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Abstract 
In this paper, we propose an efficient adaptive iteratively reweighted 1  algorithm (A-IRL1 algo-
rithm) for solving the elastic q  regularization problem. We prove that the sequence generated 

by the A-IRL1 algorithm is convergent for any rational ( )q 0,1∈  and the limit is a critical point of 
the elastic q  regularization problem. Under certain conditions, we present an error bound for 
the limit point of convergent sequence. 
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1. Introduction 
Compressed sensing (CS) has been emerging as very active research field and brings about great changes in the 
fields of signal processing in recent years [1] [2]. The main task of CS focuses on the recovery of sparse signal 
from a small number of linear measurement data. It can be mathematically modeled as following optimization 
problem,  

0min  subject to  ,
Nx R

x Ax b
∈

=                             (1) 

where mb R∈ , m NA R ×∈  (commonly m N< ) is a measurement matrix and 
0x , formally called the 0  

quasi-norm, denotes the number of nonzero components of ( )T
1 2, , , N

Nx x x x R= ∈ . In general, it is difficult 
to tackle problem (1) due to its nonsmooth and nonconvex nature. In recent years, some researchers have 
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proposed the q  norm regularization problem [3]-[5] with 0 1q< ≤ , that is, to consider the following q  
regularization problem  

min  subject to  ,
N

q
qx R

x Ax b
∈

=                                (2) 

or the unconstrained q  regularization problem  

2

2

1min ,
2N

q
qx R

Ax b xλ
∈

 − + 
 

                               (3) 

where ( )11

qqN
iiqx x

=
= ∑  for 0 1q< ≤  and 0λ >  is a regularization parameter. 

When 1q = , it is well known that the problems (2) and (3) are both convex optimization problems, and 
therefore, can be solved efficiently [6] [7]. On the other hand, when 0 1q< < , the above problems (2) and (3) 
lead to nonconvex, nonsmooth and even non-Lipschitz optimization problem. It is difficult to solve them fastly 
and efficiently. Iterative reweighted algorithms, which include iteratively reweighted 1  algorithm [8] and 
iteratively reweighted least squares [9], are very effective for solving the nonconvex q  regularization 
problem. 

In this paper, we consider the following elastic q  regularization problem,  

2 2
1 22 2

1min ,
2N

q
qx R

Ax b x xλ λ
∈

 − + + 
 

                           (4) 

where 1 2, 0λ λ >  are two parameters. When 1q = , the above problem (4) reduces to the well-known 
elastic-net regularization proposed by Zou and Hastie [10], which is an effective method for variable selection. 
In [10], Zou et al. showed that this method outperformed Lasso [11] in terms of prediction accuracy for both 
simulation studies and real-data applications on variable selection. For further statistical properties of the 
elastic-net regularization in detail, we refer to references [12] [13]. When 0 1q< < , problem (4) is an extension 
of elastic net regularization from 1  penalty to q  penalty. In statistics, elastic q  regularization is usually 
very effective for group variable selection. 

Obviously, for 0 1q< < , the q  norm term in (4) is not differentiable at zero. Therefore, in this paper, we 
study the following relaxed elastic q  minimization problem with 0 1q< <   

( ) ( )2 2
1 2 1 22 2

1

1min , , , ,
2N

N q
i

x R i
L x Ax b x xε λ λ λ ε λ

∈ =

= − + + +∑                    (5) 

The model (5) can be considered as an approximation to the model (4) as 0ε → . In order to solve the above 
problem (5), we propose the following adaptive iteratively reweighted 1  minimization algorithm (A-IRL1 
algorithm),  

( ) 2 21
1 2 1 22 21

1arg min , , , ,
2N

k k
k k

x R
x L x Ax b W x xε λ λ λ λ+

∈

 ∈ = − + + 
 

             (6) 

where the weight ( )k kW diag w=  is defined by the previous iterates and updated in each iteration as  

( )1
,  1, , .k

i qk
i k

qw i N
x ε

−= =
+

  

The adaptive iteratively update of kε  in the proposed algorithm is the same as the one in [9], which is also 
adopted in [14]. The A-IRL1 algorithm (6) solves a convex 2 1−   minimization problem, which can be 
solved by many efficient algorithms [6] [7] [15]. 

The relaxed elastic q  regularization problem (5) can be solved by A-IRL1 algorithm (6). In this paper, we 
prove that any sequence generated by the A-IRL1 algorithm (6) is convergent itself for any rational ( )0,1q∈  
as the case * 0kε ε→ > . Moreover, we present an error bound between the limit point and the sparse solution 
of problem (1). 

The rest of this paper is organized as follows: In Section 2, we summarize the A-IRL1 algorithm for solving 
elastic q  regularization problem (5). In Section 3, we present a detail convergence analysis for the A-IRL1 
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algorithm (6). We prove that the A-IRL1 algorithm is convergent for any rational ( )0,1q∈  based on an 
algebraic method with * 0ε > . Furthermore, under certain conditions, we present an error bound between the 
limit point and the sparse solution of problem (1). Finally, a conclusion is given in Section 4. 

2. A-IRL1 Algorithm for Solving Elastic q  Regularization 
We give a detailed implementation of A-IRL1 algorithm (6) for solving elastic q  regularization problem (5). 
The algorithm is summarized as Algorithm 1. 

 

 
 

In Algorithm 1, ( )r x  is the rearrangement of the absolute values of Nx R∈  in decreasing order. If 
1 0kε + = , we choose 1kx +  to be the approximate sparse solution and stop iteration. Otherwise, we stop the 

algorithm within a reasonable time and return the last 1kx + . 
It is clear from Algorithm 1 that { }kε  is a nonincreasing sequence which is convergent to some nonnegative 

number *ε . In the next section, we prove that the sequence { }kx  is convergent when * 0ε > , and the limit is a 
critical point of problem (5) with *ε ε= . Furthermore, we also present an error bound for the limit point.  

3. Convergence of Algorithm 1  
In this section, we first prove that the the sequence { }kx  generated by Algorithm 1 is bounded and asymp- 
totically regular. Then, based on an algebraic method, we prove that Algorithm 1 is convergent for any rational 

( )0,1q∈  with * 0ε > . Next, we begin with the following inequality.  
Lemma 1. Given 0 1q< <  and 1 0k kε ε +≥ ≥ , then the inequality  

( ) ( ) ( )
( )1 1 0,

q q
k k q

k

q α β
ε α ε β

ε α
+ −

−
+ − + − ≥

+
                         (7) 

holds for any , Rα β ∈ .  
Proof. We first define ( ) ( )  0qf t t t= > . For any 1 2, 0t t > , by the mean value theorem, we have  

( ) ( ) ( ) ( )1 2 1 2 1 2   where lies between and .f t f t f t t t tξ ξ′− = −                (8) 

The following inequality is always hold for any 1 2t t> , 1 2t t<  or 1 2t t= ,  

( ) ( ) ( ) ( )1 2 1 1 2 .f t f t f t t t′− ≥ −  

Let 1 kt ε α= +  and 2 1kt ε β+= + , we thus have  

( ) ( )
( ) ( )( )

( )
( )

( )
1

1 1 1 .
q q k k

k k q q
k k

q qε ε α β α β
ε α ε β

ε α ε α

+
+ − −

− + − −
+ − + ≥ ≥

+ +
             (9) 

After rewriting the terms of (9), we thus get the desired inequality (7).  
Our next result shows the monotonicity of ( )1 2, , ,k

kL x ε λ λ  along the sequence { }kx  and this sequence is 
also asymptotically regular.  

Lemma 2. Let { }kx  be the sequence generated by Algorithm 1. Then we have  

( ) ( )( )21 1
1 2 1 1 22

2 , , , , , , .k k k k
k kAx Ax L x L xε λ λ ε λ λ+ +

+− ≤ −                (10) 
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Furthermore,  

( ) ( )( )21 1 1
2 1 2 1 1 22

, , , , , , .k k k k
k kx x L x L xλ ε λ λ ε λ λ+ − +

+− ≤ −                   (11) 

Proof. Since 1kx +  is a solution of problem (6), we thus have,  

( )1
1 20 , , , .k

k kL x ε λ λ+∈∂  

Besides, we can get the subgradient of ( )1 2, , ,k kL x ε λ λ  as follows,  

( )
( )

( )T
1 2 1 21

1

, , , 2 .i
k k qk

i k
i N

q x
L x A Ax b x

x
ε λ λ λ λ

ε
−

≤ ≤

 
∂ ∂ = + − + 
+  

               (12) 

Hence, we find  

( )
( )

( )
1

1 T 1 1
1 2 1 21

1

0 , , , 2 ,
k
ik k k

k k qk
i k

i N

q x
L x A Ax b x

x
ε λ λ λ λ

ε

+
+ + +

−

≤ ≤

 ∂ ∈∂ = + − + 
+  

           (13) 

which means that there exists 1 1 , 1, ,k k
i ic x i N+ +∈∂ =   such that  

( )
( )

1
T 1 1

1 21

1

2 0,
k

k ki
qk

i k
i N

qc A Ax b x
x

λ λ
ε

+
+ +

−

≤ ≤

 
  + − + = 

+  

                 (14) 

where 
[ ]

1

1 1

1

1, if  0,
1, if  0,
, if  0, 1,1 .

k
i

k k
i i

k
i

x
c x

xα α

+

+ +

+

 >


= − <
 = ∈ −

 

We compute  

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1
1 2 1 1 2

2 2 2 21 1 1
1 1 22 2 2 2=1

2 21 1 1
1 1 22 2=1

T T1 1 1 1
2

, , , , , ,

1  
2
1
2

    2 .

k k
k k

N q qk k k k k k
i k i k

i
N q qk k k k k k

i k i k
i

k k k k k k

L x L x

x x Ax b Ax b x x

x x Ax Ax x x

Ax Ax Ax b x x x

ε λ λ ε λ λ

λ ε ε λ

λ ε ε λ

λ

+
+

+ + +
+

+ + +
+

+ + + +

−

 = + − + + − − − + − 
 

 = + − + + − + − 
 

+ − − + −

∑

∑
    (15) 

Using (14), we have  

( ) ( ) ( ) ( )
( )

1 1
T T1 1 1 1

2 1 1
=1

2 .
k k kN i i ik k k k k k

qki
i k

qc x x
Ax Ax Ax b x x x

x
λ λ

ε

+ +
+ + + +

−

−
− − + − =

+
∑           (16) 

Substituting (16) into (15) and using Lemma 1 yields  

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1
1 2 1 1 2

1 1
2 21 1 1

1 1 21 2 2=1

1
2 21 1 1

1 1 21 2 2=1

, , , , , ,

1=
2

1
2

k k
k k

k k kN q q i i ik k k k k k
i k i k qki

i k

k k
N q q i ik k k k k k

i k i k qki
i k

L x L x

qc x x
x x Ax Ax x x

x

q x x
x x Ax Ax x x

x

ε λ λ ε λ λ

λ ε ε λ
ε

λ ε ε λ
ε

+
+

+ +
+ + +

+ −

+

+ + +
+ −

−

 − + − + + + − + − 
 + 
 − ≥ + − + + + − + − 
 + 

∑

∑

2 21 1
22 2

1 ,
2

k k k kAx Ax x xλ+ +≥ − + −

     (17) 
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where the first inequality uses 1 1 1k k k
i i ic x x+ + +=  and 1 1k

ic + ≤ , and the last inequality uses Lemma 1. Therefore, 
from (17) we get the desired results (10) and (11).  

From Lemma 2 (10), we know that ( )1 2, , ,k
kL x ε λ λ  is monotonically decreasing and bounded. Otherwise, 

( )1 2, , ,L x ε λ λ →∞  as 
2x →∞ . Therefore, { }kx  is also bounded. On the other hand, from (11) we obtain 

that the sequence { }kx  is asymptotically regular. 
In order to prove that the whole sequence generated by Algorithm 1 is convergent, we need the following 

lemma, which plays an important role in the proof of convergence. The following lemma mainly states that for 
almost every system of n polynomial equations in n complex variables, if its corresponding highest ordered 
system of equations have only trivial solution, then there is a finite number of solutions to the n polynomial 
equations. For detailed proof refer to Theorem 3.1 in [16]. 

Lemma 3. ([16]) Let n polynomial equations in n complex variables ( ), 0P z w =  be given, and let 
( ), , 0Q z a c =  be its corresponding highest ordered system of equations. If ( ), , 0Q z a c =  has only the trivial 

solution 0z = , then ( ), 0P z w =  has 1
n

ii q
=

Γ =∏  solutions, where iq  is the degree of iP .  
With above lemmas, we are now in a position to present the convergence of Algorithm 1 for any rational 

number ( )0,1q∈  with * 0ε > .  
Theorem 1 For any 1 2, 0λ λ > , if the limit of { }kε  is * 0ε > , then the sequence { }kx  generated by 

Algorithm 1 is convergent. Denoting the limit by *x , i.e., *lim k

k
x x

→∞
= . Moreover, the limit *x  is a critical 

point of problem (5) with *ε ε= .  
Proof. From (10), we know that the sequence ( ){ }1 2, , ,k

kL x ε λ λ  is monotonically decreasing and bounded 

below. Thus, we can infer that the sequence { }kx  is also bounded. The boundedness of { }kx  implies that  

there exists at least one convergent subsequence. We assume that { }jkx  is any one of the convergent 
subsequences of { }kx  with limit *x . By (11), we know that the sequence { }1jkx +  also converges to *x . 
Now replacing kx , 1kx + , kε , 1k

ic +  with jkx , 1jkx + , 
jkε , 1jk

ic +  in (14) respectively, and letting j →∞  
yields  

( )
( )

*
T * *1

21*
*

1

2 0,i
q

i
i N

qc A Ax b x
x

λ λ
ε

−

≤ ≤

 
  + − + = 

+  

                     (18) 

where * * , 1, ,i ic x i N∈∂ =  . 
The above Equation (18) demonstrates that the limit of any convergent subsequence of { }kx  is a stationary 

point of problem (5) with * 0ε ε= > . In order to prove the convergence of the whole sequence { }kx , one first 
needs to prove that the limit point set, denoted by { }kx

Y , which contains all the limit points of convergent 
subsequence of { }kx , is a finite set. 

A classification is made for the limit point set { }kx
Y  with different sparsity s, 1 s N≤ ≤ . That is the set  

{ } ( )* *, ,kx
x Y supp x s Ω = ∈ = 

 
 

which contains all the limit points with each sparsity s. If we prove the set Ω  is a finite set, then we obtain that 
the limit point set { }kx

Y  is also a finite set. Without loss of generality, we define a set  

( ){ }T* * * *
1 2, , , , 0, , 0 .s

sC x x x x= = ∈Ω 
                        (19) 

Furthermore, for any given ( )T
1, , sη η η=   with 1, 1, ,i i sη = ± =  , we define another set  

( ) ( ){ }* *
1, , , , 1 .s s

s i iC x C sign x i sη η η= ∈ = ≤ ≤                     (20) 

From (19) and (20), we have ( )1
1, 1

, ,
i

s s
s

i s

C C
η

η η
=± ≤ ≤

= 



. If we prove that the set ( )1, ,s
sC η η

 is a finite 

set, then it implies that the set sC  is also finite, and we further conclude that the limit point set { }kx
Y  is a finite 

set. 
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For any ( ) ( )
T* * * *

1 2 1, , , , 0, , 0 , ,s
s sx x x x C η η= ∈    with 1, 1, ,i i sη = ± =  , let ( )*S supp x=  denotes 

the support set of *x  with S s= . By (18), we know that *x  satisfies the following equation  

( )
( )T * *1

21*
* 1

2 0,i
S S S Sq

i i i s

q A A x b x
x

λ η λ
η ε

−

≤ ≤

 
  + − + =
 + 

                    (21) 

where *
Sx  denotes the subvector of *x  with components restricted to S and SA  denotes the submatrix of A 

with columns restricted to S. Next, if we prove the Equation (21) has finite solutions, then we can obtain the set 
( )1, ,s

sC η η
 as a finite set. 

It is clear that (21) can be rewritten as follows:  

( )
( )T * T1

21*
* 1

2 0,i
S S S S Sq

i i i s

q A A I x A b
x

λ η λ
η ε

−

≤ ≤

 
  + + − =
 + 

                 (22) 

where T
22S S SA A Iλ+  is an s s×  positive-definite matrix, T s

SA b R∈  and SI  is the s s×  identity matrix. 
We observe that (22) can further be rewritten as follows:  

( )( )T * T
1 22 0,S S S S Sq A A I x A bλ η λ+ + − =                      (23) 

where   is an s s×  diagonal matrix with the diagonal entries ( )1*
*

q

ii i ix η ε
−

= +  for 1, ,i s=  . Without 

loss of generality, we denote ( )T
22S S S ij s s

A A I aλ
×

+ =  and ( )TT
1 2, , ,S sA b p p p=  . Let 1 q

p
γ

− = , where , pγ  

are two positive integers. By using simple calculation for Equation (23), we get the following system:  

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2 2 2* * * * * 2
11 1 12 2 1 1 1 * 1 1 * 1

2 2 2* * * * * 2
21 1 22 2 2 2 2 * 2 2 * 1

2 2 2* * * * * 2
1 1 2 2 * * 1

2 0,

2 0,

2 0.

p p
s s

p p
s s

p p
s s ss s s s s s

a x a x a x p x x q

a x a x a x p x x q

a x a x a x p x x q

γ

γ

γ

ε η ε λ

ε η ε λ

ε η ε λ


+ + + − + + − =


 + + + − + + − =



 + + + − + + − =









         (24) 

Since all the solutions of Equation (21) satisfy (24), we can thus show that Equation (21) has finite solutions 
as long as we can prove that (24) has finite solutions. To do that, we show that the following system has finite 
solutions:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 22 2
11 1 12 2 1 1 1 * 1 1 * 1

2 22 2
21 1 22 2 2 2 2 * 2 2 * 1

2 22 2
1 1 2 2 * * 1

2 0,

2 0,

2 0,

p p
s s

p p
s s

p p
s s ss s s s s s

a u a u a u p u u q

a u a u a u p u u q

a u a u a u p u u q

γ

γ

γ

ε η ε λ

ε η ε λ

ε η ε λ

 + + + − + + − =


+ + + − + + − =



 + + + − + + − =









          (25) 

where ( )T
1 2, , , s

su u u u R= ∈ . Now, we extract the highest order terms from system (25) to get the following 
system:  

( )
( )

( )

2 2
11 1 12 2 1 1

2 2
21 1 22 2 2 2

2 2
1 1 2 2

0,

0,

0.

p
s s

p
s s

p
s s ss s s

a u a u a u u

a u a u a u u

a u a u a u u

γ

γ

γ

 + + + =

 + + + =




+ + + =









                       (26) 
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To prove that system (26) has only trivial solution, we use the method of proof by contradiction. Without loss 
of generality, we assume ( )1 2, , , , 0, 0, , 0 s

tu u u u R= ∈ 
 is a nonzero solution of (26), 0iu ≠  for 1, 2, ,i t=  , 

and 1 t s≤ ≤ . By the assumption 0iu ≠  for 1, 2, ,i t=  , and from (26) we can get the following equation:  

0tBu =                                      (27) 

where ( )ij t t
B a

×
=  is the t t×  leading principal submatrix of matrix T

22S S SA A Iλ+  and  

( )T
1 2, , ,t t

tu u u u R= ∈  for 1 t s≤ ≤ . Because the matrix T
22S S SA A Iλ+  is positive definite; implies that the  

matrix B is also positive definite, and thus we have 0iu =  for 1, 2, ,i t=  . This contradicts the assumption 
that 0iu ≠ , 1, 2, ,i t=  . Therefore, we get that the system (26) has only trivial solutions. According to 
Lemma 3, we deduce that the system (25) has finite solutions, which further implies that the Equation (21) has 
also finite solutions, that is, the set ( )1, ,s

sC η η
 is a finite set. Therefore, we get that the limit point set { }kx

Y  
is a finite set. 

Combining with 1

2
0k kx x +− →  as k →∞ , we thus obtain that the sequence { }kx  is convergent. By the 

convergence of sequence { }kx  and (18), we obtain that the limit *x  is a critical point of problem (5) with 

*ε ε= .  
Theorem 1 gives a detailed convergence proof of Algorithm 1 based on an algebraic approach. In the next, we 

will present an error bound between the convergent limit and the sparse solution of problem (1). 
Under the Restricted Isometry Property (RIP) on the matrix A, we present an error bound between the 

convergent limit and the sparse solution of problem (1). First of all, we give a definition of RIP on the matrix A 
as follows. 

Definition: For every integer 1 s N≤ ≤ , we define sδ  as the s-restricted isometry constant of A as the 
smallest positive quantity such that  

( ) ( )2 2 2

2 2 21 1s sx Ax xδ δ− ≤ ≤ +                          (28) 

for all subsets { }1, 2, ,T N⊂   of cardinality at most s and vectors x supported on T. 
Under the RIP assumption, we can ensure that the limit *x  is a reasonable approximation of the sparse 

solution if *x  has a very small tail in the sense that  

( )
0

* *infs pp y s
x x yσ

≤
= −  

for 1p ≥ , which is the error term of the best s-term approximation of *x  in the p -norm. 
With the concept of RIP, we are able to prove the result of following theorem.  
Theorem 2. Suppose that x is an s-sparse solution of (1) satisfying Ax b= . Assume that A satisfies the RIP 

of order 2s with 2 1sδ <  and *kε ε→ . For any fixed 1 2, 0λ λ > . 
(1) When * 0ε > , the limit *x  of convergent sequence { }kx  is a critical point of problem (5) with *ε ε= , 

and it satisfies  

( )* *
1 1 22 2

,sx x C C xλ σ− ≤ +                             (29) 

(2) When * 0ε = , there must exist a subsequence from { }kx  converging to an s-sparse point *xε  which 
satisfies  

*
12
.x x Cε λ− ≤                                  (30) 

Here 1C , 2C  and C are positive constants dependent on 2 1 2, ,sδ λ λ  and the initial point 0x .  
Proof. (1). In Theorem 1, we have proved that the limit *x  of convergent sequence { }kx  is a critical point 

of problem (5) with * 0ε ε= > . 
We use Lemma 2 to get  

( ) ( ) ( )
( ) ( )

* 0
* 1 2 1 2 0 1 2

2 20 0 0 0
1 0 2 1 22 2

, , , , , , , , ,

,

k
k

q qq
q q

L x L x L x

x N x x N x

ε λ λ ε λ λ ε λ λ

λ ε λ λ λ

≤ ≤

≤ + + = + +
            (31) 
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where we use the assumption that the initial value 0x  satisfies 0Ax b=  and 0 1ε =  in Algorithm 1. By (31), 
we have  

( ) 2* * 0 02
* 1 2 12 2

1

2 , , , 2 .
q

q
Ax b L x x N xλε λ λ λ

λ
 

− ≤ ≤ + + 
 

 

et S be the index set of the s-sparse solution x, and let *S  be the index set of s largest entries in the absolute 
value of *x . Since 

0x s≤ , we have  

( ) ( )

( ) ( )

( )

( )

* *

* *

*

* * *

2 2
2

* *

2
2 2

* *2
2

2 2 2

20 0 *2 2
1 2 2
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(3) If * 0ε = , then 0kε =  for some k or ( )
1

km
k s

r xε α
+

= ⋅  holds for sufficiently large k and some integer 

km k≤ . In the former case, kx  is an s -sparse vector, and we denote * kx xε = . In the latter case, by the 

boundedness of { }kmx , we have * lim km
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= = = . That is, *xε  is 

an s-sparse vector. Therefore, in both cases, we have an s-sparse limit point *xε . Without loss of generality, we 
assume *kx xε→ . Using RIP of A, we get  
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where the third inequality uses (31) with *kε ε= , the last equality uses the assumption 0Ax b=  and * 0ε = . 

Denoting 
20 02
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C x xλ δ
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. This completes the proof.  

Under the condition of RIP on the matrix A, when * 0ε > , Theorem 2 provide an error bound between the 
convergent limit and the sparse solution of problem (1). While * 0ε = , we present an error bound for the limit 
point of any convergent subsequence. In this case, the limit point of any convergent subsequence is an s-sparse 
vector.  

4. Conclusion  
The iteratively reweighted 1  algorithm has been widely used for solving nonconvex optimization problem. In 
this paper, we propose an efficient adaptive iteratively reweighted 1  algorithm (6) for solving the elastic q  
regularization (5) and we prove the convergence of the algorithm. In particular, we first prove that the sequence 
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generated by Algorithm 1 is bounded and the sequence is asymptotically regular. When * 0ε > , based on an 
algebraic method, we prove that the sequence generated by Algorithm 1 is convergent for any rational 

( )0,1q∈  and the limit is a critical point of problem (5) with *ε ε= . Furthermore, under the condition of the 
RIP on the matrix A, when * 0ε > , we present an error bound between the convergent limit and the sparse 
solution of problem (1). While * 0ε = , we present an error bound for the limit point of any convergent 
subsequence. Our established convergence results provide a theoretical guarantee for a wide range of 
applications of adaptive iteratively reweighted 1  algorithm. 
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