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Abstract 

In this paper, we study about trigonometry in finite field, we know that ∈2 p , the field with p 
elements, where p is a prime number if and only if p = 8k + 1 or p = 8k − 1. Let F and K be two fields, 
we say that F is an extension of K, if K ⊆ F or there exists a monomorphism f: K → F. Recall that
[ ] { }∈2

0 1 2 0,

n
n iF x a a x a x a x a F n= + + + + ≥ , F[x] is the ring of polynomial over F. If eK F≤  

(means that F is an extension of K), an element ∈u F  is algebraic over K if there exists ( ) [ ]∈f x K x  
such that f(u) = 0 (see [1]-[4]). The algebraic closure of K in F is K , which is the set of all algebraic 
elements in F over K. 
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1. Introduction 
In this paper, we study about trigonometry in finite field, we know that 2 p∈ , the field with p elements, 
where p is a prime number if and only if p = 8k + 1 or p = 8k − 1. More generally, what can be said about  

1 2 np p p+ + +  in p  where 1 2, , , np p p  are prime numbers. To attempt to answer the question, for 

which p, 2 pp+ ∈ , we are naturally led to use the formula, 2 1 cos 2cos .
2

θθ +
=  Indeed, if π

8
θ = , we 

have 2 π 2 2cos
8 4

+
=  and so π 2 2cos

8 2
+

= , we can choose θ, a suitable 16th root of unity, such that 
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1 2 2
2 2

θ θ −+ +
= . The crucial observation is that this formula makes sense any algebraic closure p  of p  

if 2p ≠ . 
Let F and K be two fields, we say that F is an extension of K if K F⊆  or there exists a monomorphism 
:f K F→ . Recall that [ ] { }2

0 1 2 0,n
n iF x a a x a x a x a F n= + + + + ∈ ≥ , [ ]F x  is the ring of polynomial 

over F. If eK F≤  (means that F is an extension of K), an element u F∈  is algebraic over K if there exists 
( ) [ ]f x K x∈  such that ( ) 0f u = . The algebraic closure of K in F is K , which is the set of all algebraic ele-

ments in F over K. 
Definition. Let p be a prime number, 2p ≠  and let k be an integer such that p k . Then we can define the set  

[ ] ( )
1

2
cos        k c is a primitive kth root of unityθ θθ θ −  = = 



+


. 

Note that symbol “|” is divisor or divides such that a b  means a divides b and a b  means a does not di-
vide b. 

Remark. 1) Recall that θ is a primitive kth root of unity if 1kθ =  but 1nθ ≠ , for all 1 1n k≤ ≤ −  (see 
[2] [4]). The two make the assumption p k  because if p k , then there are no primitive kth root of unity in 

p . 

2) We can define [ ] ( )
1

sin       
2

k s is the kth root of nit
i

u yθ θθ θ
−  = = 



−


, in this set, i is a fixed square root of 

−1. We know that ( ) np
s θ ∈ . In particular, we have ( ) ( )2 2 1c sθ θ+ =  and ( ) ( )c isθ θ θ= + . 

Theorem 1. If K is a field with 9 elements and if 𝔽𝔽 is a finite extension of K, then the mapping :λ →   
defined by ( ) 9x xλ =  is an automorphism of 𝔽𝔽 which fixes exactly the elements of K. 

Proof. It is obviously that λ is onto and one to one (see [5] [6]). 
Theorem 2. Let θ be a primitive kth root of unity. Then 1

pθ θ −+ ∈  if and only if ( )1p mod k≡ ± . 
Proof: Assume 1

pθ θ −+ ∈ . If pθ ∈ , then ( )1p mod k≡ . Since the order of the multiplicative group of 
p  is p − 1. If pθ ∉ , then the irreducible polynomial of θ over p  is ( ) ( )1x xθ θ −− − . Hence 1pθ θ −=  

and so ( )1p mod k≡ − . 
Conversely, let ( )1p mod k≡ ± . If ( )1p mod k≡  then, since the multiplicative group of p  is cyclic of or-

der p − 1, p  contains a primitive kth root of unity. Therefore p  contains all primitive kth root of unity and so 
pθ ∈ . Hence 1

pθ θ −+ ∈ . If ( )1p mod k≡ −  then 1pθ θ −=  hence ( )1 1p
θ θ θ θ− −+ = + , so 1

pθ θ −+ ∈ . 
Corollary 3. If p ≠ 2 and θ is a primitive kth root of unity, then ( ) pc θ ∈  if and only if ( )1p mod k≡ ± . 
Remark. We observe that since membership of ( )c θ  in p  depends only on p and k, we have that either 
[ ]cos pk ⊂   or [ ]cos pk = ∅  . 

Lemma 4. Let θ be a primitive kth root of unity in Q , the algebraic closure of the rationales Q. Let 
[ ]R Z θ= , the subring of Q  generated by the integers Z and θ, and let P be a prime ideal of R containing of 

PR , where (p, k) = 1, where (,) denotes the highest common factor. Let S be the valuation ring of ( )Q θ  con- 
taining the ring { }1 , ,A xy x y R y P−= ∈ ∉ , and let M be the maximal ideal of S. Then Mθ θ= +  is a primi-

tive kth root of unity in the field of S
M

. 

Proof. The formal derivative 1kkx −  of 1kx −  is relatively prime to 1kx −  and so 1kx −  has no repeated 

roots in S
M

. On the other hand, ( )1
01 kk i

ix x θ−

=
− = −∏  and so, over S

M
: ( )1

01 kk i
ix x θ−

=
− = −∏ . It follows 

that θ  is a primitive root of unity in S
M

. 

Remark. For the basic properties of valuation rings, the reader can consult. In particular, it is worth recalling 
that each valuation ring is integrally closed in its quotient field K, and so, if 2 0k a− = , k K∈ , then k A∈  
(see [7]-[9]). Moreover, each valuation ring is a local ring which means that for each a A M∈ , 1a A M− ∈  as 
well. Expression obtained for the real and imaginary parts of the roots of unity over complex number is mea-
ningful in A/M. 
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2. Some Properties 

Corollary 5. Let (q, 10) = 1. Then ( )5 12 2 2 1 2 5
2

n
q q mod−

+ + + + ∈ ≡ ±⇔ ⋅   were n is the number 

of 2’s occurring under the root signs (excluding the 2 in the denominator!). 

Proof. Define 1
5 1
2

r −
= , 1

10 2 5
2

a +
= , and for each n ≥ 2: 12n nr a −= + , 12n na a −= − . Let 

2
nrn

b
=

, 

2
nan

d
=

. Now 1 1b id+  is a primitive 5th root of unity viewed as an element of the complex number. Thus 1 1b id+  

is a 5th primitive root of unity in p  provided p ≠ 5. Moreover, it is easy to check that ( )2
1 1n n n nb id b id− −+ = ±   

and so n nb idθ = +  is a primitive 12 5n− ⋅  root of 1. 
Remark. If in corollary 5 we take 0n = , q p= , we obtain a special case of the quadratic reciprocity law, 

namely: ( )5 1 1 5
2 q q mod−

∈ ⇔ ≡ ±  or ( )5 1 5p p mod∈ ≡ ±⇔ . 

Corollary 6. Assume (2, q) = 1. Then ( )22 2 2 1 2n
q q mod +⇔+ + + ∈ ≡ ±   where n is the number 

of 2’s occurring under root signs. 
Proof. Let 1 0a = , 1 2b =  and for each n ≥ 2 Let 12n na b −= + , 12n nb a −= −  where at each stage we 

make a specific choice of square root. 
As before letting 

2 2

,
n na bn n

r t
= =

 and we have n nr it+  is a primitive 22n+  root of unity. 

Corollary 7. Let (6, q) = 1. Then ( )22 2 3 1 2 3n
q q mod ++ + + ∈ ≡ ±⇔ ⋅  , where n is the number of 

2’s under the square root signs. 
Proof. Let 1 13, 2a b= =  and for each n ≥ 2 Let 1 12 , 2n n n na b b a− −= + = − . Then with the same nota-

tion as above we have n nr it+  is a primitive 22 3n+ ⋅  root of unity. 
Remark. If n = 0 and q = p above we have ( )3 1 12p p mod∈ ≡ ±⇔  which is again a particular case of 

the quadratic reciprocity Law. 
Corollary 8. Let (q, 34) = 1. Then 

( )1 17 34 2 17 17 3 17 34 17 2 3 1 17 .4 2 17
2 q q moda − + + −

= + + − − ⇔ ≡ ±− + ∈  

The Formula in corollary 8 is quite complicated and one is naturally interested to know whether already some 
subformula of this formula is an element of q . Suppose that ( )1 17q mod≡ ± , then 17 q∈ . 

Indeed set 16 4 13 9 8 15 2λ θ θ θ θ θ θ θ θ= + + + + + + +  where θ is a primitive 17th root of unity in q . Since 
( )1 17q mod≡ ±  we see qλ λ=  and qλ ∈ . On the other hand one checks easily that ( )22 1 17λ + = , hence 

17 q∈ . We climb that also 2 4λ +  is a square in q . To show this consider 16 4 13α θ θ θ θ= + + +  and 
9 8 15 2β θ θ θ θ= + + + . Then α β λ+ = . Moreover we have 16

1
1

i
iαβ θ

=
= = −∑ . Thus 1α α λ−− = . Since  

( )1 17q mod≡ ±  we see that both , qα β ∈ . Hence 2 4 qλ + ∈  too. Since 
17 1

2
λ −
=  or 

( )17 1

2
λ

− +
=  

we see that ( )2 17 17 q− ∈  or ( )2 17 17 q+ ∈ . Since ( ) ( )2 17 17 2 17 17 8 17 .q− ⋅ + = ± ∈  

we see that both element ( )2 17 17−  and ( )2 17 17+  belong to q . Combining corollary 8 with the 

considerations above, we obtain. 

Corollary 9. Suppose that (q, 34) = 1, Then 34 2 17−  and 17 3 17 34 2 17 2 34 2 17+ − − − +  
both belong to q  if ( )1 17q mod≡ ± . 

Remark ([10] [11]). One could use the formula given in the table at the end of this note to deduce corollary 9,  
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more easily. Indeed, for example, from c1 and c4 in q  we deduce that 1 4
1 17 34 2 17

4 qc c − + + −
+ = ∈ , 

similarly 2 8
1 17 34 2 17

4 qc c − + − −
+ = ∈ . From this follows that 17  and 34 2 17 q− ∈ . 

Theorem 10. Suppose (34, q) = 1, Then ( )2 17 17 q+ ∈  if and only if ( )1, 4 17q mod≡ ± ± . 

Proof. If ( )2 17 17 qλ = + ∈  then also 17 q∈  and ( )1, 4, 2, 8 17modq ≡ ± ± ± ± . Indeed 17 q∈   

if either rq p=  and 17 q∈  or rq p=  with r even. In the first case ( )1, 4, 2, 8 17modp ≡ ± ± ± ±  and 
therefore ( )1, 4, 2, 8 17r mp od≡ ± ± ± ± , too. On the other hand p, when r is even, is congruent to one of the 
elements ±1, ±4, ±2, ±8. On the other hand, in the notation as above, we have 1 4 4

qα θ θ θ θ− −= + + + ∈  if  

and only if ( )2 17 17 q+ ∈ . If 1q ≡ ±  or 4q ≡ ±  we see that qα α=  and qα ∈ . Hence  

( )1, 4 17q mod≡ ± ± . So ( )2 17 17 q+ ∈ . 

We want to prove that ( )2 17 17 q+ ∈  then ( )1, 4 17q mod≡ ± ± . It is enough to exclude possibilities 

( )2, 8 17q mod≡ ± ± . Suppose that ( )2, 8 17q mod≡ ± ± , Then 8 9 2 15 1qα α θ θ θ θ α −= = + + + = − . Thus 

( )

1 17
2

1 17

2

θ α β

− +

= + = 
− +



 iff 
17 1

17 1

 =


= −
 that this is contradiction. 

Corollary 11. Assume (34, q) = 1. If rq p= , then 17 17 q+ ∈  if and only if ( )1 8q mod≡ ±  and 
( )1, 4 17q mod≡ ± ±  or ( )3 8q mod≡ ±  and ( )2, 8 17q mod≡ ± ± . 

Therefore the inclusion 17 17 q+ ∈  depends only on q(mod 136). we now focus attention on  

( )
1

2
s

i
θ θθ

−−
=  where θ is a primitive kth root of unity in q . Note that if 2p = , 

1 1

2 2i
θ θ θ θ− −− +

=  which  

has been dealt with is lemma 4 from now on we assume 2 q . 
Definition. Let [ ] ( ){ }sin        k s is a primitive kth root of unityθ θ= , we shall abbreviate s(θ) to s. The reader 

should beware that “is” is not necessarily the third person singular of the present tense of the verb to be! 
Theorem 12. Let θ be a primitive kth root of unity. Then ( ) qs θ ∈  iff one of the following holds : 
(i) [ ]( )1 4,q mod k≡ ±  where [,] denotes the least common multiple. 
(ii) k has the form 8m + 4 and ( )4 1q m mod k≡ +  
(iii) k has the form 8m + 4 and ( )4 3q m mod k≡ +  
Proof. Assume ( ) qs s θ= ∈ . Then ( )1q mod k≡  and set ( )c c θ=  so that θ = c + is. For case (i), Let 

qθ ∈ . Then ( )1q mod k≡  and by corollary 3: *
qc∈ . Therefore qis∈  and so q∈ . Hence ( )1 4q mod≡  

and thus [ ]( )1 4,q mod k≡ . 
Case (ii), Let qθ ∉  and qc∈ . Then qis∉  too, and thus qi∉ . Therefore ( )1 4q mod≡ . On the oth-

er hand ( )1  q mod k≡/  Since qθ ∉  and so ( )1q mod k≡ − , with qc∈ , implies that [ ]( )1 4,q mod k≡ − . 
Case (iii), qθ ∉ , qc∈  and is belong to q . In this case qi∈  and so ( )1 4q mod≡ . Now 2 21c s= −  

whence q cθ = ± . But qc∉  and so qc c= −  Therefore ( ) .qq c is c isθ = + = − +  Hence 1 1qθ + = −  and so  
( )2 1 1qθ + = . Therefore ( )2 2q mod k≡ − . So ( )1  q mod k≡ ±/  and thus k is even and 1

2
kq mod ≡ −  

 
. There- 

fore ( )1 4q mod≡ , 1
2
kq mod ≡ −  

 
 and ( )1  q mod k≡ ±/ . It is easily seen that these three condition are  

equivalent to k = 8m + 4 and ( )4 1  q m mod k≡ +  for some m. 
Corollary 13. For any k, either [ ]sin qk ⊂   or [ ]sin qk = ∅  . 
Proof. As ( ) qs θ ∈  depends only on q and k and not particular primitive root chosen, finally, we determine 
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how many distinct values of ( )c θ  and ( )s θ  there are as θ varies over the primitive kth root of unity. 

3. Conclusion 
We conclude that in the field of real numbers, trigonometric ratios are defined as defined in finite fields. As well 
as relations between trigonometric ratios hold in the field of real numbers, finite fields are also established under 
the circumstances. 
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