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Abstract 
In the present paper asymptotic solution of boundary-value problem of three-dimensional micro- 
polar theory of elasticity with free fields of displacements and rotations is constructed in thin do-
main of the shell. This boundary-value problem is singularly perturbed with small geometric pa-
rameter. Internal iteration process and boundary layers are constructed, problem of their jointing 
is studied and boundary conditions for each of them are obtained. On the basis of the results of the 
internal boundary-value problem the asymptotic two-dimensional model of micropolar elastic 
thin shells is constructed. Further, the qualitative aspects of the asymptotic solution are accepted 
as hypotheses and on the basis of them general applied theory of micropolar elastic thin shells is 
constructed. It is shown that both the constructed general applied theory of micropolar elastic 
thin shells and the classical theory of elastic thin shells with consideration of transverse shear de-
formations are asymptotically confirmed theories. 
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1. Introduction 
Current methods of reducing three-dimensional problem of theory of elasticity to two-dimensional problem of 
theory of plates and shells are the followings: 1) hypotheses method; 2) method of expansion by thickness; 3) 
asymptotic method [1]-[9]. From recent important papers on construction of micropolar elastic thin plates and 
shells must be noted papers [10] [11], where also review of researches is done in the mentioned direction. 

The main problem of the general theory of micropolar or classical elastic thin plates and shells is in approx-
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imate, but adequate reduction of three-dimensional boundary-value problem of the micropolar or classical 
theory of elasticity to two-dimensional problem. From our point of view, for achievement of this aim [12]-[14] 
during the construction of applied theories of thin plates and shells main results of the asymptotic solution of 
boundary-value or initial boundary-value problem of three-dimensional micropolar or classical theory of elastic-
ity in corresponding thin domains can be used, which are formulated as hypotheses [15]-[18]. Micropolar and 
classical theories of elastic thin plates and shells, constructed on the basis of such approach, are asymptotically 
correct theories. This problem is also essential in classical theory of elasticity during the construction of mathe-
matical models of thin plates and shells with the account of transverse shear deformations: in paper [19] it is 
shown that one of the main theories of plates and shells of Timoshenko’s type, where transverse shear deforma-
tions are taken into account, is not asymptotically consistent. 

2. Problem Statement 
A shell of constant thickness 2h is considered as a three-dimensional elastic body. Equations of the static prob-
lem of asymmetric (micropolar, momental) theory of elasticity with free fields of displacements and rotations 
are the followings [20] [21]: 

Equilibrium equations: 

0, e 0.mn mn nmk
m m mkσ µ σ∇ = ∇ + =                               (1) 

Physical relations: 

( ) ( ) ( ) ( ),    mn mn nm kk nm mn mn nm kk nmσ µ α γ µ α γ λγ δ µ γ ε χ γ ε χ βχ δ= + + − + = + + − + .         (2) 

Geometrical relations: 

,k
mn m n kmn mn m nV eγ ω χ ω= ∇ − = ∇ .                              (3) 

Here ,nm nmσ µ  are the components of tensors of force and moment stresses; ,mn mnγ κ  are the components of 
tensors of deformation and bending-torsion; nV  are the components of displacement vector; nω  are the 
components of free rotation; , , , , ,λ µ α β γ ε  are physical constants of the micropolar material of the shell; in-
dices , ,m n k  take values 1, 2, 3. 

It should be noted that if 0α = , main equations of the classical theory of elasticity will be obtained from 
Equations (1)-(3). 

We’ll consider three orthogonal system of coordinates nα  ( ( )31i i iH A Rα= + , 3 1, 1, 2H i= = ), accepted 
in theory of shells [4]. 

Boundary conditions of the first boundary-value problem for front surfaces of the shell are accepted: 

3 3 3, , on  .n n n np m hσ µ α± ±= = = ±                               (4) 

Boundary conditions on the edge 1 2Σ = Σ Σ  of the shell are boundary conditions of the mixed boundary- 
value problem: 

*
1 2, on , , on ,mn m n mn m n n n n nn p   n m     V V     σ µ ω ω∗ • •= = Σ = = Σ                     (5) 

where ,n np m∗ ∗  are the components of the given loads and moments on 1Σ ; nV • ,  nω
•  are the given compo-

nents of displacement and free rotation vectors on 2Σ . 

3. Asymptotic Solution (Construction of Internal Problem) of Boundary-Value 
Problem of Three-Dimensional Micropolar Theory of Elasticity in Thin  
Domain of the Shell 

It is assumed that the thickness 2h of the shell is small compared with typical radius of curvature of the middle 
surface of the shell ( )2h R . We’ll proceed from the following basic concept [4]: in the static case general 
stress-strain state (SSS) of thin shell is composed of internal SSS, covering all three-dimensional shell, and 
boundary layers, localizing near the surface of the shell edge Σ . On the basis of such approach and results of 
initial approximation of internal problem the construction of general two-dimensional (asymptotic) model of 
micropolar thin shells will be possible (in case of 0α =  also model of elastic shell by classical theory of elas-
ticity). 
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Question of reduction of three-dimensional static problem of asymmetric theory of elasticity for thin domain 
of the shell to two-dimensional problem is considered on the basis of asymptotic method with boundary layer 
[14], including the question of satisfaction of boundary conditions on shell edge Σ . 

At first we’ll consider the construction of internal interactive process. For achievement of this aim we’ll pass 
to dimensionless coordinates in three-dimensional Equations (1)-(3) of asymmetric theory of elasticity: 

3, .p l
i iR Rα λ ξ α λ ζ− −= =                                   (6) 

Here quantity p l  characterizes the variability of SSS by coordinates; p, l are integers, 0l p> ≥ ; R is the 
characteristic radius of curvature of the shell middle surface; λ  is the big constant dimensionless geometric 
parameter, determined with the help of formula lh Rλ−= . Following dimensionless quantities and dimension-
less physical parameters are also considered: 

, , , , , .ij iji n n i
i ij ij n n i

V p m RV p m R
R R R R

σ µ
σ µ

µ µ µ µ

± ±
± ±= = = = = =                     (7) 

2 2 2, , , , ,EE
R R R

µ α β γ εµ α β γ ε
µ µ µ µ µ µ

= = = = = = .                    (8) 

On the basis of (7), (8) following system of dimensionless equations will be obtained instead of system of 
Equations (1)-(3). 

Equilibrium equations: 

( ) ( )

( )

3 3 3 33

3 3 3
3 3

33
1 12 2 21

0, 0,

1 0,

0.

p l l l p li i i
i i

i

jp l l li i i
i i j j j

i

l p l l

L a L F
R

v v v
K a a

R
v

K a a

σ σ σ σ
λ λ λ λ

ζ ζ

λ λ λ σ σ
ζ

λ λ λ σ σ
ζ

− − − −

− − −

− − −

+ ∂ ∂
+ + = − + + =

∂ ∂

+ ∂
+ + + − − =

∂

∂
− + Φ + + − =

∂

                 (9) 

Physical-geometrical relations: 

[ ] ( )

( )

3
33

3
1 2 33 1 11 2 22 3 3

3

1 1 ,

1 , 1 ,
4 4

1 1
4 4

p i i
j j i ii j jj

i i i j j i

jl l i
j j j i i

jjp i
j i i j i ij

i i i j j

V A VRa V a va v
A A A R E

V Va a va va a a
E

V ARa V a a a a
A A A

λ σ σ σ
ξ α

µ α µ αλ σ σ σ λ ω σ σ
ζ ζ µα µα

µ α µ αλ ω σ
ξ α µα µα

 ∂ ∂  + + = − −   ∂ ∂  
∂ ∂ + −

= − − − − = −
∂ ∂

 ∂ ∂ + −
− − − = −  ∂ ∂ 

( )

( ) ( ) ( )

( ) ( ) ( )

3
3 3

3
33

3
1 2 33 1 11 2 22

,

1 1 ,
4 4

1 ,
3 2 2

,
3 2 2

1

j ji

jp i
j i j j i i i i

i i i

p i i
j j i ii j jj

i i i j j i

l

p
j

i

V Va a a a a
A R

ARa a a
A A A R

a a a a

a
A

σ

µ α µ αλ ω σ σ
ξ µα µα

ω ω β γ βλ ω ν ν ν
ξ α γ β γ β γ

ω β γ βλ ν ν ν
ζ γ β γ β γ

λ

 ∂ + −
− + − = − ∂ 

  ∂ ∂ +
+ + = − +  

∂ ∂ + +     
 ∂ +

= − + 
∂ + +  

3
3 3 3 3

,
4 4

1 , .
4 4 4 4

j i
i i ij j ji

i i j j

p li i
j i i i i j i i

i i i

AR a a
A A

a a a a
A R

ω γ ε γ εω ν ν
ξ α γε γε

ω ω ωγ ε γ ε γ ε γ ελ ν ν λ ν ν
ξ γε γε ζ γε γε

 ∂ ∂ + −
− = −  ∂ ∂ 

 ∂ ∂+ − + −
− = − = − ∂ ∂ 

       (10) 

Here 
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( ) ( )

( )

13 2311 22 2 1
13 23

1 2 1 1 1 2 1 2 2 1 2 2

1 1 ,

1 1,      ,

1 1

p p
j jiii i

i ii jj ji ij
i i i j i j j i j j

p p

p p
j jiii

i ii jj
i i i j i j j

A AR RL
A A A A A A

A AR RL F
R R A A A A A A

A vv R RK v v
A A A A A

ττ λ λσ σ σ σ
ξ α ξ α

σ σσ σ λ λσ σ
ξ α ξ α

λ λ
ξ α ξ

− −

− −

− −

∂ ∂∂ ∂
= + − + + +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= + = + + +

∂ ∂ ∂ ∂
∂ ∂∂

= + − + +
∂ ∂ ∂

( )

13 2311 22 2 1
13 23

1 2 1 1 1 2 1 2 2 1 2 2

,

1 1,   , 1 .

i
ji ij

i j j

p p l

i
i

A
v v

A

v vv v A AR RK v v a
R R A A A A A A R

α

λ λ λ ζ
ξ α ξ α

− − −

∂
+

∂

∂ ∂∂ ∂
= + Φ = + + + = +

∂ ∂ ∂ ∂

       (11) 

The case is considered when dimensionless physical parameters (8) have the following values: 

2 2 2~ 1, ~ 1, ~ 1, ~ 1.
R R R

α β γ ε
µ µ µ µ

                           (12) 

Following replacements of unknown quantities will be done: 
* * * * 2 *

3 3 3 3 33 33

2 2
3 3 3 3 33 33

* * *
3 3

, , , , ,

, , , , ,

, , ,

l l l p c l p c p c
ii ii ij ij i i i i

l c * l c * l p * l p * p c *
ii ii ij ij i i i i

l p l c l p c
i i i i

            

ν ν    ν ν    ν ν    ν ν    ν ν

V V    V V      

τ λ τ τ λ τ τ λ τ τ λ τ τ λ τ

λ λ λ λ λ

λ λ ω λ ω

+ − + − −

− − − − −

− − − −

= = = = =

= = = = =

= = = 2 *
3 3 ,l p ω λ ω−=

             (13) 

0c =  at 2 , 2p l c p l≤ = −  at 2 .p l≥  
As a result following system of equations will be obtained: 

( ) ( )

( )

* * *
*3 3 3

2 2 * *3 3 3
3 3

*
2 * * 2 * 2 2 * 2 2 * 2 2 *33 33

1 12 2 21

*

1 1 ,

1 1 1 ,

, ,

4

2

l c li i i
i

i i i
* * *

j jl p c * l l p ci i i
i j j

i i ii
*

p c p c p c p c p c

j
ii

i

L
a a R

aν ν ν
K

a a aR

ν
L F   K a a

a
a

τ τ τ
λ λ

ζ

λ λ λ τ τ
ζ

τ
λ λ λ λ τ λ τ

ζ ζ

µ λ µ
τ

λ

− + −

− + − − − + −

− + − + − + − + − +

∂ +
= − −

∂

∂ +
= − − + − −

∂

∂ ∂
= − = − Φ − +

∂ ∂

+
=

+

( ) ( ) ( )

( ) ( )

( )

* * 2 *
33

* * * 2 *
3

*
2 2 * * *3

33 11 22
1 2 2 1

*
* 2 * 2

3

2 1 ,
2 2

2 1 ,

1 1 1 ,
3 2 2 3 2

1 11
4 4

l p c
i j

i

jj p
ij j i j

i

l p l c

j l c l p c l p ci
j i

j j

e e
a

a
t t a

a

V
a a a a

V
a a

µλ λλ τ
µ λ µ λ µ

τ µ α µ α λ αω

λ µ λλ τ λ τ τ
ζ µ λ µ µ λ µ

µ α µ αλ ω λ τ λ
ζ µα µ

− + −

−

− + − +

− − − + − − + −

+ +
+ +

= + + − − −

∂  +
= − + ∂ + +  

∂ + −
= − + −

∂
( )

( )

( )
( ) ( )

* 2 * 2 * *
3 3 3

* * 2 * *
3 3

* * * 2 * * *
33

*
2 4 23

1 2

1 1 ,
2

4 41 ,

4 2 1 ,      ,
2 2 2

1

l p c l p c
i i i i

i j

jj p
i i j j i

i

j jl p c *
ii i j ij j i

i i i

l p c

g
a a

a
g a

a

a a
v v v n n

a a a

a a

τ λ λ τ τ
α

µα µα µ ατ λ ω τ
µ α µ α µ α

γ β γ γβ βκ κ λ γ ε γ ε
β γ β γ β γ

ω β γλ
ζ

− + − − + −

−

− + −

− + −

= − + +

−
= + − +

+ + +

+
= + + = + + −

+ + +

∂ +
=

∂ ( ) ( )
* 2 * *
33 11 22

2 1

*
* * * * *
3 3 3 3

1 1 ,
3 2 2 3 2

41 1 ,     ,
4 4

l p c

jl c l ci
i i i i i

j j i

v v v
a a

a
v v v v

a a a

βλ
γ β γ γ β γ

ω γ ε γ ε γε γ ελ λ θ
ζ γε γε γ ε γ ε

− + −

− + − +

 
− + 

+ +  

∂ + − −
= − = +

∂ + +

(14) 
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where 

( ) ( )

( )

**
* * * * *

* ** *
* * * *13 2311 22 2 1

13 23
1 2 1 1 1 2 1 2 2 1 2 2

*
* * *

1 1 ,

1 1, ,

1 1

p p
j jiii i

i ii jj ji ij
i i i j i j j i j j

p p

p
jii

i ii jj
i i i j i

A AR RL
A A A A A A

A AR RL F
R R A A A A A A

Av RK v v
A A A A

ττ λ λτ τ τ τ
ξ α ξ α

τ ττ τ λ λτ τ
ξ α ξ α

λ
ξ α

− −

− −

−

∂ ∂∂ ∂
= + − + + +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= + = + + +

∂ ∂ ∂ ∂

∂∂
= + − +

∂ ∂
( )

*
* *

* ** *
* * * *13 2311 22 2 1

13 23
1 2 1 1 1 2 1 2 2 1 2 2

* * *
* * * *3

*

,

1 1, ,

1 1, ,

1

p
ji i

ji ij
j j i j j

p p

p p
jci i i

i j i j
i i i j j i j j i j i

i
i

v AR v v
A A

v vv v A AR RK v v
R R A A A A A A

AV A V VR Re V t V
A A A R A A A

Vg
A

λ
ξ α

λ λ
ξ α ξ α

λ λλ
ξ α ξ α

−

− −

− −
−

∂ ∂
+ +

∂ ∂

∂ ∂∂ ∂
= + Φ = + + +

∂ ∂ ∂ ∂

∂∂ ∂ ∂
= + + = −

∂ ∂ ∂ ∂

∂
=

* * * *
2 * * 23 3

* * *
* * * 3

1, ,

1 1, .

p
p c p ci i i

i j
i i i i i j j i

p
j ci i

i j i
j j i j i i i i

V AR
R A A A R

ARn
A A A A R

ω ωλλ κ ω λ
ξ ξ α

ω ω ωλ ω θ λ
ξ α ξ

−
− + − +

−
−

∂ ∂
− = + +

∂ ∂ ∂

∂∂ ∂
= − = −

∂ ∂ ∂

              (15) 

Following to the asymptotic method, the question is the following: to reduce three-dimensional Equations (14) 
(with free variables 1 2, ,ξ ξ ζ ) to two-dimensional ones (with free variables 1 2,ξ ξ ). 

Following formulas will be obtained for displacements and rotations, force and moment stresses with asymp-
totic accuracy ( )p lO λ −  on the basis of system (14): 

* 0 * 0 2 1 * 0 2 1 * 0
3 3 3 3 3

* 0 2 1 * 0 2 1 * 0 * 0
3 3 3 3

* 0 * 0 * 0 2 1 * 0 2 1
3 3 3 3 3 3

*
33

, , , ,

, , , ,

, , , ,

l p c l p c
i i i i i

l p c l p c
ii ii ii ij ij ij i i i i

l p c l p c
ii ii ij ij i i i i i i

V V V V V

v v v v v v v v v v

ω ω ω ω λ ζω λ ζ

τ τ λ ζτ τ τ λ ζτ τ τ τ τ

λ ζ λ ζ

τ τ

− + − − + −

− + − − + −

− + − − + −

= = + = + =

= + = + = =

= = = + = +

= 0 1 * 0 2 2 1
33 33 33 33 33, ,p cv v vζτ λ ζ− ++ = +

               (16) 

where 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )

1 2 0 0 0
3 33 11 22

1 0 0 2 0 0 0 0
3 3 3 3

0 0 0 2 0 0 0 0 2 0
33 3

1 1

,
3 2 2 3 2

11 ,
4 4 2

4 2 , 2 1 ,
2 2 2

4 2
2

l p c

j p
i i i j i i i

jl p c p
ii i j ij j i

ii i

v v

V g

e e t t

e

β γ βω λ ν
γ β γ γ β γ

µ α µ ατ τ λ ω τ τ
µα µα

µ λ µ µλ λτ λ τ τ µ α µ α λ αω
λ µ λ µ λ µ

µ λ µ µλτ
λ µ λ

− + −

−

− + − −

+
= − +

+ +

+ −
= − + − = − + +

+
= + + = + + − − −

+ + +

+
= +

+ +
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 2 1
33 3

2
0 0 0 0 0 03 3

23
0 0

, 2 1 ,
2 2

4 2 , ,
2 2 2 2

1 1,

j c
j ij j i

l p c

ii i j ij j i

k k kp p
k k c k ki i i i
i j k i j k

i i i j j i i i i j j

e t t

m mk k v n n

V A V AR Re V
A ξ A A R A ξ A A

λ τ τ µ α µ α λ ω
µ λ µ

γ β γ γβ λν γ ε γ ε
β γ β γ β γ

ωλ λδ λ κ ω δ λ
α α

−

+ −− + −

− −
− −

+ = + + − − −
+

+ +
= + + = + + −

+ + +

∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂
3 ,

1 1, ,

k
p c

i

k kp p
j jk k k ki i

i j i j
j j i j i j j i j i

R

A AV R Rt V n
A A A A A A

ω

ωλ λ ω
ξ α ξ α

+

− −∂ ∂∂ ∂
= − = −

∂ ∂ ∂ ∂
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( ) ( )

( )( ) ( ) ( )

23 3
0 0

2 0
0 0 2 0 0 1 0 0 0
3 3 3 3 3

1 1, ,

1 1 ,

4 1 , 1

k k k k
k p c k ci i
i k i k

i i i i i i

kk p p
j jik k k k kii i

i ii jj ji ij
i i i j i j j i j j

j jp i
i i j i i i j j

V Vg
A R A R

A AR RL
A A A A A A

g v K J

ω ωδ λ θ δ λ
ξ ξ

ττ λ λτ τ τ τ
ξ α ξ α

ωµα µ ατ λ ω τ τ τ
µ α µ α

− + −

− −

−

∂ ∂
= − = −

∂ ∂

∂ ∂∂ ∂
= + − + + +

∂ ∂ ∂ ∂

∂−
= + − + = − + − − +

+ + ∂

( ) ( )

2

0 0 0 1 1 1
3 3 3 3

2 0
1 2 0 0 1 0 0 0 03
33 33 12 212

11 22

1 2

,

1 1 ,

4 4,

, ,

,

kk p p
j jik k k k kii i

i ii jj ji ij
i i i j i j j i j j

i i i i i i

p c c

k k
k k

A vv AR RK v v v v
A A A A A A

v v v v

VL F v K

L F
R R

τ

λ λ
ξ α ξ α

γε γ ε γε γ εθ θ
γ ε γ ε γ ε γ ε

τ λ λ τ τ
τ

τ τ

− −

− + −

∂ ∂∂ ∂
= + − + + +

∂ ∂ ∂ ∂

− −
= + = +

+ + + +

∂
= − + = −Φ − +

∂

= + = 13 232 1
13 23

1 1 1 2 1 2 2 1 2 2

13 2311 22 2 1
13 23

1 2 1 1 1 2 1 2 2 1 2 2

1 1 ,

1 1, , 1, 2.

k kp p
k k

k kk k p p
k k k k

A AR R
A A A A A A

v vv v A AR RK v v k
R R A A A A A A

τ τλ λτ τ
ξ α ξ α

λ λ
ξ α ξ α

− −

− −

∂ ∂∂ ∂
+ + +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= + Φ = + + + =

∂ ∂ ∂ ∂

             (17) 

The aim is to construct asymptotically strictly interactive process for averaged along the shell thickness quan-
tities, which determine the stated problem (i.e. depending only on quantities 1 2,ξ ξ ). From this point of view 
there is an opportunity to define values from (16) of force stress *

3iτ  and moment stress *
33µ . The approach is 

the following: at the level of initial approximation of the asymptotic method for quantities *
3iτ  and *

33ν  we 
have: 

( ) ( ) ( )* 0 * 0 2 2 1
3 3 1 2 33 33 1 2 33 1 2, , , , .p c

i iτ τ ξ ξ ν ν ξ ξ λ ν ξ ξ− += = +                      (18) 

Keeping quantities up to 2 2p lλ −  order in equilibrium equations and integrating these equations by ζ , we’ll 
obtain: 

* 0 1 2 2 2 1
3 3 3

1ˆ ,
2

l c l p
i i i iLτ τ λ ζτ λ ζ− + − += + +                              (19) 

( )* 0 2 2 1 2 1 1 1
33 33 33 12 21

1ˆ ,
2

p c l cν ν λ ζν λ ζ τ τ− + − +  = + − Φ − −                       (20) 

where 0
3iτ  and 0

33ν  are constants of the integration: 

0
1 0 1 0 0 0 03
3 33 12 21, .c ci

i i
i

L K
R
ττ λ ν λ τ τ− −= − − = −Φ − +                        (21) 

It must be required that averaged values along the shell thickness of quantities *
3̂iτ  and *

33ν̂  are equal to ze-
ro: 

1 1

3 33
1 1

ˆˆ d 0, d 0.iτ ζ ν ζ∗ ∗

− −

= =∫ ∫                                 (22) 

Substituting (19) and (20) into conditions (22), following formulas will be obtained for 0
3iτ  and 0

33ν : 

( )0 2 2 1 0 1 1 1
3 33 12 21

1 1, .
6 6

l p l c
i iLτ λ ν λ τ τ− + − +  = ⋅ = ⋅ ⋅ Φ + −   
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Thus for *
3̂iτ  and *

33ν̂  we’ll obtain: 

2
* 1 2 2 1
3 3

1ˆ ,
6 2

l c l p
i i iLζτ λ ζ τ λ− + − +  
= ⋅ ⋅ + ⋅ − 

 
                         (23) 

( )
2

2 2 1 1 1 1
33 33 12 21

1 .
6 2

p c l c ζν λ ζ ν λ τ τ∗ − + − +    = ⋅ ⋅ + − Φ + −    
                    (24) 

Finally, for quantities *
3iτ  and *

33ν  we’ll have the sum of (18), (23), (24): 

2
* 0 1 2 2 1
3 3 3

1 ,
6 2

l c l p
i i i iLζτ τ λ ζτ λ− + − +  
= + + − 

 
                         (25) 

( )
2

0 2 2 1 1 1 1
33 33 33 12 21

1 .
6 2

p c l c ζν ν λ ζν λ τ τ∗ − + − +    = + + − Φ + −    
                   (26) 

It should be noted that averaged along the shell thickness quantities for *
3iτ  and *

33ν  at the level (18) and 
(25), (26) are equal. 

Thus, taking into consideration (25), (26), we’ll have following formulas for displacements, rotations, force 
and moment stresses instead of (16): 

* 0 * 0 2 1 * 0 2 1 * 0
3 3 3 3 3

* 0 2 1 * 0 2 1 * 0
3 3

* 0 * 0 * 0 2 1 * 0 1
3 3 3 33 33 33

0 1 2
3 3 3

, , , ,

, , ,

, , , ,

l p c l p c
i i i i i

l p c l p c
ii ii ii ij ij ij i i

l p c
ii ii ij ij i i i

l c
i i i

V V V V V

v v v v v v v

ω ω ω ω λ ζω λ ζ

τ τ λ ζτ τ τ λ ζτ τ τ

λ ζ τ τ ζτ

τ τ λ ζτ λ

− + − − + −

− + − − + −

− + −

∗ − + −

= = + = + =

= + = + =

= = = + = +

= + +

( )

2
2 1 0 2 1

3 3 3

2
0 2 2 1 1 1 1

33 33 33 12 21

1 , ,
6 2

1 .
6 2

l p l p c
i i i i

p c l c

L v vζ ν λ ζ

ζν ν λ ζν λ τ τ

+ ∗ − + −

∗ − + − +

 
− = + 

 
   = + + − Φ + −    

              (27) 

The constructed asymptotics (27) for internal interaction process of the stated problem gives an opportunity to 
reduce three-dimensional problem to two-dimensional one (what is already done for displacements, rotations, 
force and moment stresses). As in the classical theory, instead of components of tensors of force and moment 
stresses statically equivalent to them integral characteristics are introduced in micropolar theory: forces Tii, Sij, 
Ni3, N3i, moments Mii, Hij, Lii, Lij, Li3, L33 and hypermoments 3iΛ : 

3 3 3 3

33 33 3 3 3 3

d , d , d , d ,

d , d , d , d ,

d , d , d .

h h h h

ii ii ij ij i i i i
h h h h

h h h h

ii ii ij ij ii ii ij ij
h h h h

h h h

i i i i
h h h

T z S z N z N z

M z z H z z L z L z

L z L z z z

σ σ σ σ

σ σ µ µ

µ µ µ

− − − −

− − − −

− − −

= = = =

= = = =

= = Λ =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

                  (28) 

Displacements and rotations of points of the shell middle surface are introduced as follows: 

3
3 3 30 0 0 0

0

, , , , .i i i iu V w V
ζ ζ ζ ζ

ζ

ωω ω ι
ζ= = = =

=

∂
= = Ω = Ω = =

∂
 

Satisfying boundary conditions (4) on shell surfaces ,z h= ±  taking into consideration (27), (17), following 
system of equations of two-dimensional problem of micropolar theory of shells with free fields of displacements 
and rotations will be obtained: 
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Equilibrium equations: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3

3

2 13 1 2311 22
3 3

1 2 1 2 1 2

1 1 1 1 ,

1 1 1 1 ,

1

j jiii i i
ii jj ji ij i i

i i i j i j j i j j i

j jiii i
ii jj ji ij i i i

i i i j i j j i j j

A ST A N
T T S S p p

A A A A A A R

A HM A
M M H H N h p p

A A A A A A

A N A NT T p p
R R A A

α α α α

α α α α

α α

+ −

+ −

+

∂ ∂∂ ∂
+ − + + + + = − +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ − + + + − = − −

∂ ∂ ∂ ∂

 ∂ ∂
− − + + = − + ∂ ∂ 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3
3 3

2 13 1 2311 22
12 21 3 3

1 2 1 2 1 2

2 13 1 23
33 12 21 3 3

1 2 1 2

,

1 1 1 1 1 ,

1 ,

1

jj jiii i i
ii jj ji ij j j i i

i i i j i j j i j j i

A LL A L
L L L L N N m m

A A A A A A R

A L A LL L S S m m
R R A A

A A
L H H h m m

A A

α α α α

α α

α α

−

+ −

+ −

+ −

∂ ∂∂ ∂
+ − + + + + + − − = − +

∂ ∂ ∂ ∂

 ∂ ∂
− − + + − − = − + ∂ ∂ 

 ∂ Λ ∂ Λ
− + − − = − ∂ ∂ 

.

  (29) 

Elasticity relations: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

3 3 3 3 3 3

3 32

3 2

3 32

3

2 2 , 2 2 ,
2 , 2 ,

11
2 ,

3 13 1

2 , 2 2 ,
3

i i i i i i

ii ii jj ij ij ji

ii ii jj

ij ij ji ii ii jj

ij

N h h N h h
Eh νT v h p p S h

νv
Eh hM K vK p p

v

hH K K L h k k

L

µ α µ α µ α µ α

µ α µ α

ν
ν

µ α µ α β γ β ι

+ −

+ −

= + Γ + − Γ = + Γ + − Γ

   = Γ + Γ + + = + Γ + − Γ   −−

 = + + −  −−

  = + + − = + + +   

( ) ( ) ( ) ( )33 11 22

3

3 3 3 3

2 , 2 2 ,

4 2 42 , .
2 3 2

ij ji

i i i i
i i i i

h L h

m m m mhL h l
h

γ ε κ γ ε κ β γ ι β κ κ

γε γ ε γε γ εκ
γ ε γ ε γ ε γ ε

+ − + −

 = + + − = + + +   
   − +− −

= + Λ = +   
+ + + +      

             (30) 

Geometric relations: 

( )

( )

( ) ( )

3

3 3 3

1 1 1 1, 1 ,

1 1 1 1, 1 ,

1 11 , 1 , , ,

1 1

jji i i
ii j ij i

i i i j j i i i i j j

jji i i
ii j ij i

i i i j j i i i j j

j j i
i i j i i j i i

i i i i i

i
ii

i i

uu A Awu u
A A A R A A A

A A
K K

A A A A A A

uw l
A R A

A

α α α α

ψψ
ψ ψ ι

α α α α

ιϑ ψ ϑ
α α

κ
α

∂∂ ∂ ∂
Γ = + + Γ = − − − Ω

∂ ∂ ∂ ∂

∂∂ ∂ ∂
= + = − − −

∂ ∂ ∂ ∂

∂ ∂
Γ = − + − Ω Γ = − − Ω = − + =

∂ ∂

∂Ω
= +

∂
3 3

3
1 1 1, , .ji i i

j ij i i
i j j i i i i j j i i i

A A
A A R A A A A R

κ κ
α α α α

∂Ω∂ Ω ∂ ∂Ω Ω
Ω + = − Ω = −

∂ ∂ ∂ ∂

        (31) 

System of equations of thin shells of classical theory will be obtained from system of Equations (29)-(31) in 
case of 0α =  (i.e. system of equations of elastic thin shells of Timoshenko’s type [22]-[25] with some differ-
ence). 

4. Construction and Studying of Boundary Layers 
We’ll proceed from three-dimensional Equations (1)-(3) of micropolar theory of elasticity. It is assumed that the 
surface of the shell edge Σ , where stress state will be considered, is given with the help of the equation 
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1 10α α= . Replacing of free variables is done on the basis of formulas: 

1 10 1 2 2 3, , ,l p lR R Rα α λ ξ α λ ξ α λ ζ− − −− = = =                         (32) 

where quantities , , ,R l pλ  have the same meaning as in case of internal problem. 
Solution of the obtained system of boundary-value problem must satisfy homogeneous boundary conditions 

on surfaces 3 hα = ±  of the shell: 

3 30,   0.n nσ µ= =                                    (33) 

We’ll pass to dimensionless quantities (7), (8) and introduce following notations: 

, , , .l l
mn mn mn mn n n n nP Q V Uσ µ λ ω λ ϖ− −= = = =                        (34) 

As a result three-dimensional equations of micropolar theory in dimensionless form will be obtained from 
Equations (1)-(3) (with consideration of (7), (8)). 

At level ( )p lO λ −  of asymptotic accuracy boundary layer divides into 4 independent systems of equations: 
Force plane problem: 

[ ]

( ) [ ]

31 13 3311 1
11 22 33

10 1 10 1 10 1

3
22 11 33 33 11 22

3 1
13 31 31 13

10 1

1 1 1 10, 0, ,

10, ,

1 0, .
4 4 4 4

P P PP U P P P
A A A Е

U
P P P P P P

Е
U UP P P P

A

ν ν
ξ ζ ξ ζ ξ

ν ν ν
ζ

µ α µ α µ α µ α
ξ µα µα ζ µα µα

∂ ∂ ∂∂ ∂
+ = + = = − −

∂ ∂ ∂ ∂ ∂

∂
− + = = − −

∂
∂ ∂+ − + −

= − = = −
∂ ∂

           (35) 

Force non plane problem: 

( ) ( ) ( ) ( )

3212 2 2
12 21 32 23

10 1 10 1

21 12 23 32

1 10,   ,   0,
4 4 4 4

0, 0.

PP U UP P P P
A A

P P P P

µ α µ α µ α µ α
ξ ζ ξ µα µα ζ µα µα

µ α µ α µ α µ α

∂∂ ∂ ∂+ − + −
+ = = − = − =

∂ ∂ ∂ ∂

+ − − = + − − =
     (36) 

Momental plane problem: 

( ) ( ) ( ) ( )

3212 2 2
12 21 32 23

10 1 10 1

21 12 23 32

1 10, , ,
4 4 4 4

0, 0.

QQ Q Q Q Q
A A

Q Q Q Q

ϖ ϖγ ε γ ε γ ε γ ε
ξ ζ ξ γε γε ζ γε γε

γ ε γ ε γ ε γ ε

∂∂ ∂ ∂+ − + −
+ = = − = −

∂ ∂ ∂ ∂

+ − − = + − − =
      (37) 

Momental non plane problem: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

31 13 3311
22 11 33

10 1 10 1

1 1
11 22 33 31 13

10 1

3 3
33 11 22 13

10 1

1 10, 0, 2 0,

1 , ,
4 43 2 2

1,
4 43 2 2

Q Q QQ Q Q Q
A A

Q Q Q Q Q
A

Q Q Q Q Q
A

β γ β
ξ ζ ξ ζ

ϖ ϖβ γ β γ ε γ ε
ξ ζ γε γεγ β γ β γ

ϖ ϖβ γ β γ ε γ ε
ζ ξ γε γεγ β γ β γ

∂ ∂ ∂∂
+ = + = + − + =

∂ ∂ ∂ ∂

 ∂ ∂+ + − = − + = −
∂ ∂+ +  

 ∂ ∂+ + − = − + = −
∂ ∂+ +  

31,

       (38) 

where 
110 1 0A A ξ == . 

The obtained equations of boundary layer in Cartesian coordinates ( )1 1 10 1, Aξ ζ ξ ξ′ ′ =  with asymptotic accu-
racy ( )0 p lλ −  describe SSS of plain and antiplane force and momental independent problems of micropolar 
theory of elasticity, taking place in semiband { }10 , 1 1 .ξ ζ′≤ < ∞ − ≤ ≤  

Requiring that solutions (35)-(38) of boundary layers have fading character when 1ξ → +∞ , we’ll obtain that 
such solutions have following important properties: 
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( ) ( )

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0 1 0 2 0 2 0
1 1 1 1

1 1 1 1

1 0 13 0 1 0 13 0
1 1 1 1

1 1 1 1

3 0 11 0 3 0 11 0
1 1 1 1

d 0, d 0, d 0, d 0,

d d , d d ,
4 4

d d 0, d d
4 4

n nP Q U

U P Q

U P Q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ζ ζ ζ ϖ ζ

λ βζ ζ ζ ϖ ζ ζ ζ
µ λ µ γ β γ

µ α γ εζ ζ ζ ϖ ζ ζ ζ
µα γε

= = = =
− − − −

= = = =
− − − −

= = = =
− − − −

= = = =

= =
+ +

− −
+ = + =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

( )

1 1 1 1

1 1

1 1 1 1
1 2

0 31 0 0 32 0
1 1 1 1

1 1
3

0 33 0
1 1

0,

1d d 0, d d 0,
4

2d d 0.
4

U UP P

Q

ξ ξ ξ ξ

ξ ξ

µ αζ ζ ζ ζ
ζ µα ζ µ α

ϖ β γζ ζ
ζ γ β γ

= = = =
− − − −

= =
− −

∂ ∂+
− = − =

∂ ∂ +

∂ +
− =

∂ +

∫ ∫ ∫ ∫

∫ ∫

       (39) 

From the above introduced relations (special for micropolar theory of elasticity) following important conclu-
sion can be done: when force and moment stresses are balanced in boundary layer, displacements and free rota-
tions will have the same property. 

5. Jointing of Asymptotic Expansions of Internal Interactions Process and  
Boundary Layer 

Considering problem of jointing of internal SSS and boundary layer, following symbolic formula must be intro-
duced for the whole SSS of the shell: 

( ) ( ) ( ) ( )whole . . . . .SSS SSS SSS SSSа вr
in b l b l

θλ λ= + ⋅ + ⋅                       (40) 

,r θ  are called indicators of intensity of plane and antiplane boundary layers. ,r θ  must be chosen so that we 
can satisfy three-dimensional boundary conditions on shell edge Σ . 

Now the first variant of three-dimensional boundary conditions of micropolar theory of elasticity will be con-
sidered, when shell edge is loaded with forces and moments ( )1 2, 0Σ ≡ Σ Σ ≡ . Satisfying boundary conditions, 
following values will be taken for quantities r and θ : r l p cθ= = − − . 

At level ( )0 p lλ −  boundary conditions on 1 0ξ =  will be as follows: 
( ) ( )

( ) ( )

( ) ( )

0 00 2 1 * 0 *
11 11 11 1 11 11 1

0 00 2 1 * 0 *
12 12 12 2 12 12 2

0 00 2 2 * 0 2 1 *
13 13 3 13 13 13 3

, ,

, ,

, ,

п al p c p c p c p p

a пl p c p c p c p p

п ap p l p c c c

P p Q m

P p Q m

P p Q m

τ λ ζτ λ λ ν λ λ

τ λ ζτ λ λ ν λ λ

τ λ λ ν λ ζν λ λ

− + − − − − − − −

− + − − − − − − −

− − − + − − −

+ + = + =

+ + = + =

+ = + + =

 

 

 

               (41) 

where * * * *,l p c l p c
n n n np p m R mµλ µλ− − − −= =  . 

Using corresponding conditions from (39) and on the basis of (41), boundary conditions for system (29)-(31) 
of two-dimensional equations will be obtained: 

1 10 1 10 1 10

1 10 1 10 1 10

1 10 1 10 1 10

* * *
11 1 3 12 2 3 13 3 3

* * *
11 1 3 3 12 2 3 3 11 1 3

* * *
12 2 3 13 3 3 13 3 3 3

d , d , d ,

d , d , d ,

d , d , d .

h h h

h h h
h h h

h h h
h h h

h h h

T p S p N p

М p H p L m

L m L m m

α α α α α α

α α α α α α

α α α α α α

α α α

α α α α α

α α α α

= = =
− − −

= = =
− − −

= = =
− − −

= = =

= = =

= = Λ =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

             (42) 

Let us study the second variant of three-dimensional boundary conditions of micropolar theory of elasticity, 
when displacements and rotations are given on the shell edge ( )2 1, 0Σ ≡ Σ Σ ≡ . Satisfying boundary conditions, 
following values will be taken for quantities r and θ  in (40): 2 2r l p cθ= = − − . 

At level ( )0 p lλ −  boundary conditions on 1 0ξ =  will be as follows: 
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( ) ( )

( ) ( )

( ) ( )

0 00 2 1 0
1 1 1 1 1 1 1

0 00 2 1 0
2 2 2 2 2 2 2

0 00 2 2 0 2 1
3 3 3 3 3 3 3

, ,

, ,

, ,

п al p c p c p c p p

a пl p c p c p c p p

п ap p l p c c c

V V U V

V V U V

V U V

λ ζ λ λ ω λ ϖ λ ω

λ ζ λ λ ω λ ϖ λ ω

λ λ ω λ ζω λ ϖ λ ω

− + − − − − − • − − •

− + − − − − − • − − •

− − • − + − − − •

+ + = + =

+ + = + =

+ = + + =













               (43) 

where 2 2,l p c l p c
n n n nV R Vλ ω λ ω• − − • • − − •= =

 . 
With the help of conditions from (39) boundary conditions for two-dimensional model will be obtained: 

1 10 1 10 1 10

1 10 3 3 1 10 3 3

* * *
3 3 3 3

1 1 1d ,    d ,    d ,
2 2 2
1 1,    .
2 2

h h h

i i n n
h h h

i i h i h i h i h

u u w u
h h h

V V
h h

α α α α α α

α α α α α α α α

α α ω α

ψ ι ω ω

= = =
− − −

• • • •
= = =− = = =−

= = Ω =

   = − = −   

∫ ∫ ∫
            (44) 

Mixed three-dimensional boundary conditions are studied, when hinged support takes place. 
Following values will be taken for quantities r and θ  in (40): , 2 2r l p c l p cθ= − − = − + . 
At level ( )0 p lλ −  boundary conditions on 1 0ξ =  will be as follows: 

( ) ( )

( ) ( )

( ) ( )

0 02 0 2 4 2 1 2 * 0 *
11 11 11 1 11 11 1

0 00 2 1 * 0 *
12 12 12 2 12 12 2

0 02 0 0 2 1 *
3 3 3 13 13 13 3

, ,

, ,

, ,

п al p c l p c l p c p p

a пl p c p c p c c

п ap c p c p c l p c c c

P p Q m

P p Q m

V U V Q m

λ τ λ ζτ λ ν λ λ

τ λ ζτ λ λ λ ν

λ λ λ ν λ ζν λ λ

− + − − + − − + − − −

− + − − − − − −

− + − − − − • − + − − −

+ + = + =

+ + = + =

+ = + + =

 

 





            (45) 

where 3 3 ,lV R Vλ• •=   * *
1 1 ,lp pµλ=   * *

2 2 ,l p cp pµλ − −=   * *
1 1 ,l p cm R mµλ − −=   * *

2 2 ,lm R mµλ=   * *
3 3 .l p cm R mµλ − −=   

In this case, using conditions from (39), following boundary conditions of hinged-support will be obtained for 
two-dimensional model: 

1 10 1 10 1 10

1 10 1 10 1 10

1 10 1 10 1 10

* * *
3 3 11 1 3 12 2 3

* * *
11 1 3 3 12 2 3 3 11 1 3

* * *
12 2 3 13 3 3 13 3 3

1 d ,   d ,   d ,
2

d ,   d ,   d ,

d , d ,   d

h h h

h h h
h h h

h h h
h h

h h

w u T p S p
h

М p H p L m

L m L m m

α α α α α α

α α α α α α

α α α α α α

α α α

α α α α α

α α α

= = =
− − −

= = =
− − −

= = =
− −

= = =

= = =

= = Λ =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ 3.
h

h

α
−
∫

           (46) 

6. Asymptotic Model of Micropolar Elastic Thin Shells 
Thus two-dimensional theory of micropolar shells is constructed at level of initial approximation of the asymp-
totic method. System of equations (29)-(31) and boundary conditions (42) (or (43) or (46)) introduce the asymp- 
totic model of micropolar elastic thin shells with free fields of displacements and rotations. 

7. Applied Theory of Micropolar Elastic Thin Shells and Its Justification 
Hypotheses method of construction of classical theory of elastic thin shells (i.e. Kirkhov-Love’s or refined hy-
potheses) has an advantage above the asymptotic method from point of view of engineering, because some sim-
plifications were put in the base of theory, which have physical meaning and also visibility and clarity. Main 
problem of the construction of applied theory of micropolar elastic thin shells is the following: to formulate such 
hypotheses that let us reduce three-dimensional problem of micropolar theory of elasticity to adequate two-  
dimensional boundary-value problem. For achievement of this aim the use of qualitative aspects of asymptotic 
solution of three-dimensional boundary-value problem (1)-(5) of micropolar theory of elasticity is appropriate in 
thin domain of the shell. 

In papers [12]-[14] the mentioned idea is developed: on the basis of qualitative aspects of asymptotic solution 
adequate hypotheses are formulated and as a result static and dynamic applied theories of micropolar elastic thin 
shells and plates are constructed. The accepted hypotheses are the followings: 

1) During the deformation initially straight and normal to the shell middle surface fibers rotate freely in space 
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at an angle as a whole rigid body, without changing their length and without remaining perpendicular to the de-
formed middle surface. 

The formulated hypothesis is mathematically written as follows: tangential displacements and normal rotation 
are distributed in a linear law along the shell thickness: 

( ) ( ) ( ) ( )1 2 3 1 2 3 3 1 2 3 1 2, , , , , ,i i iV u α α α ψ α α ω α α α ι α α= + = Ω +                 (47) 

Normal displacement and tangential rotations do not depend on coordinate 3α , i.e. 

( ) ( )3 1 2 1 2, , , .i iV w     α α ω α α= = Ω                             (48) 

It should be noted that from the point of view of displacements the accepted hypothesis, in essence, is Timo-
shenko’s kinematic hypothesis in the classical theory of elastic shells [22]-[25]. Here hypothesis (47), (48) in 
full we shall call Timoshenko’s generalized kinematic hypothesis in the micropolar theory of shells. 

2) In the generalized Hook’s law (2) force stress 33σ  can be neglected in relation to the force stresses iiσ ; 
and analogically, moment stresses 3iµ  can be neglected in relation to the moment stresses 3iµ . 

3) During the determination of deformations, bending-torsions, force and moment stresses, first for the force 
stresses 3iσ  and moment stress 33µ  we’ll take: 

( ) ( )0 0
3 3 1 2 33 33 1 2, , , .i iσ σ α α µ µ α α= =                           (49) 

After determination of mentioned quantities, values of 3iσ  and 33µ  will be finally defined by the addition 
to corresponding values (49) summed up, obtained by integration of the first two and the sixth equilibrium equa-
tions from (1), for which the condition will be required, that quantities, averaged along the shells thickness, are 
equal to zero. 

4) Quantities 3

iR
α

 can be neglected in relation to 1. 

Now we’ll compare main equations of applied static theory of micropolar elastic thin shells from paper [12], 
which are constructed on the basis of above formulated hypotheses, with analogical Equations (29)-(31) of the 
asymptotic model. It is obvious that equilibrium Equations (29) and geometrical relations (31) are the same. 
Physical relations from paper [12] differ from physical relations (30) only with underlined terms in relations for 

3 3, , , .ii ii i iT M L Λ  It should be noted that underlined terms in relations for iiT  and iiM  are the result of the fact, 
that in case of asymptotic theory in relations for iiγ  quantity 33σ  is not neglected in relation to iiσ . But as it 
is known such neglect is adopted in theories of thin shells. Analogical explanation has also underlined terms in 
relations for 3iL  and 3iΛ . Thus, we can say that the general applied static theory of micropolar elastic thin 
shells, constructed in paper [12], is asymptotically correct theory. 

Concerning the dynamic theory of micropolar elastic thin shells, it should be noted that the corresponding 
asymptotic model is constructed in paper [26], and the applied model, constructed on the basis of the above 
formulated hypotheses, is introduced in paper [13]. If we compare these two models, we’ll see that motion equa-
tions and geometrical relations (which have form (31)) are the same. Concerning physical relations we can say 
that the difference is underlined terms in relations (30) for 3 3, , ,ii ii i iT M L Λ . 

As in case 0α =  classical model of elastic thin shells of Timoshenko’s type will be obtained from asymp-
totic model (Equations (29)-(31)) and also from applied model of paper [12], we can say that this classical ap-
plied refined model of thin shells is the asymptotically correct model (such conclusion can be also done in case 
of dynamic problem). 

It should be noted that in papers [17] [18] applied theories of micropolar elastic thin plates and bars, con-
structed in papers [14] [27], are justified on the basis of asymptotic method. 

8. Conclusions 
In the present paper the question of reduction of three-dimensional boundary-value problem of micropolar and 
classical theories of elasticity to general applied theories of thin shells is studied. The asymptotics of singularly 
perturbed boundary-value problem of three-dimensional micropolar theory of elasticity is studied in thin domain 
of the shell. The internal iteration process and boundary-layers are constructed, jointing of these two iteration 
processes is studied and boundary conditions are obtained. As a result two-dimensional asymptotic model with 
free fields of displacements and rotations of micropolar shells is constructed. Transverse shear deformations are 
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automatically taken into consideration in the constructed model. Particularly, classical asymptotic theory of 
elastic thin shells with consideration of transverse shears can be obtained from the above mentioned micropolar 
model. 

Hypotheses are accepted for the construction of general applied theory of micropolar elastic thin shells. The 
hypotheses are adequate to the asymptotic behavior of the solution of three-dimensional problem. Such approach 
ensures the asymptotic exactness of the constructed micropolar and classical theories of thin shells with consid-
eration of transverse shears. 
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