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Abstract 
In this paper, we proof some properties of the space of bounded p(⋅)-variation in Wiener’s sense. 
We show that a functions is of bounded p(⋅)-variation in Wiener’s sense with variable exponent if 
and only if it is the composition of a bounded nondecreasing functions and hölderian maps of the 

( )p
1
⋅

 variable exponent. We show that the composition operator H, associated with h  : → , 

maps the spaces ( ) [ ]( )pWBV a b,⋅  into itself if and only if h is locally Lipschitz. Also, we prove that if 

the composition operator generated by [ ]h a b  : , × →  maps this space into itself and is un-
iformly bounded, then the regularization of h is affine in the second variable. 

 
Keywords 
Generalized Variation, p(⋅)-Variation in Wiener’s Sense, Variable Exponent, Composition Operator, 
Matkowski’s Condition 

 
 

1. Introduction 
Since Camile Jordan in 1881 first gave the notion of variation of a function in the paper [1] devoted to the 
convergence of Fourier series, a number of generalizations and extensions have been given in many directions. 
Such extensions find many applications in different areas of mathematics. Consequently, the study of notions of 
generalized bounded variation forms an important direction in the field of mathematical analysis. Two well- 
known generalizations are the functions of bounded p-variation and the functions of bounded ϕ-variation, due to 
N. Wiener [2] and L. C. Young [3] respectively. In 1924, N. Wiener [2] generalized the Jordan notion and intro- 
duced the notion of p-variation (variation in the sense of Wiener). L. Young [3] introduced the notion of 
ϕ-variation of a function. The p-variation of a function f is the supremum of the sums of the pth powers of 
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absolute increments of f over no overlapping intervals. Wiener mainly focused on the case 2p = , the 2- 
variation. For p-variations with 2p ≠ , the first major work was done by Young [3], partly with Love [4]. After 
a long hiatus following Young’s work, pth-variations were reconsidered in a probabilistic context by R. Dudley 
[5] [6]. Many basic properties of the variation in the sense of Wiener and a number of important applications of 
the concept can be found in [7] [8]. Also the paper by V. V. Chistyakov and O. E. Galkin [9] is very important 
in the context of p-variation. They study properties of maps of bounded p-variation ( )1p >  in the sense of 
Wiener are defined on a subset of the real line and take values in metric or normed spaces. 

In recent years, there has been an increasing interest in the study of various mathematical problems with 
variable exponents. With the emergency of nonlinear problems in applied sciences, standard Lebesgue and 
Sobolev spaces demonstrated their limitations in applications. The class of nonlinear problems with exponent 
growth is a new research field and it reflects a new kind of physical phenomena. In 2000, the field began to 
expand even further. Motivated by problems in the study of electrorheological fluids, Diening [10] raised the 
question of when the Hardy-Littlewood maximal operator and other classical operators in harmonic analysis 
were bounded on the variable Lebesgue spaces. These and related problems are the subject of active research to 
this day. These problems were interesting in applications (see [11]-[14]) and gave rise to a revival of the interest 
in Lebesgue and Sobolev spaces with variable exponent, the origins of which could be traced back to the work 
of Orlicz in the 1930’s [15]. In the 1950’s, this study was carried on by Nakano [16] [17] who made the first 
systematic study of spaces with variable exponent. Later, Polish and Czechoslovak mathematicians investigated 
the modular function spaces (see for the example Musielak [18] [19], Kovacik and Rakosnik [20]). We refer to 
books [14] for the detailed information on the theoretical approach to the Lebesgue and Sobolev spaces with 
variable exponents. In [21], Castillo, Merentes and Rafeiro studied a new space of functions of generalized 
bounded variation. There, the authors introduced the notion of bounded variation in the Wiener sense with the 
exponent p(⋅)-variable. 

The main purpose of this paper is threefold: First, we provide a further develop of the results of the article 
[21]. We give a detailed description of the new class formed by the functions of bounded variation in the sense 
of Wiener with the exponent p(⋅)-variable. Second, in the spirit of some results of Federer ([22] sec. 2.5.16), 
Sierpinski [23], and Chistyakov and Galkin [9], we provide a characterization of the functions with variable 
bounded variation in the sense of Wiener. We prove a structural theorem for mappings of bounded variation in 
the sense of Wiener with the exponent p(⋅)-variable. Finally, we analyze a necessary and sufficient conditions 
for the acting of composition operator (Nemystskij) on the space ( ) [ ],pWBV a b⋅ . 

This paper is organized as follows: Section 2 contains definitions, notations, and necessary background about 
the class of functions of bounded p(⋅)-variation in Wiener’s sense; Section 3 contains some properties of this 
space; Section 4 contains a main theorem, which is a characterization of the functions of bounded p(⋅)-variation 
in Wiener’s sense of the composition of two functions with certain properties; Section 5 contains another main 
theorem, in which we prove a result in the case when h is locally Lipschitz if and only if the composition 
operator maps the space ( ) [ ],pWBV a b⋅  into itself; Finally, in section 6 we give the last main theorem, namely, 
we show that any uniformly bounded composition operator that maps the space ( ) [ ],pWBV a b⋅  into itself 
necessarily satisfies the so called Matkowski’s weak condition. 

2. Preliminaries 
Throughout this paper, we use the following notation: we will denote by  

( ) [ ]( ) ( ) ( ) ( ) [ ]{ }, , sup : , ,ts

ts

p x
p x f a b f t f s t s a bω = − ∈  the diameter of the image [ ]( ),f a b  (or the oscillation  

of f on [ ],a b ) and by tsx  a number between [ ],t s . 
The concept of functions of bounded variation has been well-known since C. Jordan in 1881 (see [1]) gave the 

complete characterization of functions of bounded variation as a difference of two increasing functions. This 
class of functions exhibit so many interesting properties that it makes them a suitable class of functions in a 
variety of contexts with wide applications in pure and applied mathematics (see [8] [24]). 

Definition 1 Let [ ]: ,f a b →   be a function. For each partition 0 1: na t t t bπ = < < < =  of [ ],a b , we 
define 

[ ]( ) ( ) ( )1
1

; , : ,sup
n

i i
i

V f a b f t f t
π

−
=

= −∑                              (2.1) 
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where the supremum is taken over all partitions π  of the interval [ ],a b . If [ ]( ); ,V f a b < ∞ , we say that f has 
bounded variation. The collection of all functions of bounded variation on [ ],a b  is denoted by [ ],BV a b . 

The notion of bounded variation due to Jordan was generalized in 1924 by Wiener (see [2]) who introduced 
the definition of p-variation as follows. 

Definition 2 Given a real number 1p ≥ , a partition 0 1: na t t t bπ = < < < =  of [ ],a b , and a function 
[ ]: ,f a b →  . The nonnegative real number 

( ) [ ]( ) ( ) ( )( )1
1

; , : sup
n p

W W
p p j j

j
V f V f a b f t f t

π
−

=

= = −∑                      (2.2) 

is called the Wiener variation (or p-variation in Wiener’s sense) of f on [ ],a b  where the supremum is taken 
over all partitions of π. In case that [ ]( ); ,W

pV f a b < ∞ , we say that f has bounded Wiener variation (or bounded 
p-variation in Wiener’s sense) on [ ],a b . The symbol [ ]( ),pWBV a b  will denote the space of functions of 
bounded p-variation in Wiener’s sense on [ ],a b . 

In 2013 R. Castillo, N. Merentes and H. Rafeiro [21] introduce the notation of bounded variation space in the 
Wiener sense with variable exponent on [ ],a b  and study some of its basic properties. 

Definition 3 Given a function [ ] ( ): , 1,p a b → ∞ , a partition 0 1: na t t t bπ = < < < =  of the interval 
[ ],a b , and a function [ ]: ,f a b →  . The nonnegative real number  

( ) ( ) ( ) [ ]( ) ( ) ( )( ) ( )1

*
1

1
, , : sup

jn p x
W W

j jp p
j

V f V f a b f t f t
π

−

−⋅ ⋅
=

= = −∑                  (2.3) 

is called Wiener variation with variable exponent (or p(⋅)-variation in Wiener’s sense) of f on [ ],a b  where *π  
is a tagged partition of the interval [ ],a b , i.e., a partition of the interval [ ],a b  together with a finite sequence 
of numbers 0 1, , nx x −  subject to the conditions that for each i, 1i i it x t +≤ ≤ . 

In case that ( ) [ ]( ); ,W
pV f a b⋅ < ∞ , we say that f has bounded Wiener variation with variable exponent (or 

bounded p(⋅)-variation in Wiener’s sense) on [ ],a b . The symbol ( ) [ ]( ),pWBV a b⋅  will denote the space of 
functions of bounded p(⋅)-variation in Wiener’s sense with variable exponent on [ ],a b . 

Remark 1 Given a function [ ] [ ): , 1,p a b → ∞  
1) If ( ) 1p x =  for all x in [ ],a b , then ( ) [ ]( ) [ ]( ), ,pWBV a b BV a b⋅ = . 

2) If ( )p x p=  for all x in [ ],a b  and 1 p< < ∞ , then ( ) [ ]( ) [ ]( ), ,ppWBV a b WBV a b⋅ = . 

3. Properties of the Space 
Definition 4 (Norm in ( ) [ ]( ),pWBV a b⋅ ) 

( ) ( ) ( ) ( ) ( ) [ ]( ): , ,W
p ppf f a f f WBV a bµ ⋅ ⋅⋅

= + ∈                      (3.1) 

where ( ) ( ) ( )0: inf 0 : 1W
p p

ff Vλµ λ
λ>⋅ ⋅

  = > ≤  
  

. 

In [21] is shown that the space ( ) [ ]( ),pWBV a b⋅  endowed with the norm ( )
W
p ⋅

⋅  is a Banach space. 

Theorem 2 Let [ ] ( ): , 1,p a b → ∞  be a function, then ( ) [ ]( ) ( )( ), , W
p pWBV a b⋅ ⋅

⋅  is a Banach space.  

Lemma 1 Let [ ]: ,f a b →   be a function such that ( ) [ ]( ),pf WBV a b⋅∈  then f has the left-hand and right- 
hand limits in all point on [ ],a b . 

Proof. Without loss of generality we can show that f has a left limit on [ ]0 ,x a b∈ . Assume that the 
( )

0
lim

x x
f x−→

 do not exist. Then 
Case 1: If ( )

0
lim

x x
f x−→

→ ±∞ , then 

( ) ( ) ( ) [ ]( ) ( )1
0 ; ,

p xW
pf x f x V f a b⋅− ≤  so ( ) ( ) ( ) [ ]( ) ( )

0

1
0lim ; ,

p xW
px x

f x f x V f a b− ⋅→
− ≤ . Since ( )0f x L= < ∞  

and ( )
0

lim
x x

f x−→
→ ±∞ , then ( ) [ ]( ); ,W

pV f a b⋅ = ∞ , which is a contradiction. 

Case 2: ( )
0

lim
x x

f x−→
 do not converge a any point. That means that the function f oscillates. Let { } 1n n

t
≥

 be  
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a sequence such that 0nt x→  when n →∞  

( ) ( ) for all ,n mf t f t r n m N− > ≥  

( ) ( ) ( ) [ ]( )11 , ,n W
i i pinr f t f t V f a b− ⋅=

< − ≤∑  therefore ( ) [ ]( ), ,W
pV f a b⋅ = ∞ , which is a contradiction as well.   □ 

Remark 3 Without loss of generality we can take [ ] [ ], 0,1a b = . If [ ]0,1f Lip∈  then 
( ) ( )1 1j j j jf t f t k t t− −− ≤ − , further, as ( )p ⋅  is bounded 

( ) [ ]( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 11

* *

101

*

1 1
1 1

1
1

, 0,1 sup sup

sup

j jj

j

n np x p xp xW
j j j jp

j j

n p xp x
j j

j

V f f t f t k t t

k t t

π π

π

− −−

−

− −⋅
= =

−
=

= − ≤ −

≤ −

∑ ∑

∑
 

since ( ) 1p x ≥  and 1 1j jt t −− ≤  we have 

( ) [ ]( ) ( ) ( ) ( )101 01

*
1

1
, 0,1 sup .j

n p xp x p xW
j jp

j
V f k t t k

π

−

−⋅
=

≤ − ≤ < ∞∑  

So ( ) [ ],pf WBV a b⋅∈ , i.e., [ ] ( ) [ ], , .pLip a b WBV a b⋅⊂  
The following properties of elements of ( ) [ ],pWBV a b⋅  allow us to get characterizations of them. 
Lemma 2 (General properties of the p(⋅)-variation) Let [ ]: ,f a b →   be an arbitrary map. We have 
(P1) minimality: if [ ], ,t s a b∈ , then 

( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ), , , , .ts

ts

p x W
pp xf t f s f a b V f a bω ⋅− ≤ ≤  

(P2) monotonicity: if [ ], , , ,a t s b a b∈  and a t s b≤ ≤ ≤ , then ( ) [ ]( ) ( ) [ ]( ), , , ,W W
p pV f a t V f a s⋅ ⋅≤ ,  

( ) [ ]( ) ( ) [ ]( ), , , ,W W
p pV f s b V f t b⋅ ⋅≤  and ( ) [ ]( ) ( ) [ ]( ), , , ,W W

p pV f t s V f a b⋅ ⋅≤ . 

(P3) semi-additivity: if [ ],t a b∈ , then 

( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )12 , , , , , , , , .p W W W W
p p p pV f a b V f a t V f t b V f a b

+−
⋅ ⋅ ⋅ ⋅≤ + ≤  

(P4) change of a variable: if [ ],c d ⊂   and [ ] [ ]: , ,c d a bϕ →  is a (not necessarily strictly) monotone func- 
tion, then ( ) [ ]( )( ) ( ) [ ]( ), , , ,W W

p pV f c d V f c dϕ ϕ⋅ ⋅=  . 
(P5) regularity: ( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , ; , , ,W W

p pV f a b V f s t s t a b a b⋅ ⋅= ∈ ≤ . 

Proof. (P1) Let [ ], , , ,a t s b a b∈ , a t s b≤ ≤ ≤  

( ) ( ) ( ) ( ) ( ) ( ) [ ]{ } ( ) [ ]( )

( ) ( )( ) ( )
( ) [ ]( )

*

1

*
1

1

sup : , , , ,

sup , , .

ts ts

ts

j

p x p x
p x

n p x
W

j j p
j

f t f s f t f s t s a b f a b

f t f t V f a b

π

π

ω

−

− ⋅
=

− ≤ − ∈ =

≤ − =∑
 

(P2) Let [ ], , , ,a t s b a b∈ , a t s b≤ ≤ ≤  and the partition  
0 1 1 2: m m na t t t t t s t bπ = < < < = < < = < < =    so 

( ) [ ]( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
( ) [ ]( )

1

*

1 1

* *

1

*

1

1
1

1 2

1 1
1 1 1

2

1
1

, , sup

sup sup

sup , ,

j

j j

j

m p x
W

j jp
j

m mp x p x

j j j j
j j m

m p x
W

j j p
j

V f a t f t f t

f t f t f t f t

f t f t V f a s

π

π π

π

−

− −

−

−⋅
=

− −
= = +

− ⋅
=

= −

≤ − + −

= − =

∑

∑ ∑

∑

 

the other cases are similarly. 
(P3) Let { } 0

m
j j

T t π
=

= ∈  and denote ( ) [ ] ( ),supx a bp p x+
∈⋅ =  and { }S T t=  . We consider the following 

two cases: 
1) if 0t t≤  or mt t≤ , then 
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( ) ( ) ( ) { }( ), , .p pV f T V f T t⋅ ⋅≤   

2) if 1k kt t t− ≤ ≤  for some 1 k m≤ ≤ , then 

( ) ( ) ( ) { }( )1, 2 , .p
p pV f T V f T t

+ −
⋅ ⋅≤   

For the case (a) we have  

( ) ( ) ( ) { }( ) ( ) [ ]( ) ( ) [ ]( ), , , , , , .p p p pV f T V f T t V f a t V f t b⋅ ⋅ ⋅ ⋅≤ ≤ +  

For the case (b) we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 11

*

1 11

*

1 1

*

1

1 1 1
1 1

1

1 1 1
1 1

1
1

1 1
1

, sup

sup

sup 2

j jk

j jk

j kk

k mp x p xp xW
j j k k j jp

j j k

k mp x p xp x

j j k k j j
j j k

k p x p xp x
j j k

j

V f T f t f t f t f t f t f t

f t f t f t f t f t f t f t f t

f t f t f t f t

π

π

π

− −−

− −−

− −

−

− − −⋅
= = +

−

− − −
= = +

−
−

− −
=

 
= − + − + − 

 
 

≤ − + − + − + − 
 

≤ − + −

∑ ∑

∑ ∑

∑ ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) { }( )

1 1

1

1 11 1

*

111 1

1
1

1
1 1

1 1
1

1 1
1

1

1

sup 2 2

2 2

2 , ,

k

j

j kk k

jkk k

p x
k

m p x

j j
j k

k p x p xp x p x
j j k

j

m p xp xp x p x
k j j

j k

p W
p

f t f t

f t f t

f t f t f t f t

f t f t f t f t

V f T t

π

− −

−

− −− −

−−− −

+

−
= +

−
− −

− −
=

− −
−

= +

−
⋅


+ −




+ − 



≤ − + −




+ − + − 


≤

∑

∑

∑



 

also 

( ) { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

1

1

, ,

.

j j

j

p x p xW W
k kp p

p x
k k

V f T t V f T f t f t f t f t

f t f t

− −

−

−⋅ ⋅

−

= + − + −

− −



 

Therefore 

( ) ( ) ( ) ( ) ( ) [ ]( )

( ) [ ]( ) ( ) [ ]( )( )
1 1

1

, 2 , 2 , ,

2 , , , , .

W p W p
p p p

p
p p

V f T V f S V f a b

V f a t V f t b

+ +

+

− −
⋅ ⋅ ⋅

−
⋅ ⋅

≤ ≤

≤ +
 

Taking the supremum over all *T π∈ , we arrive at the left hand side inequality in (P3). 
Now we prove the right hand side inequality. Let ( ) [ ]( ), ,W

pV f a t⋅ < ∞  and ( ) [ ]( ), ,W
pV f t b⋅ < ∞ . Then for every  

0ε >  there are partitions *
1π π∈  and *

2π π∈  of the interval [ ],a t  and [ ],t b  respectively, such that  

( ) [ ]( ) ( ) ( ) ( ) [ ]( ) ( ) ( )1 2, , , and , , , .
2 2p p p pV f a t V f V f t b V fε επ π⋅ ⋅ ⋅ ⋅≤ + ≤ +  

It follows that 

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( ) ( )

( ) { }( ) ( ) { }( )
( ) { }( )
( ) [ ]( )

1 2

1 2

1 2

, , , , , ,

, ,

,

, , ,

W W W W
p p p p

W W
p p

W
p

W
p

V f a t V f t b V f V f

V f t V f t

V f t

V f a b

π π ε

π π ε

π π ε

ε

⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅

⋅

+ ≤ + +

≤ + +

= +

≤ +
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and take into account the arbitrariness of 0ε > . 
(P4) Let [ ],c d ⊂  , [ ] [ ]: , ,c d a bϕ →  a (not necessarily strictly) monotone function, 0π  a tagged parti-  

tion of the interval [ ],c d , { }1 00

m
j j

T τ π
=

= ∈  and { } 0

m
j j

T t
=

=  with ( )j jt ϕ τ= , then 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) [ ]( )( )

1

1

1

1 1
1

1
1

, sup

sup

, , , .

j

j

m p x
W

j jp
T j

m p x

j j
T j

W W
p p

V f T f f

f t f t

V f T V f c d

ϕ ϕ τ ϕ τ

ϕ

−

−

−⋅
=

−
=

⋅ ⋅

= −

= −

= ≤

∑

∑



 

On the other hand, if a partition { } 0

m
j j

T t
=

=  of [ ]( ),c dϕ  is such that 1j jt t− <  for 1, ,j m=   then there 
exist [ ],j c dτ ∈  such that ( )j jt ϕ τ=  and, again by the monotonicity of ϕ  

( ) ( ) ( ) ( ) ( ) [ ]( )1, , , , .W W W
p p pV f T V f T V f c dϕ ϕ⋅ ⋅ ⋅= ≤   

(P5) By monotonicity of ( )
W
pV ⋅  we get 

( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , ; , , , .W W
p pV f a b V f s t s t a b a b⋅ ⋅≥ ∈ ≤  

On the other hand, for any number ( ) [ ]( ), ,W
pV f a bα ⋅<  such that there is a partition { } *

0

m
i i

T t π
=

= ∈  with 
( ) ( ),W

pV f T α⋅ ≥ . We define π̂  a partition of the interval [ ]0 , mt t  then ˆT π∈  and  

( ) ( ) ( ) ( )ˆ, ,W W
p pV f V f Tπ α⋅ ⋅≥ ≥ , i.e., 

( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , ; , , , .W W
p pV f a b V f s t s t a b a b⋅ ⋅≥ ∈ ≤                       □ 

4. Characterization 
W. Sierpiński in 1933 (See [23]) showed that a function [ ]: ,f a b →   is regular function if and only if it is 
the composition of increasing function and continuous function. This is a notable result which links regular 
functions with continuous functions. In 1969 (see [22]), H. Federer demostrated that function is of bounded 
variation if and only if it is the composition of a Lipschitz function with a monotone function. In the year 1998 
(see [9]) V. V. Chistyakov and O. E. Galkin proved similar result for bounded p-variation with 1p > , they 
show that a function is of bounded p-variation if and only if it is the composition of a bounded nondecreasing 
function with a Hölder function. In this section we show that a function is of bounded p(⋅)-variation in Wiener’s 
sense with variable exponent if and only if it is the composition of a bounded nondecreasing function with a  

Hölderian function with variable exponent equal to 
( )
1

p ⋅
. 

We say that ( ) ( )xg x H γ∈ , the Hölder space of variable exponent, where ( )xγ  is a positive function, 
( )0 1xγ< ≤ , if  

( ) ( ) ( )1
1 1

ix
i i i ig t g t C t t γ −

− −− ≤ −  

for all [ ]1 ,ix a b− ∈ . The least number C satisfying the above inequality is called the Hölder constant of g. 
Theorem 4 The map [ ]: ,f a b →   is of bounded p(⋅)-variation if and only if there exists a bounded non- 

decreasing function [ ]: ,a bϕ →   a Hölderian map [ ]( ): ,g a bϕ →   of exponent ( )1 pγ = ⋅  and 
( ) 1H g ≤  such that f g ϕ=   on [ ],a b . 
The proof of this theorem is contained in the following two lemmas. 
Lemma 4.1 If [ ]: ,a bϕ →   is bounded monotone, [ ]( ): ,g a bϕ →   is Hölderian of exponent  
( ) ( )1 pγ ⋅ = ⋅  and f g ϕ=  , then ( ) [ ]( ), ;W

pf V a b⋅∈   
Proof. Assume that ϕ  is nondecreasing. Since 

[ ]( ) ( ) ( ), ,a b a bϕ ϕ ϕ=     

by virtue of change of a variable (P4) we have 
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( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )( ) ( ) ( ) ( )( ), , , , , , , , .W W W W
p p p pV f a b V g a b V g a b V g a bϕ ϕ ϕ ϕ⋅ ⋅ ⋅ ⋅= = =     

If { } 0

m
i i

T t
=

=  is a partition of ( ) ( ),a bϕ ϕ    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 1 11

1

1 1
1 1

1
1

, sup sup

,

i i ii

i

m mp x p x xp xW
i i i ip

T Ti i
m p xp x

i i
i

V g T g t g t C t t

C t t C b aϕ

γ

ϕ ϕ

− − −−

−

− −⋅
= =

−
=

= − ≤ −

= − ≤ −

∑ ∑

∑
 

where ( ) ( )a x bϕϕ ϕ≤ ≤ . Therefore, by boundedness of ϕ  yield 

( ) [ ]( ) ( ) ( ) ( )( ) [ ], , for all , , .p xW
pV f a b C b a a b a bϕ ϕ ϕ⋅ ≤ − < ∞ ∈  

If ϕ  is nonincreasing the proof is similarly.                                                   □ 
Lemma 4.2 Let [ ]: ,f a b →   be a map of bounded p(⋅)-variation. Then, there exist a bounded nondecreas- 

ing nonnegative function [ ]: ,a bϕ →   and a Hölderian map [ ]( ): ,g a bϕ →   of exponent ( ) ( )1 pγ ⋅ = ⋅  
and the Hölder constant ( ) 1H g ≤  such that 

1) f g ϕ=   on [ ],a b . 
2) [ ]( )( ) [ ]( ), ,g a b f a bϕ =  in  . 

3) ( ) [ ]( )( ) ( ) [ ]( ), , , ,W W
p pV g a b V f a bϕ⋅ ⋅= . 

Proof. We define the function ϕ  by ( ) ( ) [ ]( ), ,W
pt V f a tϕ ⋅= ; by (P2) ϕ  it is well define nonnegative bounded  

and nondecreasing. If [ ]( ),a bτ ϕ∈  denote by ( ) [ ] ( ){ }1 , : (t a b tϕ τ ϕ τ− = ∈ =  the inverse image of the one-  

point set { }τ  under the function ϕ . Define the map [ ]( ): ,g a bϕ →   as follows if  
[ ]( ) ( ) ( ), ,a b a bτ ϕ ϕ ϕ∈ =     

( ) ( ) ( )1for any point .g f t tτ ϕ τ−= ∈                            (4.1) 

By (P1) and (P3), 

( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ) ( ) ( ), , , , , , .tsp x W W W

p p pf t f s V f t s V f a s V f a t s tϕ ϕ⋅ ⋅ ⋅− ≤ ≤ − = −  

The representation of f in (1) follows from (5), for if [ ],t a b∈ , then ( ) ( ) ( ): ,t a bτ ϕ ϕ ϕ= ∈     and 
( )1t ϕ τ−∈ , so that (5) yields ( ) ( ) ( )( ) ( )( )f t g g t g tτ ϕ ϕ= = =  . 

The assertions in (2) and (3) follows from (1) and (P4). Now we will show that g is Hölderian. We have  

( ) ( ) ( )( ) ( ) [ ]( ) ( ) [ ]( ) ( ), , , , , , .W W W
p p pV g a b V g a t V f a t tϕ ϕ ϕ ϕ τ⋅ ⋅ ⋅= = = =     

Hence, if ( ) ( ), , ,a bα β ϕ ϕ α β∈ ≤   , then by (P1) and (P3) we get  

( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ), , , , , , ,

p x W W W
p p pg g V g V g V g aβαβ α α β α β α β α⋅ ⋅ ⋅− ≤ ≤ − = −  

then 

( ) ( ) ( ) ( )1 .p x xg g βα βαγβ α β α β α− ≤ − = −                              □ 

In the next section we will be dealing with the composition operator (Nemitskij). 

5. Composition Operator between the Space ( ) [ ]( )pWBV f a b, ,⋅  
In any field of nonlinear analysis composition operators (Nemytskij), the superposition operators generated by 
appropriate functions, play a crucial role in the theory of differential, integral and functional equations. Their 
analytic properties depend on the postulated properties of the defining function and on the function space in 
which they are considered. A rich source of related questions are the monograph by J. Appell and P. P. Zabrejko 
[25] and J. Appell, J. Banas, N. Merentes [8]. 

Given a function :h →  , the composition operator H, associated to a function f (autonomous case) maps 
each function [ ]: ,f a b →   into the composition function [ ]: , ,Hf a b →   given by 
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( ) ( )( ) [ ]( ): , , .Hf t h f t t a b= ∈                                  (5.1) 

More generally, given [ ]: , ,f a b × →   we consider the operator H, defined by  

( ) ( )( ) [ ]( ): , , , .Hf t h t f t t a b= ∈                                 (5.2) 

This operator is also called superposition operator or susbtitution operator or Nemytskij operator. In what 
follows, will refer (5.1) as the autonomus case and to (5.2) as the non-autonomus case. 

One of our main goals is to prove a result in the case when h is locally Lipschitz if and only if the composition 
operator maps the space of functions of bounded p(⋅)-variation into itself. 

Theorem 5 Let H be a composition operator associated to :h →  . H maps the space ( ) ( )pWBV f⋅  into 
itself if and only if h is locally Lipschitz. 

Proof. We may suppose without loss generality that [ ] [ ], 0,1a b = . First, let :u →   be locally Lipschitz 
on  , and let ( ) [ ]( )0,1pu WBV ⋅∈ . Then ( ) [ ]( ); 0,1W

pV uλ⋅ < ∞  for some 0λ > . Considering the local Lipschitz 
condition  

( ) ( ) ( ) ( ), , ,h u h v k r u v u v u v− ≤ − ∈ ≤                       (5.3) 

for :r f
∞

= , for any partition 0 1: 0 1nt t tπ = < < < =  we obtain the estimate 

( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )
( ) [ ]( )

1

1

1

1
1

1
1

1
1

, 0,1 .

j

j

j

p t
n

j j
j

p t
n

j j
j

n p t
W

j j p
j

h u t h u t
k f

k f u t u t
k f

u t u t V u

λ

λ

λ λ

−

−

−

−
= ∞

−∞
= ∞

− ⋅
=

 
 −
 
 

 
 ≤ −
 
 

= − =

∑

∑

∑

 

This shows that for 
( )

:
k f

λµ
∞

= , ( ) [ ]( ), 0,1W
pV Huµ⋅ < ∞ , and hence ( ) [ ]( )0,1pHu WBV ⋅∈  as claimed. 

For the converse implication, suppose that h does not satisfy a local Lipschitz condition (5.3), in this way for 
any increasing sequence of positive real numbers { } 1j j

k
≥

 that converges to infinite, that we will be defined  

later, we can choose sequences { } 1j j
u

≥
, { } 1j j

v
≥

, with 1:j j j
j

v u
k

δ − <  and 

( ) ( ) ( ), .j j j j j j jh v h u k v u j u v− > − ∈ <                         (5.4) 

Considering subsequences if necessary, we can assume that the sequence { } 1j j
u

≥
 is monotone. We supposed 

without loss of generality the sequence { } 1j j
u

≥
 is increasing. Since [ ]0,1  is compact, from de inequality (5.2)  

we have that there exists subsequences of { } 1j j
u

≥
 and { } 1j j

v
≥

 that we will denote in the same way, and that  

converge to [ ]0,1u∞ ∈ . Since the sequence { } 1j j
u

≥
 is a Cauchy sequence, we can assume that [ ],u r r∞ ∈ −   

such that 1
2j

j

u u
k∞− ≤  for all k, and so 1

1
j j

j

u u
k+− ≤ . Choose 1:j

j j

n
k δ

= . 

Pick the sequence defined recursively { } 1k k
t

≥
 by 

1 1 1: 0, : 2 .k k k k k kt t t u u n δ+ += = + − +  

This sequence is strictly increasing and  

( )1 1
1 1 1 1

1: 2 3 .j j j j j j j
j j j j j

t t t t u u n
k

δ
∞ ∞ ∞ ∞

∞ + +
= = = =

→ = − = − + ≤∑ ∑ ∑ ∑  

So to ensure that [ ]0,1t∞ ∈ , it is sufficient to suppose that 1

1 1
3j

jk
∞

=
≤∑ . We define the continuous zig-zag  
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functions [ ]: 0,1f →  , as 

( )

( )
( )( )

, 2 , 0, , .

, 2 1 , 0, , 1.:
, 1.

affine, otherwise.

j j j j j

j j j j j

u t t i b a i n

v t t i b a i nf t
u t t∞ ∞

  = + − =  
  = + + − = − = 
 ≤ ≤





  

Put ( ), : , , 0, , 2j i j j j jt t i v u j i n = + − ∈ =    and write each interval 1, ,j j jI t t j+ = ∈   , as the union of 
the family of non-overlapping ones 

( ), , , 1 1,2 ,2
: , , : , 0, , 1 .

j jj i j i j i j jj n j n
I t t I t t i n+ +      

    = = = −     
  

The function f is defined on , , 0, , 2j i jI i n =    as follows: 

( ) ( )( ) ( ),22j j j j j if t t t i v u u t I= − + − + ∈  

( ) ( )( ) ( ),2 12 1j j j j j if t t t i v u v t I += − + + − + ∈  

( ) ( )1 ,2 jj j j n
f t t t u t I+   

= − + ∈  

Let 0 1s t≤ < ≤ , then the possibilities for the location of s and t on [ ]0,1  are as follows 
Case 1. If ( ), ,js t I j∈ ∈  and are in the same interval , , 0, , 2j i jI i n =   . 

( ) [ ]( ) ( ) ( ) ( ) ( ), , 1.ts tsp x p xW
pV f s t f t f s t s⋅ ≤ − = − ≤  

Case 2. If ( ), ,js t I j∈ ∈  and are in two different intervals , , 0, , 2j i jI i n =   . 
,j is I∈ , ,j kt I∈ , 2 ji k n < <   . We get 

( ) [ ]( ) ( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

, 1 , 1

, 1 , 1

, 1 , 1

, 1 , 1

1
, 1 , 1

1

, , 2 ( )

2

2 max ,

2 max , .

j i s t j i

j i s t j i

j i s t j i

j i s t j i

p x p xW p
j i j ip

p x p xp
j j j j

p x p xp
j j j j

p x p xp
j j

V f s t f t f s f t f t

u v u v

u v u v

δ δ

+ + +

+ + +

+ + +

+ + +

−
+ +⋅

−

 
≤ − + − 

 
 ≤ − + − 
 

 ≤ − − 
 
 ≤ < ∞ 
 

 

Case 3. If js I∈ , kt I∈ , , , .k j j k∈ <  

( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

,2 1 , 1

, 1,2 1

, 1,2 1

1
, 1,2 1

1

, , 2

2

2 max , .

j n sj t j i

j

t j ij n sj

t j ij n sj

p x p xW p
j ip j n

p x p xp
j j j j

p x p xp
j j

V f s t f t f s f t f t

u v u v

δ δ

 ++ + 

+ + + 

+ + + 

 
  

−  
+⋅  + 

 
 −  
 

 
  
 

 
 ≤ − + −  
 
 

≤ − + −  
 

  ≤ < ∞ 
  

 

Case 4. If , ,js I j t t∞∈ ∈ = . 
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( ) [ ]( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

, 1 , 1

, 1 , 1

, 1 , 1

1
, 1 , 1

1

, , 2

2

2 max , .

j i s j i

j i s j i

j i s j i

p x p xW p
j i j ip

p x p xp
j j j

p x p xp
j j

V f s t f t f s f t f t

u v u u

δ δ

+ + ∞ +

+ + ∞ +

+ + ∞ +

−
+ ∞ +⋅

−
∞

 
≤ − + − 

 
 ≤ − + − 
 

 ≤ < ∞ 
 

 

Case 5. If 1s t t∞< < ≤ . 

( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ){ }

1

1

, , 2

2

2 max , .

s t

s t

s t

p x p xW p
p

p x p xp
j j

p x p xp
j j

V f s t f t f s f t f t

u v u u

δ δ

+ ∞ ∞

+ ∞ ∞

+ ∞ ∞

−
∞ ∞⋅

−
∞ ∞

≤ − + −

≤ − + −

≤ < ∞

 

Case 6: If 1.t s t∞ ≤ < ≤  
In this circumstance ( ) ( )f s f t f∞= =  and the situation is trivial. 
So ( ) [ ]0,1pf WBV ⋅∈ , for each partition of the interval [ ]0,1  of the form  

( ) [ ]( )
( ) [ ]( )

1 1 1 1 1 1 1 2

2 2 2 2

: 0 2

2 1k k k k k

t t v u t n v u

t t v u t t n v u

π = < + − < < + −

< < + − < < < < + − <



 

 

and using the inequality (5.4) and definition of ,jn j∈ , we have 

( ) ( ) [ ]( ) ( ) ( )( ) ( )

( )( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

( ) ( )

1

*

1

*

1

*

1

*

1
1

1
1

1

1

, 0,1 sup

sup

sup 2

sup 1 .

j

j

j

j

n p xW
j jp

j

n p x

j j
j

n p x

j j j
j

n p x

j

V h f h f t h f t

h f t h f t

n h b h a

π

π

π

π

−

−

−

−

−⋅
=

−
=

=

=

= −

= −

 ≥ − 

≥

∑

∑

∑

∑

  

 

Hence series ( ) ( )1
1 1 jp xn

j
−

=∑  diverges, ( ) [ ]0,1ph f WBV ⋅∈/
, which is a contradiction.                  □ 

6. Uniformly Continuous Composition Operator 
In this section, we give the other main result of this paper, namely, we show that any uniformly bounded com- 
position operator that maps the space the ( ) [ ],pWBV a b⋅  into itself necessarily satisfies the so called Matkow- 
ski’s weak condition. 

First of all we will give the definition of left regularization of a function. 
Definition 5 Let ( ) [ ]( ),pf WBV a b⋅∈ , its left regularization ( ]: ,f a b− →   of mapping f is the function 

given as 

( )
( ) ( ]

( )

lim , ;
:

.
s t

f s t a b
f t

f a t a
−− →

 ∈= 
=

 

We will denote by ( ) [ ]( ) [ ]( ), ,pWBV a b a b−
⋅  the subset in ( ) [ ]( ),pWBV a b⋅  which consists of those functions  

that are left continuous on ( ],a b . 
Lemma 6.1 If ( ) [ ]( ),pf WBV a b⋅∈ , then ( ) [ ]( ),pf WBV a b−

⋅∈ .  
Thus, if a function f has Wiener variation with variable exponent, then its left regularization is a left con- 

tinuous function. 
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Theorem 6 Suppose that the composition operator H generated by [ ]: ,h a b × →   maps ( ) [ ]( ),pWBV a b⋅  
into itself and satisfies the following inequality  

( ) ( )( ) ( ) [ ]( )( )1 2 1 2 1 2, ,W W
pp pHf Hf f f f f WBV a bγ ⋅⋅ ⋅

− ≤ − ∈                   (6.1) 

for some function [ ) [ ): 0, 0,γ ∞ → ∞ . Then, there exist functions ( ) [ ]( ), ,pWBV a bα β ⋅∈  such that 

( ) ( ) ( ) [ ], , , ,h t x t x t t a b xα β− = + ∈ ∈                           (6.2) 

where ( ) ( ], : ,h x a b− ⋅ →   is the left regularization of ( ),h x⋅  for all x∈ . 
Proof. By hypothesis, for x∈  fixed the constant function ( ) [ ], ,f t x t a b= ∈  belongs to  

( ) [ ]( ),pWBV a b⋅ . Since H maps ( ) [ ]( ),pWBV a b⋅  into itself, we have ( )( ) ( )( ) ( ) [ ]( ), ,pHf t h t f t WBV a b⋅= ∈ . By  

Lemma 6.1 the left regularization ( ) ( ) [ ]( ), ,ph x WBV a b− −
⋅⋅ ∈  for every x∈ . 

From the inequality (6.1) and definition of the norm ( )
W
p ⋅

⋅  we obtain for ( ) [ ]( )1 2, ,pf f WBV a b⋅∈ ,  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2 .
W W

p pp
H f H f H f H f f fµ γ⋅ ⋅⋅

− ≤ − ≤ −                (6.3) 

From the inequality (6.3) and Lemma 6.1, if ( )( )1 2 0W
pf fγ
⋅

− >  then 

( )
( ) ( )

( )( )
1 2

1 2

1.W
p W

p

H f H f
V

f fγ
⋅

⋅

 
−  ≤ 
− 

 

                                (6.4) 

Let a s t b≤ < ≤ , and let { }0 1 2: , , ,m mt t tπ π= ∈  be the equidistant partition defined by  

( )0 1, 1, 2, , 2 .
2j j
t st s t t j m

m−
−

= − = =   

Given ,u v∈  with u v≠ , define [ ]1 2, : ,f f a b →   by 

( )1

, if for some even ,

: , if for some odd ,
2

linear, otherwise

j

j

v x t j
u vf x x t j

=
 += =



                     (6.5) 

and 

( )2

, if for some even ,
2

: , if for some odd ,
linear, otherwise.

j

j

u v x t j

f x u x t j

+ =


= =




                     (6.6) 

Then, the difference 1 2f f−  satisfies  

( ) ( ) ( )1 2 .
2

u v
f x f x a x b

−
− ≡ ≤ ≤  

Consequently, by the inequality (6.1) 

( ) ( )( )1 2 1 2 .
2

W W
p p

u v
Hf Hf f fγ γ

⋅ ⋅

 − 
− ≤ − ≤  

 
 

From the inequality (6.4) and the definition of p(⋅)-variation in Wiener’s sense, we have  

( )( ) ( )( ) ( )( ) ( )( )
( )

( )1

1 2 2 2 1 2 1 2 2 1

1
1

1.
2

jp x
m j j j j

j

h f t h f t h f t h f t

u vγ

−− − − −
− −

−
=

 − − +
  ≤
 −
 

∑
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However, by definition of the definition of the functions 1f  and 2f , 

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

( ) ( )

1 2 2 2 1 2 1 2 2 1

2 2

2 .
2

j j j jh f t h f t h f t h f t

u v u vh v h h h u

u vh v h h u

− − − −
− −

− − − −

− − −

− − +

+ +   = − − +   
   

+ = − + 
 

   

 

Then 

( ) ( )

( )

( )1

1
1

2
2

1.
2

jp x

m

j

u vh v h h u

u vγ

−
− − −

−
=

 + − +  
   ≤

 −
 
 

∑  

Since ( )11 jp x −≤ < ∞  for all 1, 2, , 2j m=   and passing to the limit as m →∞ , necessarily  

( ) ( )2 0.
2

u vh v h h u− − −+ − + = 
 

 

So, we conclude that ( ),h s− ⋅  satisfies the Jensen equation in   (see [26], p. 315). The continuity of h−  
with respect of the second variable implies that for every [ ],t a b∈  there exist [ ], : ,a bα β →   such that  

( ) ( ) ( ) [ ], , , .h t x t x t t a b xα β− = + ∈ ∈  

Because ( ) ( ) [ ],0 , ,t h t t a bβ −= ∈ , ( ) ( ) ( ),1t h t tα β−= −  and ( ) ( ) [ ]( ), ,ph x WBV a b−
⋅⋅ ∈ , for each x∈ , 

we obtain that ( ) [ ]( ), ,pWBV a bα β ⋅∈ .                                                          □ 
J. Matkowski [27] introduced the notion of a uniformly bounded operator and proved that any uniformly 

bounded composition operator acting between general Lipschitz function normed spaces must be of the form 
(11). 

Definition 6 ([27], Def. 1]) Let   and   be two metric (or normed) spaces. We say that a mapping 
:H →   is uniformly bounded if, for any 0t >  there exists a nonnegative real number ( )tγ  such that for 

any nonempty set B ⊂   we have 

( ) ( ).diamB t diamH B tγ≤ ⇒ ≤  

Remark 6.2 Every uniformly continuous operator or Lipschitzian operator is uniformly bounded.  
Theorem 7 Let [ ]: ,h a b × →   and H the composition operator associated with h. Suppose that H maps 

( ) [ ]( ),pWBV a b⋅  into itself and is uniformly continuous, then, there exist functions ( ) [ ]( ), ,pWBV a bα β ⋅∈  such 
that  

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β− = + ∈ ∈  

where ( ) ( ], : ,h x a b− ⋅ →   is the left regularization of ( ),h x⋅  for all x∈ . 
Proof. Take any 0t ≥  and ( ) [ ]( ), ,pf g WBV a b⋅∈  such that 

( ) { }( ),W
pf g diamH f g
⋅

− ≤  

Since { },diam f g t≤  by the uniform boundedness of H, we have  

{ }( ) ( ), ,diamH f g tγ≤  

that is, 

( ) ( ) ( ) { }( ) ( )( )= , ,
W W

pp
H f H g diamH f g f gγ

⋅⋅
− ≤ −  

therefore, by the Theorem 6 we get  

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β− = + ∈ ∈  
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