fourier transforms, we deduce that

(k)= (ikD, — AD, -G, )" f (k) forallk e Z.

%%
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Hence
ik% (k) =ik (ikD, — AD, —G, )™ f (k) forallk e Z.
Since xeH"?(T;X), then there exists Ve L’(T;X) such that
(k) =ikg(k) =ik (ikD, — AD, -G, )™ f (k).

Then {ikA;l}k , isan L” -multiplier and {ikA;l}k , 18 R-bounded.

3.2. Periodic Mild Solutions of Equation (2) When A Generates a
Co-Semigroup

It is well known that in many important applications the operator A can be the infini-

tesimal generator of C;-semigroup (T (t)) on the space X.

t>0

Definition 3.3 Assume that A generates a C, -semigroup (T (t)) on X. A func-

t=0

tion x is called a mild solution of Equation (2) if
Dx, =T (t)Dgo-'r.[OLI' (t—s)(Gx,+ f(s))ds for 0<t<2m.

Remark 3.1 ([3], Remark 4.2) Let (T (t))tZO be the C,-semigroup generated by A.
If 9:[0,a] > X is a continuous function, then _[JOST (t—s)g(&)dédse D(A) and

A.[;J'OST (t-s)g(&)déds :_[;(T (t—s)-1)g(s)ds forall 0<t<a.

Lemma 3.8 [3] Assume that A generates a C,-semigroup {T (t)}po onX, ifxisa

mild solution then

Dx, = Do + AI;stds +_[$(st +f(s))ds for 0<t<2m.

Theorem 3.2 Assume that A generates a C, -semigroup (T (t)) on X and

t>0

f e LP(T;X). For some 1< p < ifx is a mild solution of Equation (2). Then

(ikD, — AD, G, )% (k) = f (k) forallk e Z.

Proof. Let xbe a mild solution of Equation (2). Then by Lemma 3.8, we have

Dx, = Do + Aj;stds + ﬁ(st +f(s))ds.

For t=2mn, we have
Dx,, = Do + Ajoz“Ddes + LJZ’I(GXS +f(s))ds.

Since: Dx,, = D, then

A.[Oanxsds + j;"(st +f(s))ds =0

1 2n 1 (on
:EAJO stds+5j-o (Gx, + f(s))ds =0

= %A Ozn(x(s) — L, )ds +%J’;ne“°56xsds Jr%jozne“oS f(s)ds=0

_— ~

= % A_[OZT[e‘iOS (x(s)—Lx,)ds+(Gx )(0)+ f (0)=0
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= A(X(0) - LX(0))+G,%(0) +  (0)=0
= AD,%(0)+G,%(0)+ f (0)=0
= (AD, +G,)%(0)+ f (0)=0
= (0-AD, -G,)(0) = f (0),
which shows that the assertion holds for k=0.
Now, define v(t)= j;stds and g(t)=Dx D¢ j;(GxS +f(s))ds byLemma 3.1

We have:
\7(k):&D0>2(0)—%Dkx(k)
Av(k)_%ADOQ(o)—%ADkX(k)
6(k)= Dkf((k)—HGOX(O)—&GKR(k)}—Hf(O)—if(k)}
= Dki(k)——GOR(O)+—Gk>“<(k)—% fA(O)+% f (k).
Then

ikD, (k) +G,%(0) -G, % (k) + f (0) - f (k) =—AD,%(0)+ AD,% (k)

(
o[ kDR (K)- ADR(K)-G&(k) - f (k) || ~AD,R(0) -G (0) - f (0) |=0
< ikD (k) - ADX(k) -G (k) - f (k)=0
& (ikD, — AD, ~G, )% (k) = f (k).

Corollary 3.1 Assume that A generates a C,-semigroup (T (t)) on X and let

t=0

f eL’(T;X), 1< p<o andx beamild solution of Equation (2). If
(ika - AD, - Gk) has a bounded inverse. Then
(ikD, -~ AD, —G, ) isan L"-multiplier.
Proof. From Theorem (3.2), we have that
%(k)=(ikD, — AD, —G, )™ f (k) forall f L"(T;X).
Our main result in this work is to establish that the converse of Theorem 3.1 and
Corollary 3.1 are true, provided Xis an UMD space.
Theorem 3.3 Let X be an UMD space and A:D(A)c X — X be an closed linear

operator. Then the following assertions are equivalent for 1< p <o .

1) for every f eL"(T;X) there exists a unique 2n-periodic strong " -solution of
Equation (2).

2) 0,(A)=¢ and {ikA;l}kEZ is R-bounded.

Lemma 3.9 [1] et f,gel?(T;X). If f(k)eD(A) and Af(k)=§(k) for all
keZ Then

f(t)eD(A) and Af (t)=g(t) forallte[0,2x].

K2
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Proof of Theorem 3.3:

1) = 2) see Theorem 3.1

1) <2)Let f el’(T;X).Define A, = (ika - AD, —Gk) )

By proposition 3.1, the family {ikA;l }k , is an L"-multiplier it is equivalent to the
family {A;l}k ) is an L° -multiplier that maps L° (']I‘;X) into Hl'p(']I‘; X), namely
there exists X € H"P(T,X) such that

2(k)=A2f (k)= (ikD, - AD, -G, )™ f (k). 3)

In particular, X eL(T;X) and there exists veL"(T;X) such that

3(K) = k2 (K)

o —

’

(Dx ) ()= D,7(k) = kD& (k). (4)
By Theorem 2.2, we have
x(0)=x(t+6) = lim —2- 3 3 eMekg (k).
N—=>+0 4 1 m=0k=-m
Hencein L (T; X ) , we obtain that
. 1 & & s
= lim — e*e® (k).

X ”L‘f‘” n +1n;Jk:z—m X( )

Since Gis bounded, then

Gx, = lim izn: ie“‘tG(ekf((k))

n>+0 N +1 1Sk
= lim LG: ie"‘tG )A((k)
T e +1 hookm ‘ .

Using now (3) and (4) we have:

(Dx ) (k) =ikD, % (k)= ADX(k)+G,%(k)+ f (k) forall k e Z.
Since A is closed, then DX, € D(A) [Lemma 4.1] and from the uniqueness theorem
of Fourier coefficients, that Equation (2) is valid.
Theorem 3.4 Let 1< p<oo. Assume that A generates a C, -semigroup (T (t))po

onX. If 0;(A)=¢ and (ikD, - AD, —~G,)" isan L° -multiplier Then there exists a
unique mild periodic solution of Equation (2).
Proof. For f eL’(T;X), we define

1 n..m .
f,()=— “f (k).
(=177 2 2.8 ()

By Theorem 2.2 we can assert that f, — f as n— o for the normin LP (T; X ) .
We have (ikD, — AD, —G, )_l is an L" -multiplier then there exists x e L" (T; X)
such that
%(k) = (ikD, - AD, —G, )™ f (k).
let
1

x,(0)=——3 3 e ) (ikD, — AD, ~G,)* f (k).

n+1 m=0k=—m
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Using again Theorem 2.2, we obtain that X, , = X (n - oo) and X, is strong L°-

solution of Equation (2) and x,, verified
Dx,, =T (1)Dg, + [T (t=5)[*(G((x,),)+ f,(s))ds.
let y, =Dg,. Then
D, =T ()Y, + [T (t=3)(G((%,),) + Fo(s))ds. (5)
For t=2n, we obtain that
DX, =T (2n)y, + [T (22 -5)(G((x,), ) + ,(5))ds.

From which we infer that the sequence (yn )n is convergent to some element yas

n — oo . Moreover, ysatisfies the following condition
2,
(*)y=T(2n)y+ jo T(2r-5)(G(x,)+ f(s))ds
let 1 go to infinity in (5), we can write

Dx, =T (t)y+ [T (t-5)(G(x,)+ f (s))ds:=g(t)

g(2n) =T (2x)y + [T (2n-5)(G(x,) + 1 (5))ds=y = g (0).

Then Dx,, = Dg = X,, = X,, we conclude that x is a 2n-periodic mild solution of

Equation (2).

4. Applications

Example 5.1: Let A be a closed linear operator on a Hilbert space A and suppose that

iZ < p(A) and sup,_, [k(ikD, -~ AD,) =M <.

If ||G|| < then for every f € L°(T;X), there exists a unique strong L’ -

1
(2 r2n )l/p M
solution of Equation (2).

From the identity

ikD, — AD, —G, = (ikD, — ADk)(I ~ G, (ikD, — AD, )’1)

it follows that ikD, — AD, —G, is invertible whenever Hek(ika—ADk)‘1 <1. [Theo-

rem 2.3], we observe that |G, || <(2r,, )Mp I| -
Hence,

e (ikD, - AD, ) <(25,)°|G|M =& <1,

- ”Gk (ikD, - AD, )™

Then 0, (A)=¢ and by Theorem 2.3 we deduce that

(ikD, — AD, -G, )" = (ikD, — AD, ) * (l —G, (ikD, — AD, )‘1)7l

n

= (ikD, - AD, ) * Y[ G, (ikD, - AD, )| .

n=0

724
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Moreovery
”ik(ika - AD, -G,) | <ik(D, - AD, )||i[Gk (ikD, — AD, )’T < 11+ M
n=0 -
and
sup|ik (ikD, - AD, -G, )| < .
keZ

We conclude that there exists a unique strong L" -solution of Equation (2). Using
Corollary 3.8 in [2].

Example 5.2:

Let A be a closed linear operator and X be a Hilbert space such that 1Zc p(A) and

1

R, (k (ikD, — AD, )*1) =M < o0. Suppose that ||G|| < )l/p e Then using Lemma 2.1

(2r,,
(1), we obtain that

k(ikD, — AD, -G, )™

sup <R, (k(ikD, ~ AD, )"} = M.

kez

From the identity kD, — AD, —G, = (ikD, — AD, )(l -G, (ikD, — AD, )’1) it follows
that ikD, — AD, —G, is invertible whenever

G, (ikD, — AD, )| <1.

Observe that |G, || <(2r,, )P IG| -

Hence

|o. (o, - AD,)* <(2,.)"*|6|M=a<1.

- ”Gk (ikD, — AD, )"

Then 0, (A)=¢ and by Theorem 2.3, we have

(ikD, — AD, ~G,)™ = (ikD, ~ AD, )" (1 - G, (ikD, - AD, )’1)7l
= (ikD, - AD, ) [ G, (ikD, - AD, ) ' |

n=0

R, (ik(ika - AD,) "G, (ikD, - AD, )1"}

n

Finaly

1 M +1
<

—a l-a

R, ((ikD, - AD, -G, )‘1) <R, (ik(ika — AD, )‘1)

This proves that {ik(Dk - AD, -G, )71} is R-bounded and by Theorem 3.3, we get

KD
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that there exists a unique strong L” -solution of (2).
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