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Abstract
Let p(z) be a polynomial of degree n and for a complex number «, let

D,p(z)=np(z)+(a—-2)p'(z) denote the polar derivative of the polynomial p(z) with respect to
« . In this paper, first we extend as well as generalize the result proved by Dewan and Mir [Inter.
Jour. Math. and Math. Sci., 16 (2005), 2641-2645] to polar derivative. Besides, another result due
to Dewan et al. [J. Math. Anal. Appl. 269 (2002), 489-499] is also extended to polar derivative.
Keywords
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1. Introduction and Statements of the Results

Let p(z) be a polynomial of degree n and denote by M (p,r)= r‘r;‘z3<|p(z)| Then we have the following

well-known Bernstein’s inequality [1].
max| p'(z)| < nr\?ﬁﬂ p(z). (1.2)

lz]=1

Equality holds in (1.1) ifand only if p(z) has all its zeros at the origin.
Inequality (1.1) can be sharpened if we restrict ourselves to the class of polynomials having no zeros in
|z] <1. In fact, it was conjectured by Erddsand later verified by Lax [2] that if p(z)#0 in |z|<1, then

, n
max|p'(z)| < 5 max|p(2) (12)

Inequality (1.2) is the best possible and equality attains for p(z)=a+ 82", |a|=|4].

How to cite this paper: Chanam, B. (2015) Polar Derivative Versions of Polynomial Inequalities. Advances in Pure Mathe-
matics, 5, 745-755. http://dx.doi.org/10.4236/apm.2015.512068



http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2015.512068
http://dx.doi.org/10.4236/apm.2015.512068
http://www.scirp.org
mailto:barchand_2004@yahoo.co.in
http://creativecommons.org/licenses/by/4.0/

B. Chanam

Malik [3] extended (1.2) by considering the class of polynomials p(z) of degree n not vanishing in |z| <k,
k >1, and proved
ma < ——ma 1.3
P (2) < el o(a) 43
As a generalization of (1.3), Bidkham and Dewan [4] proved that if p(z) was a polynomial of degree n
having no zero in |z| <k, k=1, thenfor 1< p<k,

max|p’ <
mex|P'(2)

Equality holds in (1.4) for p(z)=(z+k)"
Further, Dewan and Mir [5] obtained the following result which was a generalization as well as an improve-

np+—max|p(z)|. (1.4)

ment of (1.4).
Theorem A. If p(z):zn:auz“ is a polynomial of degree n having no zero in |z|<k, k>1, then for
v=0
O<r<p<k,
n-1 k k— —k _ n-1
ax|pr(2) <2 )y K P)nfa|—k[a)n (” r]("”} M (p.r)- (L5)
-+ (k+r) (K*+ o )nfay |+ 2k* pla, |k + o )\ k+ p

Let p(z) be apolynomial of degree n and let D,p(z) denote the polar derivative p(z) with respect to

apoint «, then
D,p(z)=np(z)+(a-2z)p'(2).
The polynomial D, p(z) is of degree at most n—1 and it generalizes the ordinary derivative in the sense
that

_D,p(z)
lim—= =p'(z).
Aziz [6] extended (1.3) to the polar derivative of p(z) by showing that if p(z) had no zero in |z|<k,
k=1, the for every real or complex number a with |a|>1,

(0, 0() 20| 1%l maro(e). @

Inequality (1.6) is the best possible and equality holds for p(z)=(z+k)" with a real number &>1, and
k>1.

In this paper, we establish the following result, which deduces to a result giving, in turn, a generalization as
well as an extension of Theorem A to polar derivative. In fact, we prove:

Theorem 1. If p(z)=)a,z", is a polynomial of degree n having no zero in |z|<k, k>0, then for

0<r<p<k,and for every real or complex number o« with |a|>p,
- k(k - —k "
max|Dap(z)|£w(k+|a|) - Kk=p)(nfad] —Kla) 1—(”"} oA
- (k+7) (7 )nfal+ 2l [ Lo ek

The result is the best possible and equality occurs for p(z)=(z+k)", k>0 witha real number a>p.
Remark 1. For 0<r < p <k ,we have

)yt G AT GGy

p+k

n-1
S(P=T ), r+k
k+p p+k

(1.8)
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Also, for r = p, inequality (1.8) holds trivially and hence inequality (1.8) is true for 0<r < p<k. Using
this fact in the above theorem, we have:

Corollary 1. If p(z)=)a,z", is a polynomial of degree n having no zero in |z|<k, k>0, then for
v=0

0<r< p<k,and for every real or complex number o with |a| >2p,

m§X|Dap(Z)|£nﬂ(k+|a|) L K(k=p)(n[a;| -K[a))n (k+pj(r+kj }Z?ﬂp(z» (19)

ld=p (r+k)n (k2+p ) |a0|+2k2p|a1| p+k

It is seen that Corollary 1 is a generalization as well as an extension of a result due to Dewan and Mir [5] into
polar derivative.
Dividing both sides of (1.9) by |a| and making |a| — oo, We obtain the following, which is an extension of

the theorem due to Dewan and Mir [5].

Corollary 2. If p(z)=)a,z" is a polynomial of degree n having no zero in |z|<k, k>0, then for
v=0

O0<r<p<k,

ax|p’(z)|£n(’0+k)n7 1_k(k—p)(nlaol—klail)n(fgg[mrj”'hwp(z)y (1.10)

2= (k+r)" (k2+p2)n|a0|+2k2p|a1| k+p

The result is the best possible and the extremal polynomial is p(z)=(z+k)", k>0.

Remark 2. Both the inequalities (1.7) and (1.9) of Theorem 1 and Corollary 1, respectively reduce to inequa-
lity (1.6) for r=p=1.

Further, it was shown by Turéan [7] that if p(z) is a polynomial of degree n having all its zeros in |z| <1,
then

xlp(2)) > 5 max(p(2)]. (11

The result is sharp and equality in (1.11) holds if all the zeros p(z) lie on |z
As an extension of (1.11), Malik [3] showed that if p( ) has all its zeros in

z\l

=1.
z|<k, k<1, then

max p'(z)|>mr‘n‘az<|p ) (1.12)

whereas, if p(z) hasall its zeros in |z| <k, k=>1,then Govil [8] proved that

, n
T\gf('p(z)' 1+Kk" m' P(2)) (113

Both the estimates (1.12) and (1.13) are sharp. Equality in (1.12) holds for p(z)=(z+k)", k<1 whereas
equality in (1.13) holds for p(z)=z"+k", k>1.

Although the above result is sharp but still it is easy to see that it has two drawbacks. Firstly, the bound in
(1.13) depends only on the zero of largest modulus and not on other zeros even if some of them are very close to
the origin. Secondly, since the extremal polynomial in (1.13) is z" +k", it should be possible to obtain a better

n
bound for the polynomials Zauz“ , where not all the co-efficients a,,a,,a,,-:-,a, , are zero. It would, there-

1 ¥ -1
v=0
n
fore, be interesting to obtain a bound which depends on the location of all the zeros of the polynomial Zauz“
v=0

and also on the co-efficients a,,a,,a,,---,a, . In this connection, Dewan et al. [9] proved.

Theorem B. If p(z)=>a,z"=a,[[(z-2,), &, #0 is a polynomial of degree n>3 such that
v=0 v=l
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|z,|<k,, 1<v<n,and k=max(k;k, ks, k )>1,then

, 2 n k (kn —1) n k .
e O S e g S e
4|an—l| (k _1) n(k 1) 1 4|an—2|
+ +
1+k" n(n+1) k(k"+1)

(1.14)

) {(k” —1)—n(k—1)}_{(k”2—1)—(n—2)(k—1)} $_1
n(n-1) (n-2)(n-3) Sk+]z,
R Bl )

k"t n-1 n-3

and

, 2 (& k K-1 [& Kk
”J?Z‘|p(Z)|ZW(;k+—|zv|Jn3§i‘|p(z)|+k3(k3+1 ( <k +|z Jf P

+1|j2k|3{(k3—1);3(k—1)}(i 1ZJ 2|?1|<|3k1)13(z 1 J (1.15)
{5

The result is the best possible and equality in (1.14) and (1.15) holds for p(z) =27"+k".
Aziz and Rather [10] obtained a result which not only extended (1.12) into polar derivative of p(z), but also

itk vjaf 22}, forn=s

was a generalization by proving that if all the zeros of the polynomial p(z)=a,][](z—z,)of degree n lie in
v=1

|z|<k where k<1, then for every real or complex number o with |a|>k,

T‘§§|Dap(l)|2(|0‘|—k);r|zv|r{)‘§f<|p(z)|- (1.16)

The result is sharp and equality holds for p(z)=(z-k)" with «>1.
While, the corresponding extension which was also a generalization of (1.13) for k >1, was done by Rather

[11] who proved that if all the zeros of the polynomial p(z)=a,[[(z-z,) of degree n lie |z|<k, k=1,
v=1

then for every real or complex number « with |a| >k,

max|D, p(2) 2 (el k)X

Next, we further prove the following theorem in which inequality (1.18) not only extends inequality (1.14)
into polar derivative but is also a generalization, while inequality (1.19) extends inequality (1.15) into polar de-
rivative.

n3§x|p(z)|. (1.17)

Theorem 2. If p(z):anﬁ(z—z )= zn: , 8, #0 is polynomial of degree n>3, such that |z |<k,,
v=1 v=0
0)=

1<v<n, and if k=max(k,k, Ky, k
na,a+a,,; =0 for n>3,

1, then for every real or complex number o with |a| >k, and
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n k" -1 n
A e o

1+Kk" V:1k+|zv|r\?\:1 k" (k" +1) =

A [(K=)-n(k-D] (e 1 ), 4fa (k"—l)—n(k—l)]
1+k“{ n(n+1) HVZ zv] k(1+k"){ n(n-1) 118)

s St e

.\ |(n—1)a1 +2aa2|(k”1 -1 K3 _1

~ forn>3
k" n-1 n-3

and

2 3 k k3—1 3 k
Hl|D p(z | (|“| k)[k3+1£;k+|z |}n3§i(|p(z)|+k3(k3+1)[; ZVJ

k®-1)-3(k-1 1)
xm_in|p(z)|+ |a2|3 ( ) ( ) +z|al|(|§ 1) (1'19)
ek 1+k 3 3 k(k®+1)
+(k ){ k+1)[3a, +aa|+2(k-1)|a, +aa,|} forn=3.

k2
If we divide both sides of (1.18) and (1.19) by || and make |z|— oo, we obtain inequalities (1.14) and
(1.15) respectively.
Remark 3. For polynomials of degree n >3, Theorem 2 gives a refinement of inequality (1.17) due to Ra-
ther [11].
k
k+|z,

Since 2% for 1<v <n, Theorem 2 gives, in particular:

Corollary 3. If p(z)=)a,z", a, #0, is a polynomial of degree n>3 having all its zeros in |z|<k,
v=0

k=1, then for every real or complex number « with |a|>k, naa+a,, =0 for n>3,

n(k"-1
.00 1) mtof o

2k (k“ +1) 2=k

2nfa| (K -1)-n(k-D)] 2nfa, | [((K'-1)-n(k-1)
k(1+K") n(n+1) K2 (L+K") n(n-1)

(1.20)
(k" -1)-(n-2)(k-1) 2 (K-t
{ e R e LR
+|(n—l)a1+2aa2|(k"1_1_k”3—1) forn>3
k"t n-1 n-3
and
3 (e-y) 2 [(€-1)-3(k-1)
i |D p(z | (|“|‘k)[k3+1”)§i<|P(Z)|+mrplp|p(z)|+l+k3 2
(1.21)

{(k+1)[38, +a,|+2(k—1)|a, +aa,|} forn=3.

+z|a1|<k—1>3}(k—1)

3 (1+k3)k 2k?
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Remark 4. For k>1 and x>1,

are both increasing functions of x and so

the expressions

and

n(n-1) (n-2)(n-3)

{(k”—l)—n(k—l) (k”z—l)—(n—z)(k—l)}

are always non-negative so that for polynomials of degree n > 2, inequalities (1.20) and (1.21) together provide
a refinement of inequality (1.17). In fact, excepting the case when p(z) has all its zeros on |z|:k, with
a=0, a,=0, a,,=0 and a, , =0, the bound obtained in Theorem 2 is always sharper than the bound
obtained from inequality (1.17).

2. Lemmas

We require the following lemmas for the proofs of the theorems.

n
Lemma 2.1. If p(z) = Zauz“ is a polynomial of degree n having no zero in |z| <k, k>1,then
v=0

: njag| +k° Ja|
T\éﬂp (Z)|S n(1+k2)n|aﬂ|+2k2|a1| r\gg(' (Z)|

The above result is due to Govil et al. [12].

Lemma 2.2. If p(z)=) a,z’ is a polynomial of degree n having no zero in |z|<k, k>0, then for
v=0

O<r<p<k,

M(p,r)z(;iijnM(p,p).

n

There is equality in (2.2) for p(z)=(z+k)".
Lemma 2.2 is due to Jain [13].

Lemma 2.3. If p(z) = Z a,z” isa polynomial of degree n having no zero in |z| <k, k>0, then the func-

v=p

tion

(n|a0|t+k2|a1|)(k+t)
(t2 +k2)n|a0|+2k2t|a1|’

2.2)

f(t)=

is a non-decreasing function of tin (0,k].
Proof of Lemma 2.3.We prove this by derivative test. Now, we have

0yl Kla 2t 26 ) -¢)
{(t2+k2)n|a0|+2k2t|a1|}2 y

which is non-negative since (nfa,|—k|a,[)=0 (see Remark 1 with m = 1) [14] and the fact that t <k .

n

Lemma 2.4. If p(z)=) a,z" is a polynomial of degree n having no zero in |z|<k, k>0, then for

v=0
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O<r<p<k,

(k)| Kk=p)(nfa|kal) || (rekY .
M(p,p)_( j [1 (pz+k2)n|a10|+2k2p|al|{1 [p+k] }]M(p, ) @3

r+k

Inequality (2.3) is the best possible for p(z)=(z+k)", k>0.

Remark 5. Lemma 2.4 is of independent interest because by employing the simple fact that

k+r ) ker )™
1- >n
kK+p k+p
of Remark 1, it gives a result which extends the theorem due to Dewan and Kaur [15].
The proof of Lemma 2.4 follows on the same lines as that of Lemma 2.3 due to Dewan and Mir [5], but for

the sake of completeness we give a brief outline of its proof.
Proof of Lemma 2.4. Since p(z) has no zero in |z|<k, k>0, the polynomial P(z)=p(tz) where

0<t<k hasnozeroin |z| < 5 where %21. Hence applying Lemma 2.1 to the polynomial P(z), we get

k2
fag| + 7 [ta
TP el e Ol
{l+}n|ao|+2 Ita,|
which implies
. nlag|t+k? a,]
< 2.4
e ) n{(tz+kz)nlf'io|+2k2t|6‘1| 2x(p() 24
Now, for 0<r<p<k and 0<@ < 2w, we have
- o < flo (et < frrd B[t K[
p(pe?)-p(re’) < ||p'(te”)|dt<[n p(z)|dt, (using (2.4))
o)< <o e Bl ot
which implies on using (2.2) of Lemma 2.2,
N nfay[t+2 (L
) 7)< M (p,r)dt
p(ee)-0() !n{(t2+k2)n|ao|+2k2t|a1| i) M)
2
_ M(p,:)*j’ n|2a0|t+k |a1|2 (t+K)
(r+k)" 7 ( k)n|a0|+2kt|a1|
which gives for 0<r<p<k,
f O nfatekal :
t+k) dt;M(p,r) | 2.5
(pp |: r+k n.r[{(t2+k2)n|ao|+2k2t|a1|x( + ) (p r) ( )
For 0<r<t< p<k,byLemma 2.3, we have
n|ay [t +k* [a,|(k +1) - n|a,| o+ k*[a,|(k+ p) 256)

(t2 +k2)n|a0|+2k2t|a1| B (p2 +k2)n|ao|+2k2p|a1|'

Using (2.6) to (2.5), we have

)
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| (p+k) n|a,| o+ k%] p o
M(p,p)<|1+ n|(t+k) dt|M(p,r
(p.p) r+k)’ (p2+k2)n|ao|+2k2p|a1|X !( ) (pr)

|
. { (p+Kk)(n[a;] p+Kk? Iail)}+{ p+k)(“|ao|p+k2|ai|)}[/ﬁkﬂM(p,r)
(
[ k(

(p +k |a0|+2k2p|a1| P +k2)n|a0|+2k2p|a1| r+k
_| ) kk=p)(nfao|-K[a]) | ] K(k=p)(nfa|-Kla) (p+kj M ()
( 2 +k? ) |ag|+ 2k?|ay| (p2+k2)n|a0|+2k2|a1| r+k

(kY| k(=p)(nfa|-Kal) | (r+k Y r
] 2] oo

which completes the proof of Lemma 2.4.

Lemma25.1f p(z)=>a,z" isapolynomial of degree n=>2,thenfor R>1,

2( ) -1 R’Z 1] .
o= R|p <R “‘Q‘E‘Np )| 2 |ag| —[ay |{ — } if n>2 (2.7
and
2 (R-1) .
max p(z) <R r‘r;‘gi<|p(z)|——2 {(R+1)[a|+(R-1)[a,]}, if n=2. 2.8)

Lemma 2.5 is due to Dewan et al. [9].

Lemma 2.6. If p(z)=>a,z" is a polynomial of degree n>3 having all its zeros in |z|>1, then for
v=0

R>1,
" R"~1)-n(R-1
o)<t o 22 (2
_2|a|_ (R-)-n(R-1)| [(R"*-1)-(-2)R-Y|] @9
2 ] n(n-1) (n-2)(n-3)
and
R®+1 R’
perlo(e)<| 5 ot 5 oo
] (2.10)
jaf [(R™*-1)=(n-2)(R-1)| fa| _ .5
_7{ -2)(-3) }—?(R—l) , forn=3

The result is sharp and equality in (2.9) and (2.10) holds for p( ) (e +1z ) where ceC and #eR.
This result is also due to Dewan et al. [9].

3. Proof of the Theorems

n
Proof of Theorem 1. Since the polynomial p(z)=)a,z" has no zero in |z|<k, k>0, it follows that
v=0

T(z)=p(pz) hasno zeroin |z <£, where h21. Applying inequality (1.6) to the polynomial T(z) and
o

)
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noting that g >1, we have

ax|D, p(pz)

p

@{&J rerlon

iy

wipr)( -2 op ()

n
e (k+laf)max[p(p2)],

which is equivalent to

mex|, p(2) < (koo ). @1

For 0<r<p<k and |a|= p, inequality (3.1) when combined with Lemma 2.4, we get
+k)" k(k-p)(nla,|-k k)"
oo, (2) 02 a- S OOBERED Jy (1 ),
(r+k) (p7 +K*)njag|+ 2K pa,| p+k

hence the proof of Theorem 1 is completed.
Proof of Theorem 2. We first prove inequality (1.8). Since the zeros of p(z) are z,, 1<v<n, the zeros

|2l=p

\2\ =p

of the polynomial T(z)=p(kz) are Z?V 1<v<n, and because the polynomial p(z) has all its zeros in

|z|<k, k=1, the polynomial T(z) has all its zeros in |z| <k . Hence for every real or complex number «

with ‘% >1, we have by inequality (1.16) with k =1,
ol )¢t
max|D.T (2) 2| (71| 2 max(T (2)
k V:11+ v
k
or
a , | | nook
Tﬁf np(kz)+(?—zjkp (kz) 2[ 1}[;k+ Z, ]rggi(|p(kz)|
which is equivalent to
a 1), | | ook
nax|n(2)+ (£ £ p(z)z[k 1j[zkjmaxl (2)

or
01
”QFHDP )| (|“|—k)(;r|ZV|JT§@<|P(Z)|- 32

Since the polynomial p(z) is of degree n>4, and also by our assumption, the co-efficient of 2" in the
polar derivative D,p(z) viz., na,a+a,, =0, it followsthat D,p(z) isa polynomial of degree (n-1)>3.
Thus, applying (2.7) of Lemma 2.5t0 D,p(z) with R=k=>1, we get

)
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Z(kn_l—l) kn—l_l kn—3_1
may ax|D, p(z)| <k max|D p(z)- T|na0+aa1|—|(n—1)a1+2aa2|[ﬁ— — j (3.3)
Combining (3.2) and (3.3), we get

Z(kn—l_l) kK1 k™1

r‘n‘a2<|D p(z | T|na0+oaa1|—|(n—1)a1+2aa2|( P R— J
(3.4)

D 1
2(|“|—k)(§r|zv|]f?a§<|p(z)|-

Let q(z)=2" p(lj be the reciprocal polynomial of p(z).Since p(z) hasallits zerosin |z|<k, k>1,
z

a, =0, it follows that the polynomial q(éj has all its zeros in |z| >1 and is of degree n>4. Applying in-
equality (2.9) of Lemma 2.6 to q(%) for R=k>1, we get

(O bt
_2|an2|H(k”—1)—n(k—1)} {(kn2 1)~(n-2)(k H
¢ n(n-1) (1-2)(n-3)
which is equivalent to

(k"1 K"—1) . 2Ja,4| | (k" -1)-n(k-1)
ot 52 ot 5 o2
2fan || | (K1) -n(k-1)| (k" -2)-(n-2)(k-1)
k? n(n-1) (n-2)(n-3) '
which gives
(2 K'-1) . ala, k" | (k" -1)-n(k-1)
”zixp<2>|—(1+kn]@%flp(z)l—[1+kn]@'Elp<2>l+ L { A0+ }
[k (k"-1)-n(k-1)| |(k"*-1)~(n-2)(k-1)
1+k" n(n-1) (n-2)(n-3) '

Combining (3.4) and (3.5), we get

2(k" -1
Dp | (n+1)

Z

lzl=k

(3.5)

Hl| n-1 n-3

o0 Sy [ 2 e (72t 2=

Al o[k (k"-1)-n(k-1)| ((k"*-1)-(n-2)(k-1)
1+k" n(n-1) (n-2)(n-3) '

n-1 n-3
|na0+aa1|—|(n—1)ai+2aa2|(k 1k _1J
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which on simplification yields

a2, (22 ol ) [ 52 Sy el )

k"-1 &k .
kK"+1)i3k+|z,| = Zk+|zv|mlﬂ|p(z)|

K" (k" +1) =}

Al [ (K" =1)=n(k-1) [ 1 } ala, | [((k"-1)-n(k-1)
k

k" +1 n(n+1) Sk+z, (k” +1) n(n-1)
(kmz —1)—(”—2)('(—1) n 1 2 (k™t-1

- (n-2)(n-3) [;k+ ZVJ +F£ n+1 ]|na0+aa1|
|(n-1)a, +2aa,|( (k"' 1) K31

" k"t n-1  n-3

which proves inequality (1.18) completely.
The proof of inequality (1.19) follows on the same lines as that of (1.18), but instead of applying (2.7) of
Lemma 2.5 and (2.9) of Lemma 2.6, inequalities (2.8) and (2.10) respectively of Lemmas 2.5 and 2.6 are used.
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