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Abstract

In 1980 F. Wattenberg constructed the Dedekind completion*R, of the Robinson non-archime-
dean field "R and established basic algebraic properties of *R,. In 1985 H. Gonshor estab-

lished further fundamental properties of *R,. In [4] important construction of summation of

countable sequence of Wattenberg numbers was proposed and corresponding basic properties of
such summation were considered. In this paper the important applications of the Dedekind com-

pletion R, in transcendental number theory were considered. Given any analytic function of
one complex variable f e @[[Z]], we investigate the arithmetic nature of the values of f (z) at

transcendental points e",n e N. Main results are: 1) the both numbers e+7z and exs are irra-

tional; 2) number ¢° is transcendental. Nontrivial generalization of the Lindemann-Weierstrass
theorem is obtained.
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1. Introduction

In 1873 French mathematician, Charles Hermite, proved that e is transcendental. Coming as it did 100 years
after Euler had established the significance of e, this meant that the issue of transcendence was one
mathematicians could not afford to ignore. Within 10 years of Hermite’s breakthrough, his techniques had been
extended by Lindemann and used to add 7 to the list of known transcendental numbers. Mathematician then
tried to prove that other numbers suchas e+~ and exz are transcendental too, but these questions were too
difficult and so no further examples emerged till today’s time. The transcendence of e” has been proved in
1929 by A. O. Gel’fond.

Conjecture 1. Whether the both numbers e+~ and exz are irrational.

Conjecture 2. Whether the numbers e and 7 are algebraically independent.

However, the same question with e” and =z has been answered:

Theorem. (Nesterenko, 1996 [1]) The numbers e” and = are algebraically independent.

Throughout of 20-th century,a typical question: whether f (a) is a transcendental number for each algebraic
number « has been investigated and answered many authors .Modern result in the case of entire functions
satisfying a linear differential equation provides the strongest results, related with Siegel’s E-functions [1] [2],
ref [1] contains references to the subject before 1998, including Siegel E and G functions.

Theorem. (Siegel C. L.) Suppose that 1 e Q, 4 #-1,-2,---,a #0.

D, (Z):

n

T(A+1)(A+2)-(A+n)

Ms

(1.1)

Then ¢, (a) is a transcendental number for each algebraic number « = 0.
Let f bean analytic function of one complex variable f e Q[[z]]

Conjecture 3. Whether f (a) is an irrational number for given transcendental number a.

Conjecture 4. Whether f (a) is a transcendental number for given transcendental number «.

In this paper we investigate the arithmetic nature of the values of f (z) at transcendental points €",neN.
Definition 1.1. Let ¢ (x) R —> R be any real analytic function such that

(‘:]@(x):ianx",|x|<r,Vn[an €Q]. (1.2)

We will call any function given by Equation (1.2) @ -analytic function and denoted by g, (x)

Definition 1.2. [3] [4]. A transcendental number z e R is called #-transcendental number over the field Q,
if there does not exist Q -analytic function g, (x) suchthat g, (z)=0, i.. for every Q -analytic function
0y (X) theinequality g, (z)=0 is satisfies.

Definition 1.3. [3] [4]. A transcendental number z is called w-transcendental number over the field Q, if

z is not #-transcendental number over the field @, i.e. there exists Q -analytic function g@(x) such that

9o (z)=0.

Example. Number 7 is transcendental but number 7 isnot # -transcendental number over the field Q as
(1) function sinx isa @ -analytic and

2 sin(%jzl, i.e.

P 75 z (_1)2n+1 i

= + 4 +
2 2°31 2°51 2771 22 (2n+1)!

(1.3)

Main results are.

Theorem 1.1. [3] [4]. Number e is #-transcendental over the field Q.
From theorem 1.1 immediately follows.

Theorem 1.2. Number €° is transcendental.

Theorem 1.3. [3] [4]. The both numbers e+ and e—x are irrational.
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Theorem 1.4. Forany £e<@Q number e° is#-transcendental over the field Q.

Theorem 1.5. [3] [4]. The both numbers exz and e'xz areirrational.
Theorem 1.6. [3] [4]. Let f,(z),I=1,2,--- be a polynomials with coefficients in Z .
Assume that for any | e N algebraic numbers over the field Q:4,,,---, 4 ,, k 211=12..- forma com-

plete set of the roots of f,(z) such that
f,(z)eZ[z],deg f, (z) =k (1.4)

and a €Z,1=12,--;a, # 0. Assume that

© K
a,+y [a> " | <. (1.5)
1=1 k=1
Then
© K
a, +Za|2‘eﬂ“ #0. (1.6)

1=1 k=1
2. Preliminaries. Short Outline of Dedekind Hyperreals and Gonshor
Idempotent Theory

Let R be the set of real numbers and *R a nonstandard model of R [5]. *R is not Dedekind complete.
For example, y(o) = {x = R| X = 0} and R are bounded subsets of *R which have no suprema or infima in

*R. Possible completion of the field "R can be constructed by Dedekind sections [6] [7]. In [6] Wattenberg
constructed the Dedekind completion of a nonstandard model of the real numbers and applied the construction
to obtain certain kinds of special measures on the set of integers. Thus was established that the Dedekind com-
pletion "R, of the field "R is a structure of interest not for its own sake only and we establish further im-
portant applications here. Important concept introduced by Gonshor [7] is that of the absorption number of an ele-
ment ae "R, which, roughly speaking, measures the degree to which the cancellationlaw a+b=a+c=b=c
fails for a.

2.1. The Dedekind Hyperreals *R,
Definition 2.1. Let *R be a nonstandard model of R [5] and P(*R) the power set of "R.

A Dedekind hyperreal € "R, is an ordered pair {UV}e P(*R)x P(*R) that satisfies the next
conditions:
1 IFy(xeUnayeV). 2. UNV =0. 3. vx(xeU < 3y(yeV ax<y)).

4. vx(xeV < 3y(yeV ax<y)). 5. Vxvy(x<y=xeUvyeV).
Compare the Definition 2.1 with original Wattenberg definition [6],(see [6] def.11.1).
Designation 2.1. Let {U,V}£a e "R,. We designate in this paper

U 2cut_(a)V 2cut, (a)

a2{cut_(a),cut, (a)}
Designation 2.2. Let « € "R. We designate in this paper

a’ 2eut_(a),a, 2cut, (a)

as {a#,a#}
Remark 2.1. The monad of o € "R is the set: {x € *R|x ~ a} is denoted by ().
Supremum of y(O) is denoted by &, . Supremum of R is denoted by A, . Note that [6]
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5= (~0,0Us(0),
8y =U[ (=)
neN
Let A beasubsetof “R bounded above. Then sup(A) existsin ‘R, [6].
Example 2.1.1) A, =sup(R,)e "R4\"R,,2) & =sup(x(0))e Ry \"R.
Remark 2.2. Unfortunately the set "R, inherits some but by no means all of the algebraic structure on "R
For example, "R, is nota group with respect to addition since if X+, Y denotes the addition in "R, then:
d

Eateg, €4 = 6atoy, O‘Rd =g, Thus "R, isnoteven aring but pseudo-ring only.
Definition 2.2. We define:
1. The additive identity (zero cut) 0., , often denoted by 0% or simply 0 is

d

0., é{XE *R|X<O,R}.

d

often denoted by 1% or simply 1 is
1. é{XG *R|x<,ﬁ]R l*R}.

Ry

2. The multiplicative identity 1,
d

Given two Dedekind hyperreal numbers « € "R, and S "R, we define:
3. Addition a+., B of ¢ and g oftendenotedby a+p is

a+pE{x+y|xea,yep}

It is easy to see that a+., 0. =a forall o e'R,.

d d

It is easy to see that a+., f isagainacutin "R and at., B=p+., o

Another fundamental property of cut addition is associativity:

(OH*Rd ﬁ)+*Rd y:a-i-*Rd (ﬂ+*R ;/).

d

This follows from the corresponding property of *R.
4. The opposite —p O of «, often denoted by (—a)# orsimply by —a , is

-a = {x € "]R| —X & a,—X i1s not the least element of *]R\a},
5. We say that the cut « is positive if 0 <« or negative if o < 0.
The absolute value of o, denoted |af,is |a|2a,if @20 and |a|2-a, if a<0
6. If a,B >0 then multiplication ax., B of  and B oftendenoted axpg is
d

axﬁé{zé‘R|z:XnyorsomeXGa,ye,Bwithx,y>0}.
Ingeneral, axf=0 if a=0 or =0, axf|a|x|f| if @>0,>0 or a<0,3<0,
axﬂé—(lal-lﬁl) if «>0,8<0, or ¢<0,8>0.
7. The cut order enjoys on "R, the standard additional properties of:
(i) transitivity: a<f<y=a<y.

(ii) trichotomy: eizer e < 8,8 <a or a = butonly one of the three
(iii) translation: o< g = at., < ﬁ+*md y.

2.2. The Wattenberg Embeding *R into "R,
Definition 2.3. [6]. Wattenberg hyperreal or #-hyperreal is a nonepty subset o & "R such that:

(i) Forevery aea and b<a, bea.
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(i) a=3,a="R.
(iii) a has no greatest element.
Definition 2.4. [6]. In paper [6] Wattenberg embed "R into "R, by following way:
If e R the corresponding element, o, of 'R, is
a’ :{Xe *R|X<a} (2.1)
Remark 2.3. [6]. In paper [6] Wattenberg pointed out that condition (iii) above is included only to avoid
nonuniqueness. Without it " would be represented by both o and o"U{a}.

Remark 2.4. [7]. However in paper [7] H. Gonshor pointed out that the definition (2.1) in Wattenberg paper
[6] is technically incorrect. Note that Wattenberg [6] defines —«a in general by

—a:{ae *R|—a£a}. (2.2)
If ae R, i.e. "Ry\a has no mininum, then there is no any problem with definitions (2.1) and (2.2).

However if o =a” forsome ae 'R, ie. a = {X e R‘X < a} then according to the latter definition (2.2)
a#z{XE*R|x<a} (2.3)
whereas the definition of "R, requires that:
-a :{Xe *R|x<—a}, (2.9)
but this is a contradiction.
Remark 2.5. Note that in the usual treatment of Dedekind cuts for the ordinary real numbers both of the latter

sets are regarded as equivalent so that no serious problem arises [7].
Remark 2.6. H. Gonshor [7] defines —a® by

~a* ={xe "R[3b[b>ar-bea]), (2.5)

Definition 2.5. (Wattenberg embeding) We embed "R into ‘R, of the following way: (i) if « <€ 'R,
the corresponding element o« of "R, is

a#é{xG "RIX<., a} (2.6)
and
—a :{ae *R|—aea}U{a}. 2.7
or in the equivalent way,i.e. if « e "R the corresponding element «, of ‘R, is
a, é{xG "R|x.,, Za} (2.8)
Thusif ae R then o 2 A|B where
AZ{XG*R|XS*R a},B={ye*R|y*R2a}. (2.9

Such embeding "R into "R, Such embeding we will name Wattenberg embeding and to designate by
"R—5R,.
Lemma 2.1. [6].

(i) Addition (O+*]R o) is commutative and associative in "R, .
d

(i) Vae 'R, at. O*Rd =qa.
(i) Ve pe Ria*+., p =(a+., p).
Ry R
Remark 2.7. Notice, here again something is lost going from "R to "R, since a< g does not imply
a+a<f+a since O<g; but O+g;, =g, +¢&5 =¢,.
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Lemma 2.2. [6].
Q) <., @ linear ordering on "R, often denoted <, which extends the usual ordering on "R.
d

(i) (a S*]Rd a')/\(ﬂS*Rd ﬂ’):atk ,Bﬁ*Rd a'+ B

Ry

d Ry

(iii) (a<*R a’j/\(ﬂ<*R ﬂ'jja% p<._a+ f.

(iv) "R isdensein 'R,.Thatisif «< B in 'R, thereisan ac 'R then a<_a’'< f.
*Ry "Ry "Ry

(V) Suppose that AG "R, is bounded above then sup A=supa = U%Acutf () existin “R,.

achA

(vi) Suppose that AS "R is bounded below then inf A = LT:\O’ =, _,cut, (a) existin "R,.

Remark 2.8. Note that in general case inf A:inia # [ cut_(«). In particular the formula for inf A

achA

given in [6] on the top of page 229 is not quite correct [7], see Example 2.2. However by Lemma 2.2 (vi) this is
no problem.

Example 2.2. [7]. The formula inf A=inf = (cut_(a) says

achA
inf = {a
achA

achA
Let A be the set A:{a+d} where d runs through the set of all positive numbers in "R, then

3d (d >O){a+d e cut_(a)}}

aehA

inf A=a={x/x<a}. However (cut (a)= {x|x < a}.
aechA

Lemma 2.3. [6].
()If @R then — (@*)=(~ a) .

(i) =, (-, @) =

(i) <. po-., B, -, a

(iv) (—*Rda)+*Rd (—*Rd ﬁjﬁ*md e (M*Rd ﬂj.
(v) Vae*R:(—*Ra)#+*R (—*R ﬂj=—*Rd (a’“r*]Rd ,B).

(i) a+. (—* a)S* 0. .
Ry Ry Ry "Ry

Proof. (v) By (iv): (-a)"+(-8)<—(a"+p).

(1) Suppose now c e —(a# +,B) this means

() 3¢, [c < e—(a" +ﬂ)} and therefore

() —¢ ¢ (a# +ﬁ).

(4) Note that: —c—ae B (since -c—ae B and a—(c—c)ea” imply —c, =a—(c—c,)+(-c-a)ea’+p
but this is a contradiction)

(5) Thus —c—ae S and therefore c+ae-p.

(6) By similar reasoning one obtains: ¢, +ae—p.
(7) Note that: —a—(c,—c)ea” and therefore

c=-a—(c,—c)+(c,+a)e(-a)" +(-p).
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Lemma24. (i) Vae 'R,Vfe 'Ry, ue R,u> 0:(—,ua)# +(—,u#ﬂ)=—,u#(a# +,B),

(i) vae 'R, VfBe Ry, ue 'R u= O:(,ua)# +utp =y (a# +ﬂ)

Proof. (i) For x=0 the statement is clear. Suppose now without loss of generality x>0. By Lemma 2.3.
(iv): (—,ua)’qt +(—,u#ﬂ) < —(,u#a# + ,u#ﬂ).

(1) Suppose ¢ e—x*(a”+ ) and therefore %e —(a# +,8), but this means

) 3, {E <G ~(a* +ﬂ)} and therefore
uoou

Cl #
©) = g(a"+p).

(4) Note that: —E—aeﬁ (since —E—ae/:’ and a—(i—&]ea# imply
U U 7

7

C . .
= a—[g——l)+(—£—a] ea’+ £ butthis is a contradiction)
H HoH H

(5) Thus L ae S and therefore ¢+ pae—u*p.
7

(6) By similar reasoning one obtains: ¢, + uae -1’ B.

(7) Note that: —ua—(c,—c)e u*a” and therefore

c=—ua—(c,—c)+(c, +pa)e(—ua) +(—y#ﬂ).
(i) Immediately follows from (i) by Lemma 2.3.
Definition 2.6. Suppose « € "R . The absolute value of « written |a| is defined as follows:

a ifa, >0,
- oL

- a ifa<g, 0,
R Ry R

d d

Definition 2.7. Suppose «, 3 € "R,. The product ax., B is defined as follows: Case (1) a,p., >0.
d d

Ry

ax, ﬁé{ax* b‘(o* <,
R R Ry R

d

a* <egg O‘)A(O*Rd <oz b* <y ﬂ)}U(*—OO,* 0)#. (2.10)

d

Case (2) a=., 0., vp=., 0.,

A
Lax = .
Ry a "Ry ﬁ O*Rd

d

Case (3) (a < O*Rd)v(ﬂ < o*Rd)v(ang 0., AB<., o*Rd)

ax., BE|a X, | iffa<., 0., AB<., 0.

Ry 4 Rg

. _ (2.11)
ax.y e = (|0(|><*Rd |,B|) iff (a "y O*Rd )v(,b’ <er, O*Rd )
. #
Lemma 2.5. [6]. (i) Va,be "R: (ax*R b) =a*x. b
d
(i) Multiplication ( Xup ) is associative and commutative:
(aX*Rd ﬂ)x*Rd r= aX*Rd ('BX*Rd 7/)’ aX*Rd p= ﬁx*Ru @ (2.12)

#
(iii) 1*]Rd><*Rda=a'; -1, x a=-.. a where 1,,]Rd :(1*JR) .

Ry "Ry
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W) Jafx.., |B1=1B]x., el

(V) [(aZO)A(ﬂZO)/\(]/ZO)]zax*Rd (ﬂ+*Rd 7/)=a><,,]R

1 ’ ’ ’ ’
(VI) O*Ide <*1Rd a<*1Rd a, O*Rd <*1Rd 'B<*1Rad B :>0{><*Rd 'B<*1Rd = X*]Rd B

d d d

Lemma 2.6. Suppose x€ ‘R and B,y € "R,. Then

|:(’u# > O)A(ﬂ z O)J =4 "Ry (ﬂ_*Rd )/) =4 Ry 'B_*Rd “ or

Proof. We choose now:

(1) ae 'R suchthat: —y+a”>0.

(2) Note that " X(ﬂ—}/) =u x(ﬂ—;/)+,u#a# —uta’.

Then from (2) by Lemma 2.4. (ii) one obtains

() #*x(B-y)=u"x[(B-y)+a*]-u*a*. Therefore

@) ' x(B-y)=u' x| p+(a* -7)]-u'a’.

(5) Then from (4) by Lemma 2.5. (v) one obtains

6) u'x(B—y)=p"xp+u'x(a"—y)-u'a".

Then from (6) by Lemma 2.4. (ii) one obtains

() W' x(B-y)=u"xp+u"xa" —py'y-p'a" = u' xp—u'y.

*Rd

-1
Definition 2.8. Suppose a € "R,,0 <o @ then « is defined as follows:
d

. fl*]R A -1,
M 0, <. a:a ™=inf{a F
Ry Ry

sedl,

—1, 71*R
(i) a<. 0:gq A& (—* a) )
Ry Ry Ry
Lemma 2.7. [6].
_ _ #
() vae 'R:(a*) T (a l*K) .

71*R

(ii) (a’l"“ed) —a.

"Eg "Rg
(iii) 0,,]Rd <ez, aS*Rd =0 £,,Rd a .

(iv) [(0*]Rd <egg a)/\(O*Rd <oz, ﬂ)]

-1 -1, -1
Ry Ry | < Rg
:(a jX*Rd (,8 )_*Rd (ax*Rd ﬂ)

. -1, -1, *
(v) Vae 'R:a#, 0., :>(a#) fa Xep, (ﬁ’ Rd)=(a#X*Rd ﬂ) .

Wi) ax. a <. 1
Ry Ry ~ "Ry
Lemma 2.8. [6]. Suppose that ae "R,a>0,4,7 € 'Ry, >0,y >0. Then

# A #
a X*]Rd (,B+*Rd ;/)—a X*Rd ﬂ+*Rd a X*Rd ¥.

ﬂ+*R ax., 7.

(2.13)

(2.14)

7. (2.15)

d

Theorem 2.1. Suppose that S is a non-empty subset of ‘R, which bounded from above, i.e. sup(S)

exist and suppose that &€ "R,&>0. Then
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Sup{f#xx} =§#x(sxl:g{x}):§#x(sups). (2.16)

xeS

Proof. Let B =supS. Then B is the smallest number such that, forany xeS,x<B. Let T={&"xx XES}.
Since & >0, xx<& xB for any xeS. Hence T is bounded above by & xB. Hence has a
supremum C, =s—supT. Now we have to prove that C; =¢&* xB =¢&" x(supS). Since & xB =& x(supS)
is an upper bound for T and C is the smallest upper bound for T, C;<&*xB. Now we repeat the
argument above with the roles of S and T reversed. We know that C. is the smallest number such that, for

any yeT,y<C,. Since & >0 itfollows that (5# )71 xy < (5# )71 xC; forany yeT. But
1
s={(¢7) <y

B< (5# )_l xC, and &*xB<C;. We have shown that C;<&*xB and also that &*xB<C;. Thus
£ xB= C,.

yeT}. Hence (5#)7GCT is an upper bound for S. But B is a supremum for S. Hence

2.3. Absorption Numbersin "R,

One of standard ways of defining the completion of "R involves restricting oneself to subsets, which have the
following property Ve, ,3x FWyeu [y —X< e] . It is well known that in this case we obtain a field. In fact the

>0~ Mxea

proof is essentially the same as the one used in the case of ordinary Dedekind cuts in the development of the
standard real numbers, ¢,, of course, does not have the above property because no infinitesimal works.This
suggests the introduction of the concept of absorption part ab.p.(a) of a number o for an element o of
‘R, which, roughly speaking, measures how much o departs from having the above property [7].

Definition 2.9. [7]. Suppose « € "R,, then

ab.p.(a)é{d ZOl‘v’X [x+d ea]}. (2.17)

Xea

Example 2.5.

(i) Vae R:abp.(a")=0,

(ii) abp.(g)=¢q4

(i) abp.(—¢&,) =&,

(iv) Vae *R:ab.p.(a#+5d)=gd,

(V) Vae *R:ab.p.(a#—gd):gd.

Lemma 2.9. [7].

(i) c<abp.(a) and 0<d<c=deabp.(a)

(i) ceabp.(a) and deabp.(a)=c+deabp.(a).

Remark 2.9. By Lemma 2.7 ab.p.(a) may be regarded as an element of "R, by adding on all negative
elements of ‘R, to abp.(«r). Of course if the condition d >0 in the definition of ab.p.(«) is deleted we
automatically get all the negative elements to be in ab.p.(a) since X<yea = Xea. The reason for our

definition is that the real interest lies in the non-negative numbers. A technicality occurs if ab.p.(a)={0}. We

then identify ab.p.(a) with 0. [abp.(ex) becomes {x|x <0} which by our early conventionis notin ‘R,].

Remark 2.10. By Lemma 2.7(ii), ab.p.(«) is additive idempotent.

Lemma 2.10. [7].

(i) abp.(a) isthe maximumelement e "R, suchthat o+ j=a.

(i) abp.(a)<a for a>0.

(iii) If « is positive and idempotent then abp.(a)=a.

Lemma 2.11. [7]. Let @ e "R, satsify « >0. Then the following are equivalent. In what follows assume
a,b>0.
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(i) a isidempotent,

(i) a,bea=a+bea,

(ill) aca=2aeaq,

(iv) Vn.y[aea=n-aeqa],

(V) aca=r-aeca, forallfinite re R.

Theorem 2.2.[7]. (-a)+a=—[abp.(a)].

Theorem 2.3.[7]. abp.(a+8)>abp.(a).

Theorem 2.4. [7].

() a+pB<a+y=-abp.(a)+p<y.

(i) a+p=a+y= —[ab.p.(a)]+,8 = —[ab.p.(a)]+ y.

Theorem 2.5. [7]. Suppose «,f € "Ry, then

(i) abp.(-a)=abp.(a),

(i) abp.(a+pB)=max{ab.p.(a),abp.(B3)}

Theorem 2.6. [7]. Assume S >0. If a absorbs —f then a absorbs f.
Theorem 2.7. [7]. Let 0<a € "R,. Then the following are equivalent

(i) a isanidempotent,

(ii) (~a)+(-a)=-a,

(i) (-a)+a=-a.

(iv)Let A, and A, be two positive idempotents such that A, > A,. Then A, +(-A;)=A,.

2.4. Gonshor Types of o with Given ab.p.(a).

Among elements of « € "R, such that ab.p.(a) =A one can distinguish two many different types following

[7].
Definition 2.10. [7]. Assume A >0.

() ae R, hastype1if Ix(xea)Vy[x+yea=yeA],

(i) ae Ry has type 2 if Vx(xea)dy(yeA)[x+yea], ie. ae Ry has type 2 iff a does not
have type 1.

(iiiy ae R, hastype 1IAif Ix(xga)Vy[x—yea=yeA],

(iv) ae Ry hastype 2Aif Vx(x¢a)Iy(yea)[x-yeal.

2.5. Robinson Part Rp{a} of Absorption Number ae(-Ay,A,)

Theorem 2.8. [6]. Suppose « < (—Ad,Ad). Then there is a unique standard x e R, called Wattenberg stan-
dard part of & and denoted by Wst(a), such that:

(i) (*X)# ela—eg,a+ey).

(i) « S implies Wst(a) < Wst(f).

(iii) The map Wst(-): "R, — R is continuous.
(iv) Wst(a+pB)=Wst(a)+Wst(p).

(v) Wst(axpf)=Wst(a)xWst(p).

(vi) Wst(-a)=-Wst(a).

(vi)) Wst(a™)= [Wst(oz)]f1 if o[- 6]
Theorem 2.9. [7].
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(i) @R, hastype 1iff —a hastype 1A,
(i) ae R, cannot have type 1 and type 1A simultaneously.
(iii) Suppose ab.p.(a) =A>0. Then a hastype 1iff a hastheform a’+A forsome aecR.

(iv) Suppose abp.(a)=-A,A>0. ae Ry hastype 1Aiff o hastheform a*+(-A) forsome ae'R.
(v) If abp.(a)>abp.(B) then a+p hastype 1iff o has type 1.
(vi) If abp.(a)=abp.(f) then a+p hastype 2 iffeither & or g hastype 2.

Proof (iii) Let a=a+A. Then abp.(a)=A. Since A>0,aca+A (we chose deA such that 0<d
and write a as (a—d)+d).
Itis clear that a works to show that a has type 1.

Conversely, suppose « has type 1 and choose a€a such that: Vy[a+ Yyea=>Yye A]. Then we claim

that: a=a+A.

By definition of ab.p.(a) certainly a+A<a . On the other hand by choice of a, every element of «
has the form a+d with deA.

Choose d’eA suchthat d'>d, then a+d:[a—(d’—d)]+d'ea+A.

Hence a<a+A. Therefore a=a+A.
Examples.

() &, has type 1 and therefore —&, has type 1A. Note that also —&, has type 2. (i) Suppose ¢ ~0,e€ "R.
Then & x &y has type 1 and therefore & x &y hastype 1A.

(i) Suppose « € *Rd,ab.p.(a) =g, >0, i.e. a hastype 1 and therefore by Theorem 2.9 « has the form

("a)#+gd for some unique aeR,a=Wst(a). Then, we define unique Robinson part Rp[a] of absor-

ption number o by formula
#

Rp{a} é(*a) ,
Rp{a} :<*Wst(a))

(iii) Suppose « € *Rdd,ab.p.(a)z—gd, i.e. a has type 1A and therefore by Theorem 2.9 o has the

(2.18)

#

form (*a)#—gd for some unique ae]R,a=Wst(a). Then we define unique. Robinson part ‘Rp[a] of
absorption number « by formula

®p{a)2(‘a),

(2.19)
Rp{a} = (*Wst(a))

#

(iv) Suppose ae*Rd,ab.p.(a)zA,A>O and a has type 1A, ie. a has the form a*+A for some
ae "R. Then, we define Robinson part ‘Rp{a} of absorption number « by formula

Rpla}=a'. (2.20)

(v) Suppose « € "Ry,abp.(a)=-A,A>0 and a hastype 1A, i.e. a hasthe form a*+(-A) for some
ae "R. Then, we define Robinson part *Rp{a} of absorption number « by formula

Rpla}£a’. (2.21)

Remark 2.11. Note that in general case, i.e. if a ¢ (—Ad ,Ad) Robinson part ‘Rp{a} of absorption number
a is not unique.
Remark 2.12. Suppose @ € ‘R, and ««€ (—Ad,Ad) has type 1 or type 1A. Then by definitions above one

obtains the representation
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a=Rp{a}+abp.(a).

2.6. The Pseudo-Ring of Wattenberg Hyperintegers “Z,

Lemma 2.12. [6]. Suppose that « € "R,. Then the following two conditions on « are equivalent:
() a :Sup{v# |(v = Z)/\(v# < a)},
(i) «=inf {v#|(v S Z)A(asw‘)}.
Definition 2.11. [6]. If « satisfies the conditions mentioned above « is said to be the Wattenberg

hyperinteger. The set of all Wattenberg hyperintegers is denoted by “Z,.

Lemma 2.13. [6]. Suppose «,f € "Z,. Then

(i) a+pe’Z,.

(i) —a e Zy.

(iii) axpe’Z,.

The set of all positive Wattenberg hyperintegers is called the Wattenberg hypernaturals and is denoted by
"Ny

I;efinition 2.12. Suppose that (i) Ae ‘N,ve Z,, (i) A=A%v=v and (iii) A|v.

If e ‘N, and v e ‘Z, satisfies these conditions then we say that v is divisible by A and we denote
thisby A" |v*.

Definition 2.13. Suppose that (i) « € “Z, and (ii) there exists 1" € "N, such that

Q) « :Sup{v# |(v e Z)/\(l | V)/\(V# < a)} or

(2) a=inf {v# |(v € *Z)/\(/i | v)/\<a < V#)}.

If « satisfies the conditions mentioned above then we say that « is divisible by A" and we denote this
by A*|a.

Theorem 2.10. (i) Let pe’'N, M (p) € "N, be a prime hypernaturals such that (i) ptM (p) Let

a € "7, be aWattenberg hypernatural such that (i) p|e« . Then ‘(M (p))# + a‘ >1.

(i) aeZ,; hastype 1iff —a hastype 1A,

(ili) ae’Z, cannot have type 1 and type 1A simultaneously.

(iv) Suppose ae*Zd,ab.p.(a)=A>0. Then a has type 1 iff a has the form a*+A for some
aca,acZ.

(v) Suppose a € “Z4, abp.(a)=-A,A>0. ae Zy has type 1A iff a has the form a*+(-A) for

some aea,ae Z.
(vi) Suppose « € "Z4. If abp.(a)>abp.(8) then a+p hastype 1iff a has type 1.

(vii) Suppose « € “Z,. If ab.p.(a):ab.p.(,B) then «+ B has type 2 iff either a or B hastype 2.

Proof. (i) Immediately follows from definitions (2.12)-(2.13).

(iv) Let a=a+A. Then abp.(a)=A. Since A>0,aca+A (we chose deA such that 0<d and
writaas (a—d)+d).

It is clear that a works to show that « has type 1.

Conversely, suppose « hastype 1 and choose aea such that: Vy[a+ yea=>Yye A]. Then we claim
that: o =a+A.

By definition of ab.p.(a) certainly a+A <« . On the other hand by choice of a, every element of o has
the form a+d with deA.

Choose d’eA suchthat d'>d, then a+d=[a—(d'-d)]+d'ca+A.
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Hence o <a+A. Therefore o =a+A.

2.7. The Integer Part Int.p(a) of Wattenberg Hyperreals a € "R,
Definition 2.14. Suppose « € "Ry, >0. Then, we define Intp(a)=[a]e "N, by formula

[a] £ Sup{v# |(v € *N)/\(v# < a)}.
Obviously there are two possibilities:
1. Aset {v# |(v € *N)/\(v# < a)} has no greatest element. In this case valid only the
Property I: [a]=«a
Since [a]<a implies 3ae R such that [a]<a®<a. But then [a"]<a which implies

[a#} +1<ea contradicting [a]<a® < [a“} +1.
2. Aset {v# |(v € *N)/\(v# < a)} has a greatest element, v e "N. In this case valid the

Property II: [a]=v and obviously v=[a]<a<[a]+l=v+1.
Definition 2.15. Suppose « € "R,. Then, we define Intp(a)e "Z, by formula

Int.p(a)z{

Note that obviously: Intp(—a)=-Intp(«).

[a] fora=0
—[a] for a < 0.

2.8. External Sum of the Countable Infinite Seriesin ‘R,
This subsection contains key definitions and properties of summ of countable sequence of Wattenberg
hyperreals.

Definition 2. 16. [4]. Let {sn}f:1 be a countable sequence s, :N — R. such that

(i) vn(s,=0) or (i) ¥n(s,<0) or

(iii) {s,}7, ={s, }°°

meNy

U{snz}:;eN2 ,an(n1 GNl)[Snl >0], Vnz(n2 eN,)[s, <0].N=K,UR,,

Then external sum (#-sum) #Ext-z s; of the corresponding countable sequence “s, :N — "R is defined
neN

by

(i) vn(s,>0):#Ext-> s! ésup{Z(*sn)#},

neN keN {n<k

(i) Vvn(s, <0):#Ext-> sh 2 LnL{Zsr’f}:—sup{Z(rsn )#} 2.22)

neN keN

(iii) vn,(n, eNl)[snl ZOJ,VnZ(n2 eNz)[an < O],N:N1UN2 :
H#EXt-D sy S#EXE- ) s, +HEXt- D s,

neN meN; nyeNy

Theorem 2.11. (i) Let {s,}”

n=1

S, =7. Then sup{(*sn )#} = (*,7)# e,

neN

be a countable sequence s,:N—R such that Vn(neN)[s,,, >s,] and

n+l
lim
(i) Let {s,}" be a countable sequence s, :N—R such that ¥n(neN)[s

Then inf {( s, )#} = (*77)# +&y-

<s,] and lim s, =7

n+l n—o ¥n
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(iii) Let {s,}” be a countable sequence s, :N—R suchthat Vn(neN)[s, >0], > s =n<owx and

©

infinite series »” s~ absolutely convergesto 7 in R. Then

n=1"n

HEXt-Y ¥ ésup{Z(*sn )#}:(*77)# —g € "Ry, (2.23)

neN keN {n<k

(iv) Let {s,}" be a countable sequence s,:N—R such that vn(neN)[s, <0], > Sy =n>—»

absolutely convergesto n in R. Then

HEXE-S s 2 LnL{Z(*sn )"}:(*n)# te, € Ry, (2.24)
neN € n<k

—1°n

and infinite series Z: s

(v) Let {s,}” beacountable sequence s,:N—R such that
@ {s,}7, = {Snl}nleNl U{snz}nzeNz ,an(n1 e Nl)[sn1 >0],vn, (n2 E Nz)[sn2 <0], N=N,UN, and
) 2 s, =m<o DS, =i, >0,

meN; neN,
Then
HEXt-) ST SHEXt- Y st +#EXt- Y. s) :(*nl)” +("m )# —g, € R, (2.25)
neN meNy npel,

Proof. (i) Let Vn(neN)[s,,,>s,] and lim s,

Thus Ve eR thereexists M e N such that (1)

(1) VkeN:p—e<s,,, <n.

Therefore from (1) by Robinson transfer one obtains (2)

2 VgeR,VkeN:(*n)—(*5)<(*SM+k)<(*7y).

Using now Wattenberg embedding from (2) we obtain (3)

3 VseR,VkeN:(*77#)—(*5#)<(*Sfﬂ+k)<(*77#).

From (3) one obtains (4)

4) VeeR:("n")-("&")<sup(*si..)<("n").

@) veeR:("n")=("e") <sup("s)) <("n)

Note that V5[ (5 e R)A(5~0)] obviously

5) sup(s’)<(*n")-o".

©) sup("sy)<("n")

From (4) and (5) one obtains (6)

6) V R)VS| (s eRYA(S=0)[{(*n*)—( ") <su *s#<*#—5#}.

©) ve(e cR)vo[(@eR)A(s ~0)]|(n")~(e")<sup("st) <("n")

Thus (i) immediately from (6) and from definition of the idempotent —¢, .

Proof.(ii) Immediately from (i) by Lemma 2.3 (v).

Proof.(iii) Let nmzz:ﬂsn.Then obviously: 7, <z and lim
M e N such that (1)

(1) YkeN:ip—s<ny,<n.
Therefore from (1) by Robinson transfer one obtains (2)

(2) VeeR,Vk eN:(*77)—(*5)<(*77M+k)<(*77).
Using now Wattenberg embedding from (2) we obtain (3)
(3) VeeR,Vk eN:(*77#)—(*5#)<(*77f,,+k)<(*77 )
From (3) one obtains (4)

=7. Thenobviously: vn(neN)[s, <7].

=n.Thus VeeR there exists

m-—oo 'IITI
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4) VgeR3(*77#)—(*3#)<ig§(*’7§+k)<(*’7#)-

From (4) by Definition 2.16 (i) one obtains

5) voeR: (" )-("s ) <#Bt- X ("5 ) < (7).

Note that V5[ (5 e R)A(5~0)] n(E)Rk])viously

©) #Ext-Y. ("si)<("n)-5"

From (5)-Eé$follows @)

™ Vg(geR)Vé[(éeR)/\(§zO)]{(*n#)—(*g#)<#Ext-%(*3:)<(*n#)—5#}.

Thus Equation (2.23) immediately from (7) and from definition of the idempotent —¢, .
Proof.(iv) Immediately from (iii) by Lemma 2.3 (V).
Proof.(v) From Definition 2.16.(iii) and Equation (2.23)-Equation (2.24) by Theorem 2.7.(iii) one obtains

#Ext—n%sﬁ é#Ext—an&; sh +#EXt- % st Z(*’h)#—gd +((*772 )#+5d)
€ €Ny Ny eNp
:(*771)#+(*772)#—gd +&, :(*771)#+(*772)#—gd e "R,.

©

Theorem 2.12. Let {a,}

n=

be a countable sequence a,:N —R suchthat ¥n(a, >0) and infinite series

> " a, absolutely converges in R. Let s=#Ext—Z a’ Dbe external sum of the corresponding countable
n=n neN

sequence {*an};. Let {bn}::1 be a countable sequence where b, = 8 is any rearrangement of terms of

the sequence {an}:’_l. Then external sum o = #Ext-z b? of the corresponding countable sequence {*bn}oc )
a neN m=

has the same value s as external sum of the countable sequence {*an} .6, o=85-¢g,.
Theorem 2.13. (i) Let {an}~:°:l be a countable sequence a,:N —R,, such that (1) Vn(an 20), 2

infinite series " a absolutely converges to 7 #+w in R and let #Ext-z a’ be external sum of the
neN

corresponding sequence {"an}:_1 .Thenforany ce "R, the equality is satisfied

c* x(#Ext—Z a:j =#Ext-) ¢’ xal =c* ><<*77)# —c*xg,. (2.26)

neN neN
(i) Let {an}:j:1 be a countable sequence a,:N — R, such that (1) Vn(an <0), (2) infinite series

>~ a, absolutely converges to 7 #—co in R and let #Ext-z a’ Dbe external sum of the corresponding
neN

sequence {*an }: . Then forany ce ‘R, the equality is satisfied:
¢’ x(#EXt-Z aﬁj =#Ext-Y c¢* xa; =c” x(*n)# —c¥xg,. (2.27)
neN neN

(iii) Let {s,}" beacountable sequence s, :N — R such that

(@) {s.hy ={sa )

M eNy

U{snz};N2 vn(ny eNl)[sn1 > O],Vnz(n2 € NZ)[Sn2 <OJ, N=N,UN,,

(2) infinite series Z:’:lsn1 absolutely convergesto 7, # 4o in R,

(3) infinite series > " absolutely convergesto 7, #— in R.

n:lsﬂz
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Then the equality is satisfied:
¢’ x(#Ext—z s,’;‘j =#Ext- ) c*xs) +#EXt- Y c'xs)
heN = nyel; (2.28)
=c" x((*nl)# +(*772)#)—C# X &4
Proof. (i) From Definition 2.16. (i) by Theorem 2.1, Theorem 2.11. (i) and Lemma (2.4) (ii) one obtains

#Ext-) ¢’ xa} :C#x(#EXt-Za:j:C#x((*n)#—gd):c#x(*n)#—C#xgd.

neN neN

(ii) Straightforward from Definition 2.16. (i) and Theorem 2.1, Theorem 2.11. (ii) and Lemma (2.4) (ii) one
obtains

[#Ext-z c* xaﬁjzc#x(#EXt-z aﬁjzc# x((*r])# +gd):C# x(*n)# +c¥xg,.

neN neN

(iii) By Theorem 2.11. (iii) and Lemma (2.4). (ii) one obtains

C#x[#EXt—Zsﬁj:c#x((*m)#+(*772)#—gd):c#x((*nl)#+(*772)#)—c#xgd.

neN

But other side from (i) and (ii) follows
H#EXt- D ' xs) +HEXt- D ¢ xs))

meNy npeN,

:C#x(*nl)#—c#xgd +C#><(*77)#+C#><$d
:c#x((*nl)# +(*772)#)—C#xgd.

Definition 2.17. Let {an}:’::1 be a countable sequence a,:N—R, such that infinite series > " a
absolutely convergesin R to 77 # too. We assume now that:

(i) there exists m>1 such that szmzz:ﬂan >p, oOr

(i) there exists m>1 such that vkzmzz:zlan <n, or

(iii) there exists infinite sequence n,,i=1,2,--- such that

(@) vi,m:zi";lani >n and infinite series z;ilani absolutely convergesin R to 7 and

(b) there exists infinite sequence n;, j=12,--- such that Vj,m:zrj":lanj <n and infinite series Zj.:lanj
absolutely convergesin R to 7.

Then: (i) external upper sum (#-upper sum) of the corresponding countable sequence “a,:N—>R is

defined by
(i) #Ext-i al = m{Z(*aﬂ)#},
nelt ek (2.29)
. = # oA * #
(ii) #Ext-%ani _ng{é( ani) }

(i) external lower sum (#-lower sum) of the corresponding countable sequence “a, :N — R is defined by

(i) #Ext-iaﬁésup{z (*an)#},

neN keN [ n<k

(i) #Ext-3a éigg{Z(*anj )"}

jeN <k

(2.30)
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Theorem 2.14. (1) Let {an}w be a countable sequence a,:N — R, such that infinite series > " a
n=1 n n=1""n

absolutely convergesin R to 77 # too. We assume now that:

(i) there exists m>1 suchthat vk > mzz::lan >n, or

(i) there exists m>1 suchthat vk >m: Z::lan <n, or

(iii) there exists infinite sequence n,,i=1,2,--- such that

(@) vi,m:zi";lani >n and infinite series z;ilani absolutely convergesin R to 7 and

(b) there exists infinite sequence n;, j=12,--- such that Vj,m:Z'j":lanj <n and infinite series Z”l.:lanJ

absolutely convergesin R to 7.

Then
HEXE-Y af éigg{z:(*an)#}z(*n)#Jrgd e "Ry,
niN n<k (231)
H#EXt-Y a ésup{Z(*an)#} = (*77)# —g, € Ry,
neN keN | n<k
and
#Ext—%aﬁ‘i £ inf {i;(*ani )#} - (*77)# +ey€ Ry,
(2.32)

#Ext-%aﬁj éskLEJNp{Z(*anj )#}:(*n)#—gd € "Ry.

j<k

Proof. (i), (ii), (iii) straightforward from definitions.

Theorem 2.15. (1) Let {an}:j:1 be a countable sequence a,:N— R, such that infinite series > " a
absolutely convergesin R to 77 #too. We assume now that:

(i) there exists m>1 suchthat vk >m: Z::lan >p, Of

(ii) there exists m>1 suchthat vk >m: Z::lan <n, Or

(iii) there exists infinite sequence n,,i=1,2,--- such that

(a) vi,mzzim:lanl >n and infinite series » " a  absolutely convergesin R to 7 and

(b) there exists infinite sequence n;, j=12,--- such that vj,mzzrj":lanj <n and infinite series Zleanj
absolutely convergesin R to 7.

Then forany ce "R, the equalities is satisfied

#Ext-> ¢ xaf =c* x(#Ext-Z aﬁj =c* x(*n)# +c*xg, e "Ry,
neN neN (233)
#Ext-Y c*xal =c’ x[#EXt-Z C#a:j =c’ x(*n)# —c'xg, e "Ry.

neN neN

and

HEXt-)  ¢* x a:fi =c’ x(#EXt-Za:i j =c’ x(*ry)# +c’xg, € "Ry,
ieN ieN (234)
HEXt-Y_ ¢ x a;‘j =c* x(#EXt-Z a:j ] =c* x(*n)# —c*xg, € "Ry,.

jeN jeN

Proof. Copy the proof of the Theorem 2.13.



Theorem 2.16. (1) Let {an}:j:1 be a countable sequence a,:N— R, such that infinite series > " a
absolutely convergesin R to 7=0. We assume now that:
(i) there exists m>1 suchthat vk >m: Z::lan >0, or
(ii) there exists m>1 suchthat vk >m: Z::lan <0, or
(iii) there exists infinite sequence n,,i=1,2,--- such that
() vi,m:zi";lani >0 and infinite series Zilani absolutely convergesin R to =0 and
(b) there exists infinite sequence n;, j=1,2,--- such that Vj,m:Z'JT‘:lanj <0 and infinite series Z”l.:lanJ
absolutely convergesin R to 7=0.
Then forany ce "R, the equalities is satisfied
HEXE-Y ¢* xa =c#x[#Ext-i a:j=c#x5d "R,

neN neN

(2.35)
H#Ext-Y ¢ xa) =c* x[#EXt-Z C#a:j =—'xg, e "R,.

neN neN

and

ieN ieN

#Ext-) c" xa) =c” x(#EXt—Z a) j =c"x¢gy € 'Ry,
(2.36)
#Ext-) ¢" xay =c” x(#Ext-Z a, j =—c'xg, e "R,.
jeN jeN

Proof. (1) From Equation (2.31) we obtain

H#EXt-Y" al = +¢,,
e (2.37)
HEXt-Y @l =—¢,.

neN

From Equation (2.37) by Theorem 2.1 we obtain directly

#Ext-> c* xal =c* x (#Ext-z afj =c"xg,,

neN neN (238)
#Ext-> c* xal =c* x (#Ext-z c#ar‘f} =—c'xg,.

neN neN

(2) From Equation (2.32) we obtain

H#EXt-) @) = +&,,

ieN

(2.39)
#Ext-i a, =&
jeN
From Equation (2.39) by Theorem 2.1 we obtain directly
#Ext—i ¢’ xay =c x[#Ext—i a) j =c"xg, e 'Ry,
ieN ieN (240)

H#EXt-) ¢ x a:fj =c"x (#Ext-z a, j =—"xg, e "R,.

jeN ieN

Remark 2.13. Note that we have proved Equation (2.35) and Equation (2.36) without any reference to the
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Lemma 2.4.
Definition 2.18. (i) Let {e,} , be acountable sequence a, :N— "R, such that

vn(n>m>0)[e, >0] and vn(n<m —1)[(61n =al)a(a, e R)J (2.41)
Then external countable upper sum (#-sum) of the countable sequence a,:N — "R, is defined by

A -1 0
HEX-D o, = mz a, +#EXt-) o,
n=0 n=m

e ) (2.42)
HEXt-Y a, Zsup ). a,.
n=m keN n=m

#
n

In particular if {azn}:1 :{a }wl, where vn eN[an IS5 *R] the external countable upper sum (#-sum) of
. e

the countable sequence ¢, :N — "R is defined by

A m-1 0
HEXt-D @, =Y al +#Ext-Y_ al,

neN n=0 n=m
“ ) (2.43)
HEXt-Y o, Zsup Y. a;.
n=m keN n=m

(ii) Let {e,} , beacountable sequence «,:N— "R;, such that
vn(n=m>0)[a, <0] and Vn(n<m —l)[(an = a,‘f) A (an € R)] (2.44)

Then external countable lower sum (#-sum) of the countable sequence a,:N — "R, is defined by

v -1 0
H#EXt-Y o, = mz a, +#Ext-Y" a,
neN n=0 n=m (245)

o0 k
HEXt-Y o, £ inf n;an.

n=m

#
n

In particular if {oen};i1 :{a }wl, where vn eN[an IS *]R{] the external countable lower sum (#-sum) of
- e

the countable sequence ¢, :N — "R is defined by
v m-1 0
HEXt-D o, =Y al +#Ext-) ay,
nZN n=0 ) n=m (246)
- 2j #
HEXt n;n a, £inf n;n a’.

Theorem 2.17. (i) Let {«,}", be a countable sequence e, :N — "R;, such that valid the property (2.41).

Then forany ce "R, the equality is satisfied

A A m-1 0
¢’ x [#Ext—z anj =#Ext— > ¢’ xa, =) c¢" xal +#Ext-> ¢’ xa. (2.47)
n=0

neN neN n=m

(ii) Let {e,} , beacountable sequence a,:N— "R;, such thatvalid the property (2.44).
Then forany ce "R, the equality is satisfied
v v m-1 0
¢’ x (#Ext-z a, j =#Ext-Y . ¢" xa, =Y ¢’ xa] +#Ext-Y ¢* xal. (2.48)
n=0

neN neN n=m

Proof. Immediately from Definition 2.18 by Theorem 2.1.
Definition 2.19. Let {z,}” ={a,+h,}" be acountable sequence z,=a,+ib, :N — C such that infinite

=1
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series "z, absolutely converges in C. Then external countable complex sum (#-sum) of the corresponding

countable sequence “z,:N — “C is defined by

HEXt-Y 7} = #Ext-) a +ix [#Ext-z b;*j :

neN neN neN

HEXt-Y " z; =#Ext-)_ a) +i x(#Ext-z bj‘j, (2.49)
neN neN neN

HEXt-Y| 7 =#Ext-)_ a) +ix [#Ext-z bfj
neN neN neN

correspondingly.
Note that any properties of this sum immediately follow from the properties of the real external sum.
Definition 2.20. (i) We define now Wattenberg complex plane ‘C, by "C,="R,®ix "R, with i*=1.
Thus forany ze "C, weobtain z=x+iy,where x,ye ‘R, (ii) forany ze*C, suchthat z=x+iy we
define |z]" by |z =x*+y* e "R,.

©

n=1

Theorem 2.18. Let {z,}” ={a, +ib }" be a countable sequence z, =a,+ib, :N — C such that infinite

series )" z, absolutely convergesin C to z=¢, +i{, and |z|#o. Then

HEXt-Y | z) = #Ext-)_ a! +ix(#Ext-2 bf] =[(*g’l)# —gd}+i[(*é’2)# —gd}

neN neN neN

=(6) +i(6) e (1+i)#EX-Y 2 = HEX-Y 8 +ix[#Ext-i b:j

(|) neN neN neN

("6) +i("6) +e (1+i)#EX-S 2 = HEX -3 & +ix(#Ext-i bjjj

neN neN neN

("a) +i(*6) -a @+
HEXt-Y 7| =[#Ext-) al +i x(#Ext—z bfj

neN neN neN

2 2

("a) +i(*4) -a+)

2 2

= (*g’l)#+i(*§2)#+gd (1+i),

N 2 N V.
(i) [#Ext-D zi| =[#Ext-Y af +i x[#EXt— > bﬁj

neN neN neN

2 2

(*4’1)# +i(*§2)# +e4(1+1))

2
HEXt-Y zf| =[#Ext-) al +i x[#Ext-z bfj

neN neN neN

2.9. Gonshor Transfer

Definition 2.21. [7]. Let [S] ={x|3y(yeS)[x<y]}.
Note that [S]d satisfies the usual axioms for a closure operator,i.e. if (i) S=&,S'#< and
(ii) S has no maximum, then [S], € "R,.

Let f be a continuous strictly increasing function in each variable from a subset of R" into R. Specifically,
we want the domain to be the cartesian product [ A, where A ={x|x>a | forsome a eR. By Robin-

son transfer f extends to a function “f : "R" — "R from the corresponding subset of “R" into "R which is
also strictly increasing in each variable and continuous in the Q topology (i.e. € and o range over arbitrary
positive elementsin ‘R ). We now extend “f to [* flj
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[f], R > "R, (2.50)
Definition 2.22. [7]. Let ; € 'Ry, o, >a, b e’R, then

I:* f:|d (a]_lazl.“’an):[{* f (bl,bz'...’bn)
Theorem 2.19. [7]. If f and g are functions of one variable then
Lol @=( 1 @) (o], @) 252)

Theorem 2.20. [7]. Let f be a function of two variables. Then forany ¢ 'R and ae 'R
[f],(ea)=["f(bc)beac<al. (2.53)

Theorem 2.21. [7]. Let f and g be any two terms obtained by compositions of strictly increasing continuous
functions possibly containing parameters in “R. Then any relation "f ="g or “f <*g valid in "R
extendsto "Ry, i.e.

a <b e aiﬂd. (2.51)

[* f L (a)= [*g]d (a) or [ f ]d (a)< [*g]d (a). (2.54)
Remark 2.14. For any function *f :*R" — "R we often write for short f* instead of [ f}
Theorem 2.22. [7]. (1) Forany a,be 'R,
exp’ (a” +b") = exp” (2" )exp” (b7),

"

P (2.55)
(exp#(a#)) =exp® (b*a*).
Forany a,fe 'Ry,a,B>0
exp* (a + /j) —exp* () exp® (B), 256)
(o0 (@) =ex0" ().
(2) Forany abe 'R
() =(a)". (257)
(@) Forany a,B.y€ 'Ry,a,B,7>0
(a”) =a” (2.58)
(4)Forany ae’R
" (exp" (7)) =2, (2.59)

exp#(ln*(a#)): a*,

Note that we must always beware of the restriction in the domain when it comes to multiplication.
Theorem 2.23. [7]. The map « > [exp], (e) maps the set of additive idempotents onto the set of all

multiplicative idempotents other than 0.

3. The Proof of the #-Transcendene of the Numbers eX k e N

In this section we will prove the #-transcendence of the numbers e,k e N. Key idea of this proof reduction of
the statement of e is #-transcendental number to equivalent statement in “Z, by using pseudoring of
Wattenberg hyperreals "R, > “Z, [6] and Gonshor idempotent theory [7]. We obtain this reduction by three

steps, see Subsections 3.2.1 - 3.2.3.



J. Foukzon

3.1. The Basic Definitions of the Shidlovsky Quantities

In this section we remind the basic definitions of the Shidlovsky quantities [8]. Let M, (n, p),M,(n, p) and
& (n, p) be the Shidlovsky quantities:

o -1 —-1)--- — Pax
M, (n, p):flxp [(x E)p—(l))(! n)|e }dx;«to, (3.1)
B B (e R )] I PV
M, (n, p)=¢e ![ (o-D) dx, k =1,2, 3.2)
-1 —_ “ee —_ P X
& (n, p):ekflxp [(X ?p—(l))(! n)] ¢ }dx,kzl,z,-u (3.3)
where peN this is any prime number. Using Equations (3.1)-(3.3.) by simple calculation one obtains:

M (n, p)+e&(n p)=eM,(n, p)=#0k=1,2,. (3.4)

and consequently

k_ M, (n. p)+&(n, p)
Mo(np)

Lemma 3.1. [8]. Let p be a prime number. Then M, (n, p)=(-1)"(n")" + p®,,0, € Z.

Proof. ([8], p. 128) By simple calculation one obtains the equality

e

k=12, (3.5)

XPH[(x=1)+(x - n)]p =(-1)"(n)" x"* + nil)‘jpcﬂflx”’l,

u=p+l (36)
C,€Z,u=p, p+1,---,[(n+1)>< p]—l,n >0,

where p is a prime. By using equality I'(x)= .[:x"’le’xdx =(u-1)!, where ueN, from Equations (3.1) and

(3.6) one obtains

n,p)=(-1)"(n)° r(p) +(M)xpc L(x)
M, (0, p) =(-1)" (n!) (p-1)! #:Zp‘il “(p-1)!

(-1)"(n)® +c,p+cy,p(p+1)+- 3.7)
(-1)" (")’ + px©,,0, € Z.

Thus
M, (n, p)=(-1)"(n))" + p-©,(n, p), ®,(n, p)eZ (3.8)

Lemma 3.2. [8]. Let p be a prime number. Then M, (n,p)=p-©,(n,p), O,(n,p)eZ, k=1,2,---n.
Proof. ([8], p. 128) By subsitution x =k +u = dx=du from Equation (3.3) one obtains

40 (U"'k)p*l[(u+k—1)><"'><u><---><(u+k—n)]pe*“

M, (n,p)= du, k=1,2,-- (3.9
By using equality
(n+1)xp
u+k)" [(u+k-1)x-xux-x(u+k-n)]" = d, u“?
(k)" [(u k-1 (wrk-n)]"= 3 d,. 610

d,eZ,u=p, p+l,--~,[(n+1)>< p}—l,
and by subsitution Equation (3.10) into RHS of the Equation (3.9) one obtains

608
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1 +o0 (n+1)xp

M, (n,p)=—— d,u"'du=p-©,(n,p
«(nP) (p—l)-! 2,0 (n.p). (3.11)
0,(n,p)eZ,k=12,--
Lemma 3.3. [8]. (i) There exists sequences a(n),neN and g(n),neN such that
p-1
n-g(n)-[a(n
l& (n, p)| < ((?ng)(l )] , (3.12)

where sequences a(n),neN and g(n),neN does not depend on number p. (i) Forany neN:g (n, p)—0

if po>ow.
Proof. ([8], p. 129) Obviously there exists sequences a(n),neN and g(n),keN,neN. such that
a(n),neN and g(n),neN does not depend on number p

[x(x—=1)--(x=n)|<a(n),0<x<n (3.13)
and
|(x—1)---(x— n)e
Substitution inequalities (3.13)-(3.14) into RHS of the Equation (3.3) by simple calculation gives
K . . P
[?p_}) [dx< ng (r('?o Ei)(ln)] : (3.15)

Statement (i) follows from (3.15). Statement (ii) immediately follows from a statement (ii).
Lemma 3.4. [8]. Forany k<n andforany & suchthat 0<& <1 thereexists peN such that

<g(n), 0<sx<nk=12,--,n. (3.14)

g(n,p)<g(n

e Mi(n.p)l_ (3.16)
M, (n, p)
Proof. From Equation (3.5) one obtains
e - (n I |€k (n.p) (3.17)
(n,p) | (n, p)

From Equation (3.17) by using Lemma 3.3. (ii) one obtains (3.17).

Remark 3.1. We remind now the proof of the transcendence of e following Shidlovsky proof is given in his
book [8].

Theorem 3.1. The number e is transcendental.

Proof. ([8], pp. 126-129) Suppose now that e is an algebraic number; then it satisfies some relation of the
form

a8+ .86 =0, (3.18)

where a,,a,---,a,€Z integers and where a,>0. Having substituted RHS of the Equation (3.5) into
Equation (3.18) one obtains

" M (n p)+g(np) M (np) & &(np)
+ > 4 =a,+ya ———<+»a ——-==0. 3.19
a‘0 é k Mo(n,p) a0 ; kMO(n,p) ; kMo(n,p) ( )
From Equation (3.19) one obtains
a,M, (n, p)+>.aM,(n p)+ Zakgk(n p)=0. (3.20)
k=1
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We rewrite the Equation (3.20) for short in the form

Mo(n, p)+> aM,(n, p)+> acs(np)
k=1 k=1

i n (3.21)
=a,M,(n, p)+Z(n, p)+D 8. (n,p)=0, E(n p)=> aM.(n p)
k1 Py
We choose now the integers M, (n, p),M,(n, p),---,M, (n, p) such that:
pIM,(n,p),pIM,(n,p),---,pIM,(n, p), where p>a| (3:22)
and p{Mg(n p).Notethat p|Z(n,p). Thus one obtains
ptaM,(n, p)+Z(n,p) (3.23)
and therefore
M,y (n, p)+Z(n, p)eZ, whereaM,(n,p)+E(n,p)=0. (3.24)

By using Lemma 3.4 forany ¢ suchthat 0<o6 <1 we can choose a prime number p= p(é) such that:

2.3é&(n,p)
k=1

From (3.25) and Equation (3.21) we obtain
a,M,(n, p)+Z(n,p)+e=0. (3.26)

From (3.26) and Equation (3.24) one obtains the contradiction. This contradiction finalized the proof.

< 5i|ak| =e<l. (3.25)
k=1

3.2. The Proof of the #Transcendene of the Numbers €~ .k e N.We Will Divide the Proof
into Four Parts

3.2.1. Part L. The Robinson Transfer of the Shidlovsky Quantities M (n, p), M, (n, p),&(n, p)
In this subsection we will replace using Robinson transfer the Shidlovsky quantities

M, (n, p),M, (n,p),&(n p) by corresponding nonstandard quantities ‘M, (n,p), "M, (n,p), “&(n,p).
The properties of the nonstandard quantities "M, (n,p), "M, (n,p), "¢, (n,p) one obtains directly from the pro-

perties of the standard quantities M, (n, p),M, (n, p),gk (n, p) using Robinson transfer principle [4] [5].
1. Using Robinson transfer principle [4] [5] from Equation (3.8) one obtains directly

"M, (n,p)=(-1)"(n")’ +px *®,(n,p), " ®,(n,p)e “Z,,n,pe "N, N_ £ 'N\N. (3.27)
From Equation (3.11) using Robinson transfer principle one obtains vk(k € N) :
*Mk(n,p)sz(*®2(n,p)), '®,(n,p)e %, k=12, .keN,npe’N,. (3.28)

Using Robinson transfer principle from inequality (3.15) one obtains Vk(k € N) :
* * p-1
* <n.( g(n)).([ a(n)] ) 1o ke " 529
n, < s =1,2,---, ,n’ . .
& ( p) (p _1)| € pe ©
Using Robinson transfer principle, from Equation (3.5) one obtains VK(k eN):
*<ek):(*e>k _ "M, (n,p)+<*gk (n,p))
"Mo(n.p)

Lemma 3.5. Let ne"N_,thenforany keN andforany §~0,6 € "R thereexists pe *N_ such that
*ek _ *Mk(n’p)
"M, (n.p)

k=1,2,---,keN,npe’N,_. (3.30)

<4. (3.31)
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Proof. From Equation (3.30) we obtain vk (k e N):

* * n,
e Me(np)|_ [ b)  KeNnpe N,. (3.32)

"Mo(n.p)| | "M, (n,p)|
From Equation (3.32) and (3.29) we obtain (3.31).

3.2.2. PartII. The Wattenberg Imbedding ’ ekl into 'R,
In this subsection we will replace by using Wattenberg imbedding [6] and Gonshor transfer the nonstandard

quantities *(ek) and the nonstandard Shidlovsky quantities "M, (n,p), "M, (n,p), "¢ (n,p) by correspond-
ing Wattenberg quantities *(ek )# ,(* M, (n,p))# ,(* M, (n,p))# ,(*gk (n,p))#. The properties of the Wattenberg

quantities *(ek )# ,(*Mo(n,p))# ,(*Mk (n,p))# ,(*gk (n,p))# one obtains directly from the properties of the co-
rresponding nonstandard quantities *(ek), "M, (n,p), "M, (n,p), "¢, (n,p) using Gonshor transfer principle [4]

[7].
1. By using Wattenberg imbedding “R—*— "R, from Equation (3.30) one obtains

[*(ek)]#{(*e)#}k2[*Mk(%*pn3|} (;,[;;]kﬁ(n'p)] K=12-ikeNnpe N, (339

2. By using Wattenberg imbedding “R—*— "R, and Gonshor transfer (see Subsection 2.9 Theorem 2.19)
from Equation (3.27) one obtains

(Mo (np)] =[ (0 [ (ney ]

#

+p* x[*@l(n,p)T

n# e " (3.34)
:[(—1“) }{((n!) ) }p#x[*@l(n,p)] , "0, (np)e’Z, 4ynpe’N,.
3. By using Wattenberg imbedding *R—")(“R), from Equation (3.28) one obtains
[*Mk (n,p)J# =p* x[*@)z(n,p)]#, [*®z(n,p)T €'Z, 4 k=1,2,keN,npe’N,. (3.35)

Lemma3.6.Let ne "N _, thenforany keN andforany 6~0,6€ R thereexists pe "N_ such that
N #

(*ek)#_[ Mk(n,p)]

« #

|: Mo(nap):|

Proof. Inequality (3.36) immediately follows from inequality (3.31) by using Wattenberg imbedding
"R—*—> "R, and Gonshor transfer.

<o, (3.36)

3.2.3. Part III. Reduction of the Statement of e Is #-Transcendental Number to Equivalent
Statementin °*Z, Using Gonshor Idempotent Theory
To prove that e is #-transcendental number we must show that e is not w-transcendental, i.e., there does not

exist real Q -analytic function g, (x) = Zanxn with rational coefficients agy,a,,---,a,,---€Q such that
n=0

n=

o

(3.37)
|a|e" = oo.
0

n=
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n

X', with rational

QX

Suppose that e is w-transcendental, i.e., there exists an @ -analytic function g (x) = Z
coefficients:

k
aoz_,gl:_,...,gn:m_n,...e@, |;§0|>0, (3.38)

such that the equality is satisfied:
" (3.39)

In this subsection we obtain an reduction of the equality given by Equation (3.39) to equivalent equality given
by Equation (3). The main tool of such reduction that external countable sum defined in Subsection 2.8.
Lemma3.7.Let A_(k) and A, (k) be the sum correspondingly
A (K)=5+Sae,
" (3.40)
A, (k)=

n

b

= AN
ae".
1

Then A (k)=0k=12,--

Proof. Suppose there exists k such that A_(k)=0. Then from Equation (3.39) follows A_(k)=0. There-
fore by Theorem 3.1 one obtains the contradiction.

Remark 3.2. Note that from Equation (3.39) follows that in generel case there is a sequence {mi}i1 such
that
m; m;
. . - - -
limm, =oo, ¥(ie N){Zane < O}, a+ !Ln;[;ane ) =0, (3.41)

n=1
or there is a sequence {mj}:i1 such that

limm, = o0, V(] eN){iéne” >o}, ao+1im[jane“]=o, (3.42)
n=1 J=ee n=1

i—>w

or both sequences {m;}” and {m i }:_O:O with a property that is specified above exist.

i=0
Remark 3.3. We assume now for short but without loss of generelity that (3.41) is satisfied. Then from (3.41)
by using Definition 2.17 and Theorem 2.14 (see Subsection 2.8) one obtains the equality [4]

(*éo)#J{#Ext-i(*én)#x(*e”)#}:—gd. (3.43)
neN
Remark 3.4. Let A%(k) and A’ (k) be the upper external sum defined by

Al (k) =13, +k§(*an)#x(*e")#,
n=1

A (3.44)
AZ (k) =#Ext- Y ae".
i
Note that from Equation (3.43)-Equation (3.44) follows that
AL (K)+AL (k) =—¢&,. (3.45)

Remark 3.5. Assume that «, € "R, and B¢ "R. In this subsection we will write for a short ab[a|ﬁ]
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iff § absorbs «a,ie. f+a=p.
Lemma3.8. —ab| A% (k)[A% (k)] ,k=1,2,-

Proof. Suppose there exists k e N such that ab [Ai (k)

A’ (k)} Then from Equation(3.45) one obtains

A? (K) = —&,. (3.46)

From Equation (3.46) by Theorem 2.11 follows that A_ (k) =0 and therefore by Lemma 3.7 one obtains the
contradiction.

Theorem 3.2. [4] The equality (3.43) is inconsistent.

Proof. Let us consider hypernatural number 3 e "N_ defined by countable sequence

3=(m0,m0xm1,---,m0><m1><---><mn,---) (3.47)
From Equation (3.43) and Equation (3.47) one obtains
¥ x(a) + 3 x[#Ext-Z(*ém ) (e )#} — 5 xz,. (3.48)
neN
Remark 3.6. Note that from inequality (3.27) by Wattenberg transfer one obtains

R CINERIN)

“g,(n,p) , heN,n,pe’N,. (3.49)
: J [(p-11]
Substitution Equation (3.30) into Equation (3.48) gives
# #
A A M, (n, +| "e, (N,
3h+| #Ext- Y] (Sn)#x(*e”)#:l=53+ #Ext—Z(Sn)#x[ (np)] +] 8#( P)] =3 xeg,,
neN{o} = [ "My (n.p)] (3.50)

v \# - - .o O\
Sﬁés#x< a) ,neN,\ng\s#x( ao) .

n

Multiplying Equation (3.50) by Wattenberg hyperinteger [*Mo(n,pﬂ# € "Z, by Theorem 2.13 (see subsec-
tion 2.8) one obtains
Sox[ Mo (n,p) ]| +#EXE-Y. {(Sn)#x[*Mn(n,p)]# + 3 x[*gn(n,p)]“}

neN

(3.51)
=—S#x[*M0(n,p)T><€d.
By using inequality (3.49) for a given 5 e "R, &~0 we will choose infinite prime integer p e "N_ such
that:
#Ext-3(3,) <[ e (np) | < ¥ x[ ‘My(n.p) | x5" x, (3.52)
keN
Now using the inequality (3.49) we are free to choose a prime hyperinteger pe "N, and " e ‘R,
5" =5%(p)~0 inthe Equation (3.51) for agiven e e "R,e~0 such that:

3 x[ "M, (n.p)] x5* (p) =¢" (3.53)
Hence from Equation (3.52) and Equation (3.53) we obtain
#EXt-i(Sn)#x[*gn(n,p)T c €' xeg,. (3.54)
neN

Therefore from Equations (3.51) and (3.54) by using definition (2.15) of the function Int.p(a) given by
Equation (2.20)-Equation (2.21) and corresponding basic property | (see Subsection 2.7) of the function
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Intp(a) we obtain

Int,p(Sg x[ "M, (n,p)T +#Ext-ﬁ{3ﬁ x| "M, (n,p)T +3hx[ ", (n,p)]#}j

neN

=35 x[ "My (n, p)T +#Ext-kﬁN{:«: x[ "M, (n, p)]#} (3.55)

#

:—Int.p(S# x[*MO(n,p)Txgd)z—S#x[*Mo(n,p)] X &4

From Equation (3.55) using basic property | of the function Int.p(a) finally we obtain the main equality

T x [ M, (n, p)T + #Ext-ﬁ {(i‘sk ) [ M, (n, p)]#} =3"x [ M, (n, p)T X &g. (3.56)
neN
We will choose now infinite prime integer p in Equation (3.56) p=pe "N_ such that
p* > max(|s§|,n#) (3.57)
Hence from Equation (3.34) follows
p" 1] "M, (n.p)] . (3.58)
Note that [*MO (n, f))]# # 0%, Using (3.57) and (3.58) one obtains:
~ * A # ~
B* [ "M, (nB) ] x(3, )" (359)
Using Equation(3.35) one obtains
R AN TH
pYI[ "M, (n,p)] .n=1,2,---. (3.60)

3.2.4. Part 1V. The Proof of the Inconsistency of the Main Equality (3.56)
In this subsection we wil prove that main equality (3.56) is inconsistent. This prooff based on the Theorem 2.10
(v), see Subsection 2.6.

Lemma 3.9. The equality (3.56) under conditions (3.59)-(3.60) is inconsistent.

Proof. (I) Let us rewrite Equation (3.56) in the short form

L(n,p)+2" (n,p)=-A"(p)x 2, (3.61)
where
. 2 (e . o\

= (nB) =#0-31(3,) [ "M, (n6)] |

neN
nxz1

r(n,p) =35 x[ "M, (n,p)] . (3.62)

From (3.59)-(3.60) follows that

(3.63)

Remark 3.7. Note that " (n,p)¢ "R. Otherwise we obtain that ab.p(I'(n,p)+=" (n,p))={@}. But the

other hand from Equation (3.61) follows that ab.p(F(n,ﬁ)+2A (n,f))) =—A"(p)xe&,. But this is a contradic-

tion. This contradiction completed the proof of the statement (I).
(1) Let A%(k,n,p),A%(k,n,p),A%(k,k,,n,p) and A (k,n.p,&l), AL (k,n,p,&), be the external sum
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correspondingly

k

& (np)=T(n )+§{ii[ (B
%13

f:x M (in},

v

AZ (k,n,p)=#Ext-
ng k+1

AZ(kl,kz,n,ﬁ): i{s’;x[*Mn(n,ﬁ)T}, (3.64)

n=kq

Note that from Equation (3.61) and Equation (3.64) follows that
A% (k,n,p)+A% (k,n,p)=-A"(p)x s, (3.65)
Lemma 3.10. Under conditions (3.59)-(3.60)
ﬁab[iz (k.n.p.&l)

Aﬁ(k,n,ﬁ,g:)],kzl,z,.-.- (3.66)
and

ﬁab[&i(k,n,ﬁ) N

(k,n,ﬁ)],k:l,z,-.. (3.67)
Proof. First note that under conditions (3.59)-(3.60) one obtains

vk [Az(k,n,ﬁ,g:);t o] (3.68)

Suppose that there exists an k >0 such that ab [Az (k.np.ef)

AZ (k.n,p.&f )J Then from Equation (3.65)

one obtains
AL (k,n,p, &l ) =—A" () 2. (3.69)
From Equation (3.69) by Theorem 2.17 one obtains
= [A#(f))T x AL (k,n,p, &) :[A#(ﬁ)]’l x AL (k,n,p, &} ) = AL (k,n,p). (3.70)
Thus
—&4 = AL (k,n,p). (3.71)

From Equation (3.71) by Theorem 2.11 follows that A_ (k) =0 and therefore by Lemma 3.7 one obtains the
contradiction. This contradiction finalized the proof of the Lemma 3.10.

Part (111)
Remark 3.8. (i) Note that from Equation (3.62) by Theorem 2.10 (v) follws that X" (n, f)) has the form
= (n,p)=q" + ab.p(ZA (n, [3)) =q*+ (—A# (p)x gd), (3.72)
where
q"ex"(n,p)=A(1,n,p), ge’Z, andp|q. (3.73)

(ii) Substitution by Equation (3.72) into Equation (3.61) gives
r(np)+2(np)=T(n.p)+a" +(-A"(p)x2,)=-A"(P)x 2. (3.74)
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Remark 3.9. Note that from (3.74) by definitions follows that
ab[(l‘(n,ﬁ)+q#) (—A7 (B)x & )} (3.75)

Remark 3.10. Note that from (3.73) by construction of the Wattenberg integer %" (n, f)) obviously follows
that there exists some k,d € N such that

Af(L,k,n,p)<g* <Af(1,d,n,p), k<d. (3.76)
Therefore
r'(n,p)+AL(L,knp)<T(n,p)+q* <T(n,p)+A%(1,d,n,p). (3.77)
Note that under conditions (3.59)-(3.60) and (3.73) obviously one obtains
0£T(n,p)+A%(L,k,n,p)<T(n,p)+q" <T'(n,p)+AL(1,d,n,p)<0,T(np)+q" #0. (3.78)

From Equation(3.74) follows that
r(np)+a"+(-A"(p)x &) =—A"(B)x &. (3.79)

Therefore

(A7 (B)) [T (nB)+0" [+ (=2) =2 (3.80)
From (3.78) follows that

) [T(n.p)+A% (Ld.n,p)]50, (3.81)

(A#(ﬁ)) [ (n, p)+q] 0.

Note that by Theorem 2.8 (see Subsection 2.5) and Formula (3.44) one otains
0+ Wst{(/\# ([3))71 [F(n, p)+Af(1,k,n, f))]} = Wst[(*aO +A%(Lk,n,p) }
WSt{(A#(f}))_l [T (n,)+A* (1,d,n,|a)]} - Wst[(*ao) FAf(Ld,n, p)} , (382)
wat{(a” () "[T(n.p)+a" ]} »0
From Equation (3.81)-Equation (3.82) follows that
O:zreWst[("a0 +A# (1,k,n,p) }<Wst{ A# f) ) [F(n,ﬁ)+q#]}

sWst[(éﬂ ) +a%(Ld,n } 0, (3.83)

P)
Wst{( “(p) )_[ (n,p)+ ]} 0.
Thus

~ab| (A" (p)"[r(np)+0]

(&, )} (3.84)
and therefore

(A" (B)) [T (n.B)+a" ]+ (~5,) %~y (3.85)

But this is a contradiction. This contradiction completed the proof of the Lemma 3.9.
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4. Generalized Shidlovsky Quantities

In this section we remind the basic definitions of the Shidlovsky quantities, see [8] pp. 132-134.

Theorem 4.1. [8] Let f (z),l =1,2,---,r be a polynomials with coefficients in Z. Assume that for any
I=1,2,---,r algebraic numbers over the field Q:4,,,---,f,,, k 211=12,---,r form a complete set of the
roots of f,(z) such that

fi(z)eZ[z].deg f, (z)=k.,1=1,2,--,r (4.1)
and a €7Z,1=1,2,---,r,a,=0. Then:
r K
a, + a,zl“e'b’k'I #0. (4.2)
1=1 k=1

Let f (z) beapolynomial such that

r r k r
£ (2) =[] f(2)=by+bz+-+by 2 =by [T1(2-e ) by #0by >O,N, =Dk (43)
1=1 1=1 k=1

1=1

Let My(N,,p),M,,(N,,p) and &, (N,, p) be the quantities [8]:

+o0 b,(fr"’l)”’lz PP (z)e"dz

My (N, p)= (4.4)
where in (4.4) we integrate in complex plane C along line [O,+oo], see Picture 1.
o p(Nr2)p-1,p-1 5 p -7
M,, (Nr, p)=eﬁk" J' N, rAN P (z)e Z’ 5)

fr (p-2)!

where k =1,---,k; and where in (4.5) we integrate in complex plane C along line with initial point g, €C
and which are parallel to real axis of the complex plane C, see Picture 1.

fiy NPtz pL g p (z)e™dz
— ek, N, r
SH(N”p)_eklg (p-1)!

where k =1,---,k; and where in (4.6) we integrate in complex plane C along contour [o,ﬂkd, see Picture

1.
From Equation (4.3) one obtains

, (4.6)

(Ne+1)p
o ()= g B e @

s=p+1

where by b, #0,c, €Z,s= p,---,(Nr —1) p-1. Now from Equation (4.4) and Equation (4.7) using formula

r(s)= j:xs’le’xdx =(s-1)l,seN

!l1\

0 3 v o

Picture 1. Contour [O,ﬂk’,] in complex plane C.
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one obtains
b’(\‘Nr—l)p—l Op +o0 . (Ny+1)p +o |
My (N,,p)=—— [ zPe7dz + =— | 2"7e"dz
o(N:P) (p-1)r 5 I szzpu (p—l)!;[ (4.8)
(NP (s —1)!

_ br(\ltlr_l)p_lbop Z b (N;-1)p lbp +pC,

s=p+1 (p_]_)l fa =

where by b, #0,C e Z. We choose now a prime p such that p > max(|a0|,bNr ,|b0|). Then from Equation (4.8)

follows that

pfaMy(N,, p). (4.9)
From Equation (4.3) and Equation (4.5) one obtains
By 4w r K
|\/|k‘I (er p):e_ j { Nep-1,p-1, p—1|:H1—J[( ﬂi'j)pi|}ez+ﬂk,ldzl (4.10)
(p 1) B ==
where k=1,---,k,I =1---,r. By change of the variable integration z=u+ £, in RHS of the Equation (4.10)
we obtain
1 +00 ~ » 7u
M (N,,p)= I[ by (u +/3k',)” HH(Z+ﬂk| g,;) |du, (4.11)
(=1t B

where k =1,---,k,I =1,---,r. Letus rewrite now Equation (4.11) in the following form

1 +00 1 . r kj
Mk,.(Nr,p)=—(p_l),J (byu+by5y)" u'e qq(bN,u+bNrﬂk,.—bNrﬂi,,-)" du (412)
=0 IR

J#l =k
Let Z, be aring of the all algebraic integers. Note that [8]
o ;=by B ;elni=1-K;j=1,r. (4.13)

Let us rewrite now Equation (4.12) in the following form

+00 . r K;
(pil)! .([ (bNrU+ak,|)p lupe‘“];!rl[(bmu +ay, —ai,j)p du (4.14)

J#l =k

M, (Nrr p) =
where k=1,---,k;,l =1,---,r. From Equation (4.14) one obtains

oo zufe™®, (u
IZGM kZ'V'k,. (N, p)= _[—( )dU.
=1 k=1

0 (p—l)!
r kj

r ki -1
cpr(u)zlza,kz(bmumk,,)" ure T (by,u+ ey, —a ;)
=1 =1 j=1 i=l
J#l =k

(4.15)

The polinomial @, (u) isasymmetric polynomial on any system A, of variables «,,a,,, -, @, where

A, ={al,,,a2,,,~--,akl’,},l =1,---,r.

(4.16)
al,I!aZJ,"',ali GZA’I :ll.-.’r_
It well known that @, (u) c Z[u] 18] and therefore
(Ne+1)p
()= 2, cau6 €2 (4.17)
s=p+l
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From Equation (4.15) and Equation (4.17) one obtains

r ufPed, (u (N g
ZaIZMkI( p)= J.—(I) =y —i_ L u 'edu
I=1 k=1 0 ( l)- s=p+1 (p—l).o
(4.18)
(N +1)p (5_1)!
= Coy =pC, CeZ
s=p+1 (p_l)'
Therefore
r k|
E(N,,p)=>a2M,, (N, p)eZ, p|E(N,,p). (4.19)

1=1 k=1
Let O, cC be a circle wth the centre at point (0,0). We assume now that vkvI(,, Og). We will
designate now

Qe () = maxoy f, ()¢,
(4.20)
9o(r)=_max g, (r).g(r)= max by 2t (2)]-
From Equation (4.6) and Equation (4.20) one obtains
ﬂkub 1)p —1Zp—1fp( Je 7”ﬁ""dz|
g (N, p
| k.l ( )| : (p _1). ‘
1 Bl B ek . b1
S(p—l)! ! b £ (2)e ™™ [[[oief, (2)]] oz (4.21)
C (N8 (D]Aul _ 6(1)g”* (MR
(p-1)! (-1t
where k=1,---,k,l =1---,r. Note that
p-1
99" (IR 5 it p e (4.22)
(p-1)!
From (4.22) follows that for any e e [0,5] there exists a prime number p such that

r k|

dadea (N, p)=e(p)<l. (4.23)
I=1 k=1

where k =1,---,k,I =1---,r. From Equation (4.4)-Equation (4.6) follows
Al — M, (N, p)+&, (N, p) (4.24)

MO(Nr’ p)
where k=1,---,k,I =1---,r. Assume now that

a, +ZaI Ze”“ =0. (4.25)

Having substituted RHS of the Equation (4.24) into Equation (4.25) one obtains

aoﬂif‘i Nr,p)+gk.(Nr,p) Z le M, (N, p) Zrlaimﬂ. .26

(N,p) =1 k=1 (N p) |1Ik=1Mo(N,,P)
From Equation (4.26) by using Equation (4.19) one obtains

r

8 +Z(N,.p)+ Y Y5, (N, p)=0. 4.27)

=1 k=1
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We choose now a prime peN such that p>max(|a0|,|bo|,|bNr|) and e(p)<1. Note that p|E(N,,p)
and therefore from Equation (4.19) and Equation (4.27) one obtains the contradiction. This contradiction com-
pleted the proof.

5. Generalized Lindemann-Weierstrass Theorem

Theorem 5.1. [4] Let f, (z),l =1,2,---, be a polynomials with coefficients in Z . Assume that for any | e N
algebraic numbers over the field @3/31,|:"'1/3k|,|v k >11=12,---, forma complete set of the roots of f (z)
such that

fi(z)eZ[z],deg f (z) =k, ,1=1,2,- (5.1)

and a €Q,a,#0,1=12,---,r,r=12,.--. We assume now that

e k
3 [ 3[e% | < oo. (52)
1=1 k=1
Then
w ki
a+>8 lee"k" #0. (5.3)
I=1 k=L

We will divide the proof into three parts.
Part I. The Robinson transfer

Let f(z)=f (z)e Z[z],ze"C,1=1,2,---,r,r e "N, be a nonstandard polynomial such that
f(z)= fr(2)=ﬁ fi(z)=by+b,z+--+bz"
1=1

=D, (2=("Bu)). by #0,by >0, (5.4)

Let "My (N,p), "M, (N,p) and "&,(N,p) be the quantities:
(PR (2)] e Jdz
*M,(N,p)= , N,pe 'N_, (5.5)
where in (5.5) we integrate in nonstandard complex plane “C along line *[O,+oo], see Picture 1.

Wy )=o) R e e

e (p-1)!

where k =1,---,"k, and where in (5.6) we integrate in nonstandard complex plane *C along line with initial

, Nope'N_, (5.6)

point “g,, € “C and which are parallel to real axis of the complex plane “C, see Picture 1.

VBP0 (2)] e [z

a(Np)=( e ]

0 (p—l)!

where k =1,---,"k, and where in (5.7) we integrate in nonstandard complex plane “C along contour [0 ﬂk,l:l'

. Npe'N_, (5.7)

©

see Picture 1.
1. Using Robinson transfer principle [4]-[6] from Equation (5.5) and Equation (4.8) one obtains directly

"M, (N,p) =b{"™**b? +pC, (5.8)
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where byb, #0,Ce "Z_. We choose now infinite prime pe "N_ such that

{p > max (ja,|, by, |bo|). (5.9)
2. Using Robinson transfer principle from Equation (5.6) and Equation (4.19) one obtains directly
K
vr(reN):"E(N,p,r)= Z( al)Z( M, (N,p))=pC, € "Z,,. (5.10)
=1
and therefore
vr(reN):p[ £(N,p,r). (5.11)

3. Using Robinson transfer principle from Equation (5.7) and Equation (4.21) one obtains directly

Y "B p(NHPizeL g (z)[*e‘z]dz|
& )£ (p-1)! |

5 fl)! !k bt (z)(*e”(*ﬂ“)j‘ﬂbgizf ()] dz (5.12)
[a®Il e O] Bl [oM][ ()]
(p-1)! N (p-1)! ’
where k=1,---,"k,I =1,---,r. Note that ve(ee*R)[ezo], there exists p=p(e)
[*go(r)][*gpﬂ(r)]
(p-1)!

4. From (5.13) follows that for any ¢ e[O,(S] there exists an infinite prime p € "N_ such that

| 5k|(N p)|

IA

<e. (5.13)

r(reN) i(*a,) 1( £, (N,p))=¢(p) <1 (5.14)

where k=1,---, "k, =1,
5. From Equation (5.5)-Equation (5.7) we obtain
"My, (Nip)+(*gkl (va))

R —— : , (5.15)
"M, (N, p)

where k =1,---,%,1=1,---,r.

Part Il. The Wattenberg imbedding “e ™' into R,

1. By using Wattenberg imbedding “R—*— “R,, and Gonshor transfer (see Subsection 2.8 Theorem 2.17)
from Equation (5.8) one obtains

("Mo(N.p)) = (b P05 )# +p'C’ = (b}, )(”#’1)’°#’1(b§)’°# +p'ct (5.16)
where bib} = 0*,C* € “Z,. We choose now an infinite prime p e “N such that
{p# > max(|a§|,bﬁ, |b§|) (5.17)

2. By using Wattenberg imbedding “R—*— "R,, and Gonshor transfer from Equation (5.10) one obtains
directly

vr(reN):("2(N,p.r)) :i((*a, )“)Z(*Mky, (N.p)) =p°Ci e "z, (5.18)
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and therefore
Vr(reN)[p# (*E(N,p,r))#}. (5.19)

3. By using Wattenberg imbedding ‘R —%— "R, and Gonshor transfer from Equation (5.14) one obtains
directly

vr(re N):Zr:((*a, )#)g(*% (N,p))# =& (p*) <L (5.20)

1=1

4. By using Wattenberg imbedding ‘R —%— "R, and Gonshor transfer from Equation (5.15) one obtains
directly

_ , (5.21)

eﬂf,l 2 (*e*ﬂm )# (*Mk,l (va))# +(*gk,l (N,p))#
(*MO(va))#

where k=1,---,k,I=1,---,re"N.
Part I11. Main equality
#
Remark 5.1. Note that in this subsection we often write for a short a* instead (*a) ,aeR. For example
we write

#
‘v’r(reN):eﬂﬁ' = M (N.p)” +&¢, (N.p)

Mg (N,p)
instead Equation (5.21).
Assumption 5.1. Let f (z),l =1,2,---, be a polynomials with coefficients in Z . Assume that for any
I e N algebraic numbers over the field Q: f,,,---, £, k>1, =12+ forma complete set of the roots
of f,(z) such that
fi(z)eZ[z],deg f, (z) =k, 1 =12, (5.22)

1=1,2,---,8,eQ,a,#0,r=1,2,---.
Note that from Assumption 5.1 follows that algebraic numbers over the field "Q,:

l’f‘,é(*ﬁly,)#,-.-,ﬁzy,é(*ﬁkl,,)#, k >1,1=1,2,---, forany 1=1,2,---, forma complete set of the roots of

W (2)2("(2)) € Z[2] deg 1) (2) =k, =1,2,-- (5.23)
Assumption 5.2. We assume now that there exists a sequence
a=-Icql=12- (5.24)
mI
and rational number
= _ %
=— , 5.25
%= reQ (5.25)
such that
0 k
S [a]3[e* | < oo (5.26)
1= k=1
and
0 ki
a,+3a>eM 0. (5.27)
|=! k=1
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Assumption 5.3. We assume now for a short but without loss of generality that the all numbers  j,,,---, B, .

k >11=12,--- arereal.

In this subsection we obtain an reduction of the equality given by Equation (5.27) in R to some equivalent
equality given by Equation (3) in "R, . The main tool of such reduction that external countable sum defined in
Subsection 2.8.

Lemma5.1. Let A_(r) and A_(r) be the sum correspondingly

A(r)=d+>a e,

3 ':kl. = (5.28)
A (r)=Yadek.

l=r+1 k=1

Then A_(r)#0,r=12,-
Proof. Suppose there exists r such that A_(r)=0. Then from Equation (5.27) follows A_(r)=0. There-
fore by Theorem 4.1 one obtains the contradiction.

Remark 5.2. Note that from Equation (5.27) follows that in generel case there is a sequence {mi}i1 such
that

i =1 k=l

limm, = oo, V(i eN){aO+Za|Zeﬂ“ <o}

) (5.29)
a, + Ilm(Za Zeﬂk')
11— 1 -1
or there is a sequence {mj}il such that
K
limm, =, V(] eN){éo Zj:é Zeﬁk" >O},
= (5.30)

]

a, + nm(zla, Zeﬂ“J

or both sequences {m,}”~

_, and {m i }T:O with a property that is specified above exist.

Remark 5.3. We assume now for short but without loss of generelity that (5.29) is satisfied. Then from (5.29)
by using Definition 2.17 and Theorem 2.14 (see Subsection 2.8) one obtains the equality [4]

(a) +|smnd(a) B[] |- 531

Remark 5.4. Let AZ(r) and A?(r) be the upper external sum defined by

a(n)-a+3(a) Y™

k=1

RS (5.32)
Af (r)=#Ext-z (*é,) (*e ﬂk") .
neN k=1
I=r+1
Note that from Equation (5.31)-Equation (5.32) follows that
AL(r)+AL(r)=—¢,. (5.33)

Remark 5.5. Assume that «, 8 "R, and f¢ "R. In this subsection we will write for a short ab[a| /]
iff § absorbs «,ie. f+a=p.

Lemma 5.2. ﬁab[Ai( )AL (r )],r:1,2,-~-
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Proof. Suppose there exists r € N such that ab[Ai(r)

A? (r)} Then from Equation (5.33) one obtains

AL(r)=-¢,. (5.34)

From Equation (5.34) by Theorem 2.11 follows that A_ (r) =0 and therefore by Lemma 5.1 one obtains the
contradiction.

Theorem 5.2. [4] The equality (5.31) is inconsistent.

Proof. Let us considered hypernatural number 3 e "N _ defined by countable sequence

I = (Mg, My X My, -+, My X My X=X M, ,--+) (5.35)
From Equation (5.31) and Equation (5.35) one obtains

¥ x('8) +3 x[#Eth( )Z( ﬁk'”:sg{#Ext-ﬁ\sl Z( /’k')}— S'xe, (5.36)

leN

where
~#  #
3 =3'g, = ‘smﬂ" ,
~#0 # (5.37)
3¢ =g =
mI
Remark 5.6. Note that from inequality (5.12) by Gonshor transfer one obtains
9 (r)] ["g”*(r) :
“5, (N,p)’| < [ - ] [# ; J | N,pe’N,. (5.38)
(p*-1)!
Substitution Equation (5.21) into Equation (5.36) gives
A # N,
3+ HEXY T Z G(Np) +ely (NP) e (5.39)

leN (N |O)

Multiplying Equation (5.39) by Wattenberg hyperinteger [ O(N,p)]# € "Z, by Theorem 2.13 (see sub-
section 2.8) we obtain

A K K
I xM#(N_,p)+#Ext- I x MZ (N,p)+ & (N,
0 xMg (N,,p) %;I ;[ ki (Nop) + &, ( p)} (5.40)
=3 %[ "M,y (N,p)] x &

By using inequality (5.38) foragiven 6€ "R, &~0 we will choose infinite prime integer
pe’N,,p=p(5) such that:

XS Z'gk, (N,p) < ~5" x&,. (5.41)

leN k=1 k=1

Therefore from Equations (5.40) and (5.41) by using definition (2.15) of the function Int.p(a) given by
Equation (2.20)-Equation (2.21) and corresponding basic property | (see Subsection 2.7) of the function
Intp(a) we obtain

Ak ki
Int.p[iﬁg x My (N,p)+#Ext-Y" >3 x Y [ M (N,p)+ &, (N,p)]]
k=1

leN k=1

Ak k
M (N,p)+#Ext-> 3°5F x S M/, (N,p) (5.42)
k=1

IeN kL
:—Int.p(S# x[*MO(N,p)T xgd) =-3 x[*MO(N,p)T X &y.

From Equation (5.42) finally we obtain the main equality
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3 x M§(N,p)+#Ext-ﬁi§f xiM /L (N.p) =3 x[ "M, (N.p) ] x g (5.43)
We will choose now infinite prime integlj k; in I;luation (3.56) p=pe"N_ suchthat
p* > max(ag], bf. |od] . 5% ). (5.44)
Hence from Equation (5.16) follows
p* 1 Mg (N.B). (5.45)

Note that [*MO (n, f))]# # 0%, Using (5.44) and (5.45) one obtains:

f)WM(’,‘(N,f),r)ng. (5.46)
Using Equation (5.11) one obtains
;‘)#|Mf,,(N,|ﬁ),k,l=1,2,-~. (5.47)

Part IV. The proof of the inconsistency of the main equality (5.43)

In this subsection we wil prove that main equality (5.43) is inconsistent. This proof is based on the Theorem
2.10 (v), see Subsection 2.6.

Lemma 5.3. The equality (5.43) under conditions (5.46)-(5.47) is inconsistent.

Proof. (I) Let us rewrite Equation (5.43) in the short form

T(N,p)+="(N,p)=-A"(p)x &, (5.48)
where
L] Ky
= (N,p) = #Ext- 3 YMF (N, p),
(N.p) IZkZ. kZ i (N.p) (5.49)

r(n.p) =3¢ <[ "My (N.p)] . A" (B) =3 x[ "M, (N.P)] -
From (5.46)-(5.47) follows that

{p: f T(N’?)’ (5.50)
p*|=" (N,p).
Remark 5.7. Note that X" (N,f)) ¢ "R. Otherwise we obtain that
abp(T(N,p)+2" (N,p))={2}. (5.51)
But the other hand from Equation (5.48) follows that
abp(I(N,p)+Z" (N,p))=—A" (B)xe,. (5.52)

But this is a contradiction. This contradiction completed the proof of the statement (1).
(1) Let Af(k,N,p),AZ(k,N,p),Af (k. k,,N,p) and A* (k,N,p, &), A (k,N,p, ! ), be the external sum
correspondingly

" . R r>1 K Ky
AZ(r,N,p)=T(N,p)+> > 3/ x> M, (N,p),
I=1k=1 k=1
- . Aok ki
AZ(r,N,p)= > >3 x> Mg (N,p),
I>r+1k=1 k=1
" . rn k [
AZ(r, 1 NP) =233 x> M (N,p), (5.53)
I=p k=1 k=1
- . . r>1 K ki
AZ(rN.Bosfy ) =T (N.B)+ 203 x 2 {M{ (N.p) + &, (N.p)}.
I=1k=1 k=1
- R Ak ki
AL(r,Npogfy ) = #Ext- 3" 337 < 3 {MJ (N, p)+ 4/, (N.p)}.
I>r+1k=1 k=1
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Note that from Equation (5.43) and Equation (5.53) follows that
A% (r,N,p)+A%(r,N,p)=-A"(p)x gy, r=1,2, (5.54)
Lemma 5.4. Under conditions (5.46)-(5.47)
ﬁab[lz (r.N.p.&f))

AL (rN.p.ef, )}r =1,2,-- (5.55)
and

ﬁab[ﬁi (r,N,p)

Ai(r,N,ﬁ)],r:l,z,--- (5.56)

Proof. First note that under conditions (5.46)-(5.47) one obtains

[Ai(r,N,ﬁ,gf,,)io]r:1,2,--- (5.57)
Suppose that there exists r>0 such that ab [Az(r, N,ﬁ,g,fvl) A? (r, N,p, &, )J hen from Equation (5.54)
one obtains

AL(r,Np, &) = —A" () x 2. (5.58)

From Equation (5.58) by Theorem 2.17 one obtains
—&4 = [A# (ﬁ)i|71 X Ai (rv N! I’j* glf,l ) = [A# (ﬁ)]il x Aﬁ (r, N1 ﬁ: glf,l ) = Aﬁ (r, N1 ﬁ: g:,l ) (559)

Thus

—gg =AL(r,N,p, &), (5.60)

From Equation (5.60) by Theorem 2.11 follows that A_ (r) =0 and therefore by Lemma 5.2 one obtains the
contradiction. This contradiction finalized the proof of the Lemma 5.4.

()
Remark 5.8. (i) Note that from Equation (5.49) by Theorem 2.10 (v) follws that X" (N, f)) has the form
= (N,p)=q" + ab.p(ZA (N, f))) =q*+ (—A” (P)x &4 ) (5.61)
where
q* X" (N,p)=A%(L,N,p), ge“Z, and |q. (5.62)
(ii) Substitution by Equation (5.61) into Equation (5.48) gives
T(N,B)+2" (N,P) =T (N,p)+q" +(-A"(p)x &) =—A" (P) < &. (5.63)
Remark 5.9. Note that from (5.63) by definitions follows that
ab (I(N.B)+")|(~A" () x 2, )| (5.64)

Remark 5.10. Note that from (5.62) by construction of the Wattenberg integer =" (N,f)) obviously follows
that there exists some r,,r, € N such that

Af(Lr,N,p)<a” <Af(1,r,N,p), 1<, (5.65)
Therefore
(N,p)+AL(1,5,N,p)<T(N,p)+q" <T(N,p)+A%(L1,,N,p). (5.66)
Note that under conditions (5.46)-(5.47) and (5.66) obviously one obtains
0=T(N,p)+A%(L,r,N,p)<T(N,p)+q" <T'(N,p)+A%L(1,r,,N,p)£0,(N,p)+q"#0.  (5.67)

From Equation (5.63) follows that
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an

I'(N,p)+q” +(—A# (ﬁ)xgd):—A# (P)x&4-

Therefore

From (5.69) follows that

(4 (8)) [r(N.B)+a’] 0.
Note that from (5.70) by Theorem 2.8 (see Subsection 2.5) and Formula (5.32) one otains
0+ Wst{(A#(ﬁ))-l [T (N.B)+A% (L, N,ﬁ)]} _ WSt[(*aO)# L rl,n,f))]
V"St{(/\#(lﬁ)f1 [T(N.B)+A%(L, rz,n,ﬁ)]} = Wst[(*ao)# +A% (1, N,f))} <0,
wst{(a" () "[T(n.B)+q"]f =0.

From Equation (5.70)-Equation (5.71) follows that

Thus

d therefore

(A"(B)) [T (N.B)+0" ]+ (~2q) # 2.

But this is a contradiction. This contradiction completed the proof of the Lemma 5.3.

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

Remark 5.11. Note that by Definition 2.18 and Theorem 2.18 from Assumption 5.1 and Assumption 5.2 fol-
lows

2

— z_
—|_5d| =&y

leN

Theorem 5.3.The equality (5.75) is inconsistent.

Proof. The proof of the Theorem 5.3 obviously copies in main details the proof of the Theorem 5.3.

Theorem 5.3 completed the proof of the main Theorem 1.6.
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