
Advances in Pure Mathematics, 2015, 5, 587-628 
Published Online August 2015 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2015.510056   

How to cite this paper: Foukzon, J. (2015) Non-Archimedean Analysis on the Extended Hyperreal Line d
∗  and the Solu-

tion of Some Very Old Transcendence Conjectures over the Field  . Advances in Pure Mathematics, 5, 587-628.  
http://dx.doi.org/10.4236/apm.2015.510056 

 
 

Non-Archimedean Analysis on the Extended 
Hyperreal Line d

∗  and the Solution of 
Some Very Old Transcendence Conjectures 
over the Field    

Jaykov Foukzon 

Center for Mathematical Sciences, Israel Institute of Technology, Haifa, Israel  
Email: jaykovfoukzon@list.ru  
 
Received 9 May 2015; accepted 15 August 2015; published 19 August 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 

In 1980 F. Wattenberg constructed the Dedekind completion d
∗  of the Robinson non-archime- 

dean field ∗  and established basic algebraic properties of d
∗ . In 1985 H. Gonshor estab- 

lished further fundamental properties of d
∗ . In [4] important construction of summation of 

countable sequence of Wattenberg numbers was proposed and corresponding basic properties of 
such summation were considered. In this paper the important applications of the Dedekind com-
pletion d

∗  in transcendental number theory were considered. Given any analytic function of 

one complex variable [ ][ ],zf ∈  we investigate the arithmetic nature of the values of ( )f z  at 

transcendental points ,ne n∈ . Main results are: 1) the both numbers e +π  and e×π  are irra-
tional; 2) number ee  is transcendental. Nontrivial generalization of the Lindemann-Weierstrass 
theorem is obtained.  
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1. Introduction 
In 1873 French mathematician, Charles Hermite, proved that e  is transcendental. Coming as it did 100 years 
after Euler had established the significance of e , this meant that the issue of transcendence was one 
mathematicians could not afford to ignore. Within 10 years of Hermite’s breakthrough, his techniques had been 
extended by Lindemann and used to add π  to the list of known transcendental numbers. Mathematician then 
tried to prove that other numbers such as e π+  and e π×  are transcendental too, but these questions were too 
difficult and so no further examples emerged till today’s time. The transcendence of eπ  has been proved in 
1929 by A. O. Gel’fond. 

Conjecture 1. Whether the both numbers e π+  and e π×  are irrational. 
Conjecture 2. Whether the numbers e  and π  are algebraically independent. 
However, the same question with eπ  and π  has been answered: 
Theorem. (Nesterenko, 1996 [1]) The numbers eπ  and π  are algebraically independent. 
Throughout of 20-th century,a typical question: whether ( )f α  is a transcendental number for each algebraic 

number α  has been investigated and answered many authors .Modern result in the case of entire functions 
satisfying a linear differential equation provides the strongest results, related with Siegel’s E-functions [1] [2], 
ref [1] contains references to the subject before 1998, including Siegel E  and G  functions. 

Theorem. (Siegel C. L.) Suppose that , 1, 2, , 0.λ λ α∈ ≠ − − ≠  

( ) ( )( ) ( )0
.

1 2

n

n

zz
nλϕ λ λ λ

∞

=

=
+ + ⋅⋅⋅ +∑                             (1.1) 

Then ( )λϕ α  is a transcendental number for each algebraic number 0.α ≠  

Let f  be an analytic function of one complex variable [ ]f z ∈    

Conjecture 3. Whether ( )f α  is an irrational number for given transcendental number .α  
Conjecture 4. Whether ( )f α  is a transcendental number for given transcendental number .α  
In this paper we investigate the arithmetic nature of the values of ( )f z  at transcendental points , .ne n∈  
Definition 1.1. Let ( ) :g x →   be any real analytic function such that 

( ) [ ]
0

, , .n
n n

n
g x a x x r n a

∞

=

= < ∀ ∈∑


                              (1.2) 

We will call any function given by Equation (1.2)  -analytic function and denoted by ( ).g x  
Definition 1.2. [3] [4]. A transcendental number z∈  is called #-transcendental number over the field  , 

if there does not exist  -analytic function ( )g x  such that ( ) 0,g z =


 i.e. for every  -analytic function 
( )g x  the inequality ( ) 0g z ≠  is satisfies. 

Definition 1.3. [3] [4]. A transcendental number z  is called w-transcendental number over the field  , if 
z  is not #-transcendental number over the field  , i.e. there exists  -analytic function ( )g x  such that 

( ) 0.g z =


 
Example. Number π  is transcendental but number π  is not # -transcendental number over the field   as 
(1) function sin x  is a  -analytic and  

(2) sin 1,
2
π  = 
 

 i.e.  

( )
( )

2 1 2 13 5 7

3 5 7 2 1

1
1 0.

2 2 3! 2 5! 2 7! 2 2 1 !

n n

n n
ππ π π π

+ +

+

−
− + − + − + + + =

+
                     (1.3) 

Main results are. 
Theorem 1.1. [3] [4]. Number e  is #-transcendental over the field  .  
From theorem 1.1 immediately follows. 
Theorem 1.2. Number ee is transcendental. 
Theorem 1.3. [3] [4]. The both numbers e π+  and e π−  are irrational. 
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Theorem 1.4. For any ξ ∈  number eξ  is #-transcendental over the field  . 
Theorem 1.5. [3] [4]. The both numbers e π×  and 1e π− ×  are irrational. 
Theorem 1.6. [3] [4]. Let ( ) , 1, 2,lf z l =   be a polynomials with coefficients in  .  
Assume that for any l∈  algebraic numbers over the field 1, ,: , ,

ll k lβ β  , 1, 1, 2lk l≥ =   form a com-

plete set of the roots of ( )lf z  such that 

( ) [ ] ( ),degl l lf z z f z k∈ =                                 (1.4) 

and 0, 1, 2, ; 0la l a∈ = ≠  . Assume that 

,
0

1 1
.

l
k l

k

l
l k

a a eβ
∞

= =

+ < ∞∑ ∑                                    (1.5) 

Then 

,
0

1 1
0.

l
k l

k

l
l k

a a eβ
∞

= =

+ ≠∑ ∑                                     (1.6) 

2. Preliminaries. Short Outline of Dedekind Hyperreals and Gonshor  
Idempotent Theory 

Let   be the set of real numbers and ∗  a nonstandard model of   [5]. ∗  is not Dedekind complete.  
For example, ( ) { }0 0x xµ ∗= ∈ ≈  and   are bounded subsets of ∗  which have no suprema or infima in  
∗ . Possible completion of the field ∗  can be constructed by Dedekind sections [6] [7]. In [6] Wattenberg 
constructed the Dedekind completion of a nonstandard model of the real numbers and applied the construction 
to obtain certain kinds of special measures on the set of integers. Thus was established that the Dedekind com- 
pletion d∗  of the field ∗  is a structure of interest not for its own sake only and we establish further im- 
portant applications here. Important concept introduced by Gonshor [7] is that of the absorption number of an ele- 
ment ∗∈ da  which, roughly speaking, measures the degree to which the cancellation law b c b c+ = + ⇒ =a a  
fails for a .   

2.1. The Dedekind Hyperreals ∗ d  

Definition 2.1. Let ∗  be a nonstandard model of   [5] and ( )P ∗  the power set of ∗ . 

A Dedekind hyperreal α ∗∈ d  is an ordered pair { } ( ) ( ),U V P P∗ ∗∈ ×   that satisfies the next 
conditions: 

1. ( ).x y x U y V∃ ∃ ∈ ∧ ∈  2. .U V = ∅  3. ( )( ).x x U y y V x y∀ ∈ ⇔ ∃ ∈ ∧ <  

4. ( )( ).x x V y y V x y∀ ∈ ⇔ ∃ ∈ ∧ <  5. ( ).x y x y x U y V∀ ∀ < ⇒ ∈ ∨ ∈  
Compare the Definition 2.1 with original Wattenberg definition [6],(see [6] def.II.1). 
Designation 2.1. Let { }, .U V α ∗∈ d  We designate in this paper  

( ) ( )
( ) ( ){ }

,

,

U Vα α

α α α
− +

− +

 



cut cut

cut cut
 

Designation 2.2. Let .α ∗∈   We designate in this paper  

( ) ( )
{ }

#
#

#
#

,

,

α α α α

α α α
− + 



cut cut
 

Remark 2.1. The monad of α ∗∈   is the set: { }x x α∗∈ ≈  is denoted by ( )µ α . 

Supremum of ( )0µ  is denoted by εd . Supremum of   is denoted by ∆d . Note that [6] 
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( ] ( )
( )
,0 0 ,

, .
n

n

ε µ∗

∗

∈

= −∞

 ∆ = −∞ 







d

d

 

Let A  be a subset of ∗  bounded above. Then ( )sup A  exists in ∗d  [6].  
Example 2.1. 1) ( )sup \ ,∗ ∗

+∆ = ∈  d d , 2) ( )( )sup 0 \ .ε µ ∗ ∗= ∈  d d   

Remark 2.2. Unfortunately the set ∗d  inherits some but by no means all of the algebraic structure on ∗ . 
For example, ∗d  is not a group with respect to addition since if x y∗+ d

 denotes the addition in ∗d  then: 
0 .ε ε ε ε∗ ∗ ∗+ = + =

  d d d
d d d d  Thus ∗d  is not even a ring but pseudo-ring only. 

Definition 2.2. We define:  
1. The additive identity (zero cut) 0 ,∗d

 often denoted by #0  or simply 0 is 

{ }0 0 .x x∗ ∗
∗∈ <

 


d
 

2. The multiplicative identity 1 ,∗d
 often denoted by #1  or simply 1 is 

{ }1 1 .x x∗ ∗ ∗
∗∈ <

  


d
 

Given two Dedekind hyperreal numbers α ∗∈ d  and β ∗∈ d  we define: 
3. Addition α β∗+ d

 of α  and β  often denoted by α β+  is 

{ }, .x y x yα β α β+ + ∈ ∈
 

It is easy to see that 0α α∗ ∗+ =
 d d

 for all .α ∗∈ d  

It is easy to see that α β∗+ d
 is again a cut in ∗  and .α β β α∗ ∗+ = +

 d d
 

Another fundamental property of cut addition is associativity: 

( ) ( ).α β γ α β γ∗ ∗ ∗ ∗+ + = + +
   d d d d

 

This follows from the corresponding property of ∗ . 
4. The opposite α∗− d

 of α , often denoted by ( )#α−  or simply by α− , is 

{ }, is not the least element of \ ,x x xα α α∗ ∗− ∈ − ∉ −    

5. We say that the cut α  is positive if #0 α<  or negative if #0 .α <  
The absolute value of α , denoted α , is α α , if 0α ≥  and ,α α−  if 0α ≤  
6. If , 0α β >  then multiplication α β∗× d

 of α  and β  often denoted α β×  is 

{ }for some , with , 0 .z z x y x y x yα β α β∗× ∈ = × ∈ ∈ >   

In general, 0α β× =  if 0α =  or 0β = , α β α β× ×  if 0, 0α β> >  or 0, 0,α β< <   
( )α β α β× − ⋅

 if 0, 0,α β> <  or 0, 0.α β< >  
7. The cut order enjoys on ∗d  the standard additional properties of: 
(i) transitivity: .α β γ α γ≤ ≤ ⇒ ≤   
(ii) trichotomy: eizer ,α β β α< <  or α β=  but only one of the three   
(iii) translation: .α β α γ β γ∗ ∗≤ ⇒ + ≤ +

d d 
 

2.2. The Wattenberg Embeding ∗  into ∗ d  
Definition 2.3. [6]. Wattenberg hyperreal or #-hyperreal is a nonepty subset α ∗   such that: 

(i) For every a α∈  and ,b a<  .b α∈  
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(ii) , .α α ∗≠ ∅ ≠   
(iii) α  has no greatest element. 
Definition 2.4. [6]. In paper [6] Wattenberg embed ∗  into ∗d  by following way: 
If α ∗∈   the corresponding element, # ,α  of ∗d  is 

{ }# x xα α∗= ∈ <                                   (2.1) 

Remark 2.3. [6]. In paper [6] Wattenberg pointed out that condition (iii) above is included only to avoid 
nonuniqueness. Without it #α  would be represented by both #α  and { }# .α α  

Remark 2.4. [7]. However in paper [7] H. Gonshor pointed out that the definition (2.1) in Wattenberg paper 
[6] is technically incorrect. Note that Wattenberg [6] defines α−  in general by  

{ }.a aα α∗− = ∈ − ∉                                 (2.2) 

If α ∗∈ d  i.e. \α∗d  has no mininum, then there is no any problem with definitions (2.1) and (2.2). 

However if #aα =  for some ,a ∗∈   i.e. { }axx <=# ∗∈α  then according to the latter definition (2.2)  

{ }# x x aα ∗= ∈ <                                  (2.3) 

whereas the definition of ∗d  requires that: 

{ }# ,x x aα ∗− = ∈ < −                                (2.4) 

but this is a contradiction. 
Remark 2.5. Note that in the usual treatment of Dedekind cuts for the ordinary real numbers both of the latter 

sets are regarded as equivalent so that no serious problem arises [7]. 
Remark 2.6. H. Gonshor [7] defines #α−  by  

[ ]{ }# ,x b b a b aα ∗− = ∈ ∃ > ∧ − ∉                          (2.5) 

Definition 2.5. (Wattenberg embeding) We embed ∗  into ∗d  of the following way: (i) if ,α ∗∈   
the corresponding element #α  of ∗d  is 

{ }# |x xα α∗
∗∈ ≤


                               (2.6) 

and  

{ } { }# .a aα α α∗− = ∈ − ∉                            (2.7) 

or in the equivalent way,i.e. if α ∗∈   the corresponding element #α  of ∗d  is  

{ }# x xα α∗
∗∈ ≥


                              (2.8) 

Thus if α ∗∈   then # |A Bα   where  

{ } { }, .A x x B y yα α∗ ∗
∗ ∗= ∈ ≤ = ∈ ≥

 
                    (2.9) 

Such embeding ∗  into ∗d  Such embeding we will name Wattenberg embeding and to designate by 
#∗ ∗→ d  . 

Lemma 2.1. [6]. 

(i) Addition ( )∗+ 

d
 is commutative and associative in ∗d . 

(ii) : 0 .α α α∗ ∗
∗∀ ∈ + =

 


d d
d  

(iii) ( )## #, : .α β α β α β∗ ∗
∗∀ ∈ + = +

 


d
 

Remark 2.7. Notice, here again something is lost going from ∗  to ∗d  since a β<  does not imply 
α α β α+ < +  since 0 ε< d  but 0 .ε ε ε ε+ = + =d d d d  
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Lemma 2.2. [6]. 
(i) ∗≤ d

 a linear ordering on ∗d  often denoted ≤ , which extends the usual ordering on ∗ . 

(ii) ( ) ( ) .α α β β α β α β∗ ∗ ∗∗ ∗
′ ′ ′ ′≤ ∧ ≤ ⇒ + ≤ +

d d dd d
   

 

(iii) .α α β β α β α β
∗ ∗ ∗ ∗ ∗

   ′ ′ ′ ′< ∧ < ⇒ + < +   
   d d d d d    

 

(iv) ∗  is dense in ∗d . That is if α β
∗

<
d

 in ∗d  there is an a ∗∈   then # .aα β
∗ ∗

< <
 d d

 

(v) Suppose that A ∗ d  is bounded above then ( )sup sup
A

A
A

α
α

α α−∈
∈

= =


cut  exist in ∗d . 

(vi) Suppose that A ∗ d  is bounded below then ( )inf inf
AA

A
αα

α α+∈∈
= =



cut  exist in ∗d . 

Remark 2.8. Note that in general case ( )inf inf .
A A

A
α α

α α−∈ ∈

= ≠


cut  In particular the formula for inf A   

given in [6] on the top of page 229 is not quite correct [7], see Example 2.2. However by Lemma 2.2 (vi) this is 
no problem. 

Example 2.2. [7]. The formula ( )inf inf
A A

A
α α

α−∈ ∈

= =


cut  says  

( ) ( )inf 0
A A

a d d a d
α α

α−∈ ∈

   = ∃ > + ∈  
   



cut  

Let A  be the set { }A a d= +  where d  runs through the set of all positive numbers in ∗ , then 

{ }inf .A a x x a= = <  However ( ) { }.
A

x x a
α

α−
∈

= ≤


cut  

Lemma 2.3. [6]. 

(i) If α ∗∈   then ( ) ( )## .α α∗ ∗− = −
 d

 

(ii) ( ) .α α∗ ∗− − =
 d d

 

(iii) .α β β α∗ ∗ ∗ ∗≤ ⇔ − ≤ −
d d d d   

 

(iv) ( ) .α β α β∗ ∗∗ ∗ ∗ ∗

   − + − ≤ − +   
       d dd d d d

 

(v) ( ) ( )# #: .a a aβ β∗ ∗ ∗∗ ∗

∗  ∀ ∈ − + − = − + 
    


d dd d

 

(vi) ( ) 0 .α α∗ ∗ ∗ ∗+ − ≤
   d d d d

 

Proof. (v) By (iv): ( ) ( ) ( )# # .a aβ β− + − ≤ − +  

(1) Suppose now ( )#c a β∈− +  this means 
(2) ( )#

1 1c c c a β ∃ < ∈− +   and therefore 

(3) ( )#
1 .c a β− ∉ +  

(4) Note that: c a β− − ∉  (since c a β− − ∈  and ( ) #
1a c c a− − ∈  imply ( ) ( ) #

1 1c a c c c a a β− = − − + − − ∈ +  
but this is a contradiction) 

(5) Thus c a β− − ∈  and therefore .c a β+ ∈−  
(6) By similar reasoning one obtains: 1 .c a β+ ∈−  
(7) Note that: ( ) #

1a c c a− − − ∈  and therefore 

( ) ( ) ( ) ( )#
1 1 .c a c c c a a β= − − − + + ∈ − + −  
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Lemma 2.4. (i) ( ) ( ) ( )# # # #, , , 0 : ,a a aβ µ µ µ µ β µ β∗ ∗ ∗∀ ∈ ∀ ∈ ∈ ≥ − + − = − +  d  

(ii) ( ) ( )# # # #, , , 0 : .a a aβ µ µ µ µ β µ β∗ ∗ ∗∀ ∈ ∀ ∈ ∈ ≥ + = +  d   

Proof. (i) For 0µ =  the statement is clear. Suppose now without loss of generality 0.µ >  By Lemma 2.3. 
(iv): ( ) ( ) ( )# # # # # .a aµ µ β µ µ β− + − ≤ − +  

(1) Suppose ( )# #c aµ β∈− +  and therefore ( )# ,c a β
µ
∈− +  but this means 

(2) ( )#1
1 <

ccc a β
µ µ
 

∃ ∈− + 
 

 and therefore 

(3) ( )#1 .
c a β
µ

− ∉ +  

(4) Note that: 
c a β
µ

− − ∉  (since 
c a β
µ

− − ∈  and #1cca a
µ µ

 
− − ∈ 
 

 imply  

#1 1c cc ca a a β
µ µ µ µ

   
− = − − + − − ∈ +   

   
 but this is a contradiction) 

(5) Thus 
c a β
µ

− − ∈  and therefore # .c aµ µ β+ ∈−  

(6) By similar reasoning one obtains: #
1 .c aµ µ β+ ∈−  

(7) Note that: ( ) # #
1a c c aµ µ− − − ∈  and therefore 

( ) ( ) ( ) ( )# #
1 1 .c a c c c a aµ µ µ µ β= − − − + + ∈ − + −  

(ii) Immediately follows from (i) by Lemma 2.3. 
Definition 2.6. Suppose α ∗∈ d . The absolute value of α  written α  is defined as follows: 

if 0

if 0

α α
α

α α

∗ ∗

∗ ∗ ∗

≥= − ≤

 

  

d d

d d d

 

Definition 2.7. Suppose , .α β ∗∈ d  The product α β∗× d
, is defined as follows: Case (1) , > 0α β∗ ∗ d d

: 

( ) ( ){ } ( )## #0 0 , 0 .a b a bα β α β∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗× × < < ∧ < < −∞ 

       d d d d d d d
         (2.10) 

Case (2) 0 0 : 0 .α β α β∗ ∗ ∗ ∗ ∗ ∗= ∨ = × 

     d d d d d d
 

Case (3) ( ) ( ) ( )0 0 0 0α β α β∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗< ∨ < ∨ < ∧ <
       d d d d d d d d

 

( ) ( ) ( )
iff 0 0 ,

iff 0 0 .

α β α β α β

α β α β α β

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

 × × < ∧ <



× − × < ∨ <





     

      

d d d d d d

d d d d d d d

             (2.11) 

Lemma 2.5. [6]. (i) ( )# # #, : .a b a b a b∗ ∗
∗∀ ∈ × = ×

 


d
 

(ii) Multiplication ( )∗⋅ × ⋅


 is associative and commutative: 

( ) ( ) , .α β γ α β γ α β β α∗ ∗ ∗ ∗ ∗ ∗× × = × × × = ×
     d d d d d d

              (2.12) 

(iii) 1 ;α α∗ ∗× =
 d d

 1 ,α α∗ ∗ ∗− × = −
  d d d

 where ( )#
1 1 .∗ ∗=

 d
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(iv) .α β β α∗ ∗× = ×
 d d

 

(v) ( ) ( ) ( ) ( )0 0 0 .α β γ α β γ α β α γ∗ ∗ ∗ ∗ ∗≥ ∧ ≥ ∧ ≥ ⇒ × + = × + ×   d d d d d    
                  (2.13) 

(vi) 0 , 0 .α α β β α β α β∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′ ′ ′ ′< < < < ⇒ × < ×
d d d d d d d d d        

                      (2.14) 

Lemma 2.6. Suppose µ ∗∈   and , .β γ ∗∈ d  Then 

( ) ( ) ( )# # # #0 0 .µ β µ β γ µ β µ γ∗ ∗ ∗ ∗ ∗
 ≥ ∧ ≥ ⇒ × − = × − ×  d d d d d    

          (2.15) 

Proof. We choose now:  
(1) a ∗∈   such that: # 0.aγ− + >  
(2) Note that ( ) ( )# # # # # # .a aµ β γ µ β γ µ µ× − = × − + −  
Then from (2) by Lemma 2.4. (ii) one obtains 
(3) ( ) ( )# # # # # .a aµ β γ µ β γ µ × − = × − + −   Therefore 

(4) ( ) ( )# # # # # .a aµ β γ µ β γ µ × − = × + − −   

(5) Then from (4) by Lemma 2.5. (v) one obtains 
(6) ( ) ( )# # # # # # .a aµ β γ µ β µ γ µ× − = × + × − −  

Then from (6) by Lemma 2.4. (ii) one obtains 
(7) ( )# # # # # # # # # .a aµ β γ µ β µ µ γ µ µ β µ γ× − = × + × − − = × −  

Definition 2.8. Suppose ,0α α∗
∗∈ <




d
d  then 

1
α

∗−
d  is defined as follows: 

(i) { }1 1
0 : inf ,a aα α α

∗ ∗
∗ ∗

− −
< ∈

 
 

d

d d
 

(ii) ( ) 11
0 : .α α α

∗∗

∗ ∗ ∗

−−
< − −



  
dd

d d d
 

Lemma 2.7. [6].  

(i) ( ) ( )#1 1#: .wa a a∗ ∗− −∗∀ ∈ =  d  

(ii) 
1

1
.α α

− ∗

∗−  = 
 


d  

(iii) 
1 1

0 .α β β α
∗ ∗

∗ ∗ ∗ ∗

− −
< ≤ ⇒ ≤d d

d d d d

 

   
 

(iv) ( ) ( )0 0α β∗ ∗ ∗ ∗
 < ∧ <  d d d d   

 

( ) 11 1
α β α β

∗∗ ∗

∗ ∗ ∗

−− −   ⇒ × ≤ ×   
   

dd d

d d d

 

  
 

(v) ( ) ( ) 111# #: 0 .a a a aβ β
∗∗∗

∗ ∗ ∗ ∗

−−−∗  ∀ ∈ ≠ ⇒ × = × 
 

ddd

d d


   

  

(vi) 
1

1 .α α
∗

∗ ∗ ∗

−
× ≤

  
d

d d d
 

Lemma 2.8. [6]. Suppose that , 0, , , 0, 0.a a β γ β γ∗ ∗∈ > ∈ > > d  Then 

( )# # # .a a aβ γ β γ∗ ∗ ∗ ∗ ∗× + = × + ×
    d d d d d

 

Theorem 2.1. Suppose that S  is a non-empty subset of ∗d  which bounded from above, i.e. ( )sup S  

exist and suppose that , 0.ξ ξ∗∈ >  Then 
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{ } { } ( )# # #sup sup sup .
x x

x xξ ξ ξ
∈ ∈

 × = × = × 
 S S

S                          (2.16) 

Proof. Let sup .B = S  Then B  is the smallest number such that, for any , .x x∈ ≤S B  Let { }# .x xξ= × ∈T S  
Since # # #0, x Bξ ξ ξ> × ≤ ×  for any .x∈S  Hence T  is bounded above by # .Bξ ×  Hence T  has a 
supremum sup .C = −T s T  Now we have to prove that ( )# # sup .C Bξ ξ= × = ×T S  Since ( )# # supBξ ξ× = × S  
is an upper bound for T  and C  is the smallest upper bound for T , # .C Bξ≤ ×T  Now we repeat the 
argument above with the roles of S  and T  reversed. We know that CT  is the smallest number such that, for  

any , .y y C∈ ≤ TT  Since # 0ξ >  it follows that ( ) ( )1 1# #y Cξ ξ
− −
× ≤ × T  for any .y∈T  But  

( ){ }1# .y yξ
−

= × ∈S T  Hence ( ) 1# Cξ
−
× T  is an upper bound for S . But B  is a supremum for S . Hence 

( ) 1#B Cξ
−

≤ × T  and # .B Cξ × ≤ T  We have shown that #C Bξ≤ ×T  and also that # .B Cξ × ≤ T  Thus 
# .B Cξ × = T   

2.3. Absorption Numbers in ∗ d  
One of standard ways of defining the completion of ∗  involves restricting oneself to subsets, which have the 
following property 0 xxε αε > ∈∀ ∃  [ ]yy y xα ε∈∃ − < . It is well known that in this case we obtain a field. In fact the 
proof is essentially the same as the one used in the case of ordinary Dedekind cuts in the development of the 
standard real numbers, εd , of course, does not have the above property because no infinitesimal works.This 
suggests the introduction of the concept of absorption part ( ). . αab p  of a number α  for an element α  of 
∗d  which, roughly speaking, measures how much α  departs from having the above property [7]. 

Definition 2.9. [7]. Suppose ,α ∗∈ d  then 

( ) [ ]{ }. . 0 .xd x x dαα α∈≥ ∀ + ∈ab p                       (2.17) 

Example 2.5. 
(i) ( )#: . . 0,α α∗∀ ∈ = ab p  

(ii) ( ). . ,ε ε=d dab p  
(iii) ( ). . ,ε ε− =d dab p  

(iv) ( )#: . . ,α α ε ε∗∀ ∈ + = d dab p  

(v) ( )#: . . .α α ε ε∗∀ ∈ − = d dab p  

Lemma 2.9. [7]. 
(i) ( ). .c α< ab p  and ( )0 . .d c d α≤ < ⇒ ∈ab p  

(ii) ( ). .c α∈ab p  and ( ) ( ). . . . .d c dα α∈ ⇒ + ∈ab p ab p  
Remark 2.9. By Lemma 2.7 ( ). . αab p  may be regarded as an element of ∗d  by adding on all negative 

elements of ∗d  to ( ). . αab p . Of course if the condition 0d ≥  in the definition of ( ). . αab p  is deleted we 
automatically get all the negative elements to be in ( ). . αab p  since .x y xα α< ∈ ⇒ ∈  The reason for our  
definition is that the real interest lies in the non-negative numbers. A technicality occurs if ( ) { }. . 0α =ab p . We 

then identify ( ). . αab p  with 0. [ ( ). . αab p  becomes { }0x x <  which by our early convention is not in ∗d ]. 

Remark 2.10. By Lemma 2.7(ii), ( ). . αab p  is additive idempotent. 
Lemma 2.10. [7]. 
(i) ( ). . αab p  is the maximum element β ∗∈ d  such that .α β α+ =  
(ii) ( ). . α α≤ab p  for 0.α >  
(iii) If α  is positive and idempotent then ( ). . .α α=ab p  
Lemma 2.11. [7]. Let α ∗∈ d  satsify 0.α >  Then the following are equivalent. In what follows assume 

, 0.a b >  



J. Foukzon    
 

 
596 

(i) α  is idempotent, 
(ii) , ,a b a bα α∈ ⇒ + ∈  
(iii) 2 ,a aα α∈ ⇒ ∈  
(iv) [ ],nn a n aα α∈∀ ∈ ⇒ ⋅ ∈  

(v) ,a r aα α∈ ⇒ ⋅ ∈  for all finite .r ∗∈   
Theorem 2.2. [7]. ( ) ( ). . .α α α− + = −   ab p  

Theorem 2.3. [7]. ( ) ( ). . . . .α β α+ ≥ab p ab p  
Theorem 2.4. [7]. 
(i) ( ). . .α β α γ α β γ+ ≤ + ⇒ − + ≤ab p  

(ii) ( ) ( ). . . . .α β α γ α β α γ+ = + ⇒ − + = − +      ab p ab p  

Theorem 2.5. [7]. Suppose , ,α β ∗∈ d  then 
(i) ( ) ( ). . . . ,α α− =ab p ab p  

(ii) ( ) ( ) ( ){ }. . max . . , . .α β α β+ =ab p ab p ab p  

Theorem 2.6. [7]. Assume 0.β >  If α  absorbs β−  then α  absorbs β . 
Theorem 2.7. [7]. Let 0 .α ∗< ∈ d  Then the following are equivalent 
(i) α  is an idempotent,     
(ii) ( ) ( ) ,α α α− + − = −  

(iii) ( ) .α α α− + = −  
(iv) Let 1∆  and 2∆  be two positive idempotents such that 2 1.∆ > ∆  Then ( )2 1 2 .∆ + −∆ = ∆  

2.4. Gonshor Types of α with Given ab.p.(α). 
Among elements of α ∗∈ d  such that ( ). . α = ∆ab p  one can distinguish two many different types following 
[7]. 

Definition 2.10. [7]. Assume 0.∆ >  
(i) α ∗∈ d  has type 1 if ( ) [ ],x x y x y yα α∃ ∈ ∀ + ∈ ⇒ ∈∆  

(ii) α ∗∈ d  has type 2 if ( ) ( )[ ],x x y y x yα α∀ ∈ ∃ ∉∆ + ∈  i.e. α ∗∈ d  has type 2 iff α  does not 
have type 1.  

(iii) α ∗∈ d  has type 1A if ( ) [ ],x x y x y yα α∃ ∉ ∀ − ∉ ⇒ ∈∆  

(iv) α ∗∈ d  has type 2A if ( ) ( )[ ].x x y y x yα α α∀ ∉ ∃ ∉ − ∉  

2.5. Robinson Part { }ℜp α  of Absorption Number ( )∈ −∆ ∆d d,α  

Theorem 2.8. [6]. Suppose ( ), .α ∈ −∆ ∆d d  Then there is a unique standard ,x∈  called Wattenberg stan- 

dard part of α  and denoted by ( ) ,αWst  such that: 

(i) ( ) [ ]#
, .x α ε α ε∗ ∈ − +d d  

(ii) α β∗≤ d
 implies ( ) ( ).α β≤Wst Wst  

(iii) The map ( ) : ∗⋅ → dWst  is continuous. 
(iv) ( ) ( ) ( ).α β α β+ = +Wst Wst Wst  

(v) ( ) ( ) ( ).α β α β× = ×Wst Wst Wst  
(vi) ( ) ( ).α α− = −Wst Wst  
(vii) ( ) ( ) 11α α

−− =   Wst Wst  if [ ], .α ε ε∉ − d d  

Theorem 2.9. [7]. 



J. Foukzon 
 

 
597 

(i) α ∗∈ d  has type 1 iff α−  has type 1A,  
(ii) α ∗∈ d  cannot have type 1 and type 1A simultaneously. 
(iii) Suppose ( ). . 0.α = ∆ >ab p  Then α  has type 1 iff α  has the form #a + ∆  for some a ∗∈  .  
(iv) Suppose ( ). . , 0α = −∆ ∆ >ab p . α ∗∈ d  has type 1A iff α  has the form ( )#a + −∆  for some a ∗∈  .  
(v) If ( ) ( ). . . .α β>ab p ab p  then α β+  has type 1 iff α  has type 1.  
(vi) If ( ) ( ). . . .α β=ab p ab p  then α β+  has type 2 iff either α  or β  has type 2.  
Proof (iii) Let .aα = + ∆  Then ( ). . α = ∆ab p . Since 0, a a∆ > ∈ + ∆  (we chose d ∈∆  such that 0 d<  

and write a  as ( )a d d− + ). 
It is clear that a  works to show that α  has type 1.  
Conversely, suppose α  has type 1 and choose a α∈  such that: [ ].y a y yα∀ + ∈ ⇒ ∈∆  Then we claim 

that: .aα = + ∆  
By definition of ( ). . αab p  certainly a α+ ∆ ≤ . On the other hand by choice of a , every element of α  

has the form a d+  with d ∈∆ . 
Choose d ′∈∆  such that ,d d′ >  then ( )a d a d d d a′ ′+ = − − + ∈ + ∆   . 

Hence .aα ≤ + ∆  Therefore .aα = + ∆   
Examples. 
(i) εd  has type 1 and therefore ε− d  has type 1A. Note that also ε− d  has type 2. (ii) Suppose 0, .ε ε ∗≈ ∈   

Then #ε ε× d  has type 1 and therefore #ε ε− × d  has type 1A. 

(ii) Suppose ( ), . . 0,α α ε∗∈ = >d dab p  i.e. α  has type 1 and therefore by Theorem 2.9 α  has the form 

( )#
a ε∗ + d  for some unique ( ), .a a α∈ = Wst  Then, we define unique Robinson part [ ]αℜp  of absor- 

ption number α  by formula  

{ } ( )
{ } ( )( )

#

#

,

.

aα

α α

∗

∗

ℜ

ℜ =

p

p Wst
                              (2.18) 

(iii) Suppose ( ), . . ,α α ε∗∈ = −dd dab p  i.e. α  has type 1A and therefore by Theorem 2.9 α  has the 

form ( )#
a ε∗ − d  for some unique ( ), .a a α∈ = Wst  Then we define unique. Robinson part [ ]αℜp  of 

absorption number α  by formula  

{ } ( )
{ } ( )( )

#

#

,

.

aα

α α

∗

∗

ℜ

ℜ =

p

p Wst
                             (2.19) 

(iv) Suppose ( ), . . , 0α α∗∈ = ∆ ∆ >d ab p  and α  has type 1A, i.e. α  has the form #a + ∆  for some 

.a ∗∈   Then, we define Robinson part { }αℜp  of absorption number α  by formula  

{ } # .aαℜ p                                  (2.20) 

(v) Suppose ( ), . . , 0α α∗∈ = −∆ ∆ >d ab p  and α  has type 1A, i.e. α  has the form ( )#a + −∆  for some 

.a ∗∈   Then, we define Robinson part { }αℜp  of absorption number α  by formula  

{ } # .aαℜ p                                  (2.21) 

Remark 2.11. Note that in general case, i.e. if ( ),α ∉ −∆ ∆d d  Robinson part { }αℜp  of absorption number 
α  is not unique. 

Remark 2.12. Suppose α ∗∈ d  and ( ),α ∈ −∆ ∆d d  has type 1 or type 1A. Then by definitions above one 
obtains the representation 
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{ } ( ). . .α α α= ℜ +p ab p  

2.6. The Pseudo-Ring of Wattenberg Hyperintegers d
∗   

Lemma 2.12. [6]. Suppose that .α ∗∈ d  Then the following two conditions on α  are equivalent: 
(i) ( ) ( ){ }# #sup | ,α ν ν ν α∗= ∈ ∧ ≤  

(ii) ( ) ( ){ }# #inf .α ν ν α ν∗= ∈ ∧ ≤  

Definition 2.11. [6]. If α  satisfies the conditions mentioned above α  is said to be the Wattenberg 
hyperinteger. The set of all Wattenberg hyperintegers is denoted by .∗d  

Lemma 2.13. [6]. Suppose , .α β ∗∈ d  Then 

(i) .α β ∗+ ∈ d   

(ii) .α ∗− ∈ d  

(iii) .α β ∗× ∈ d  
The set of all positive Wattenberg hyperintegers is called the Wattenberg hypernaturals and is denoted by 

.∗d  
Definition 2.12. Suppose that (i) , ,λ ν∗ ∗∈ ∈ d  (ii) # #ˆ ˆ,λ λ ν ν= =  and (iii) | .λ ν  

If λ̂ ∗∈ d  and ν̂ ∗∈ d  satisfies these conditions then we say that ν̂  is divisible by λ̂  and we denote 

this by # #| .λ ν  
Definition 2.13. Suppose that (i) α ∗∈ d  and (ii) there exists #λ ∗∈ d  such that 
(1) ( ) ( ) ( ){ }# #sup | |α ν ν λ ν ν α∗= ∈ ∧ ∧ ≤  or 

(2) ( ) ( ) ( ){ }# #inf | | .α ν ν λ ν α ν∗= ∈ ∧ ∧ ≤  

If α  satisfies the conditions mentioned above then we say that α  is divisible by #λ  and we denote this 
by # |λ α . 

Theorem 2.10. (i) Let ,∗∈ p  ( ) ,M ∗∈ p  be a prime hypernaturals such that (i) ( )Mp p . Let 

α ∗∈ d  be a Wattenberg hypernatural such that (i) |p α . Then ( )( )#
1.M α+ >p   

(ii) α ∗∈ d  has type 1 iff α−  has type 1A,  
(iii) α ∗∈ d  cannot have type 1 and type 1A simultaneously. 
(iv) Suppose ( ), . . 0.α α∗∈ = ∆ >d ab p  Then α  has type 1 iff α  has the form #a + ∆  for some 

, .a aα ∗∈ ∈    
(v) Suppose ,α ∗∈ d  ( ). . , 0.α = −∆ ∆ >ab p  α ∗∈ d  has type 1A iff α  has the form ( )#a + −∆  for 

some , .a aα ∗∈ ∈   

(vi) Suppose .α ∗∈ d  If ( ) ( ). . . .α β>ab p ab p  then α β+  has type 1 iff α  has type 1.  

(vii) Suppose .α ∗∈ d  If ( ) ( ). . . .α β=ab p ab p  then α β+  has type 2 iff either α  or β  has type 2.  
Proof. (i) Immediately follows from definitions (2.12)-(2.13). 
(iv) Let .aα = + ∆  Then ( ). . α = ∆ab p . Since 0, a a∆ > ∈ + ∆  (we chose d ∈∆  such that 0 d<  and 

write a as ( )a d d− + ). 
It is clear that a works to show that α  has type 1.  
Conversely, suppose α  has type 1 and choose a α∈  such that: [ ].y a y yα∀ + ∈ ⇒ ∈∆  Then we claim 

that: .aα = + ∆   
By definition of ( ). . αab p  certainly a α+ ∆ ≤ . On the other hand by choice of a, every element of α  has 

the form a d+  with d ∈∆ . 
Choose d ′∈∆  such that ,d d′ >  then ( )a d a d d d a′ ′+ = − − + ∈ + ∆   . 
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Hence .aα ≤ + ∆  Therefore .aα = + ∆  

2.7. The Integer Part Int.p(α) of Wattenberg Hyperreals d
∗∈α  

Definition 2.14. Suppose , 0.α α∗∈ ≥d  Then, we define ( ) [ ]. α α ∗= ∈ dInt p  by formula  

[ ] ( ) ( ){ }# #sup | .α ν ν ν α∗∈ ∧ ≤   

Obviously there are two possibilities: 
1. A set ( ) ( ){ }# #|ν ν ν α∗∈ ∧ ≤  has no greatest element. In this case valid only the 

Property I: [ ]α α=  
Since [ ]α α<  implies a ∗∃ ∈   such that [ ] # .aα α< <  But then #a α  <   which implies 
# 1a α  + <   contradicting [ ] # # 1.a aα  < < +   

2. A set ( ) ( ){ }# #|ν ν ν α∗∈ ∧ ≤  has a greatest element, .υ ∗∈   In this case valid the 

Property II: [ ]α υ=  and obviously [ ] [ ] 1 1.υ α α α υ= ≤ < + = +  
Definition 2.15. Suppose .α ∗∈ d  Then, we define ( ). α ∗∈ dInt p  by formula  

( ) [ ]
[ ]

for 0
.

for 0.
α α

α
α α

 ≥= − <
Int p  

Note that obviously: ( ) ( ). . .α α− = −Int p Int p  

2.8. External Sum of the Countable Infinite Series in d
∗  

This subsection contains key definitions and properties of summ of countable sequence of Wattenberg 
hyperreals. 

Definition 2. 16. [4]. Let { } 1n n

∞

=
s  be a countable sequence : .ns →   such that 

(i) ( )0nn s∀ ≥  or (ii) ( )0nn s∀ <  or 

(iii) { } { } { } ( )1 2 11 1 2 2
1 1 11

ˆ, 0 ,n n n nn n n
s s s n n s

∞ ∞∞

= ∈ ∈
 = ∀ ∈ ≥ 

 
  ( ) 22 2 2 1 2

ˆ ˆ ˆ0 , .nn n s ∀ ∈ < =       

Then external sum (#-sum) ## - n
n

Ext s
∈
∑


 of the corresponding countable sequence :ns∗ ∗→   is defined 

by  

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2

1 2
1 1 2 2

##

## #

1 1 1 2 2 2 1 2

# # #

ˆ ˆ

i 0 : # - sup ,

ii < 0 : # - inf sup ,

iii 0 , < 0 , :

# - # - # - .

n n n
kn n k

n n n nk kn n k n k

n n

n n n
n n n

n s Ext s s

n s Ext s s s

n n s n n s

Ext s Ext s Ext s

∗

∈∈ ≤

∗

∈ ∈∈ ≤ ≤

∈ ∈ ∈

 ∀ ≥  
 
   ∀ = −   
   

   ∀ ∈ ≥ ∀ ∈ =   
+

∑ ∑

∑ ∑ ∑

∑ ∑ ∑











 

  

    













            (2.22) 

Theorem 2.11. (i) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that ( )[ ]1n nn n s s+∀ ∈ ≥  and 

lim .n ns η→∞ =  Then ( ){ } ( )# #*sup n
n

s η ε∗

∈
= − d



. 

(ii) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that ( )[ ]1n nn n s s+∀ ∈ <  and lim .n ns η→∞ =  

Then ( ){ } ( )# #*inf nn
s η ε∗

∈
= + d



. 
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(iii) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that ( )[ ]0 ,nn n s∀ ∈ ≥  

1 nn s η∞

=
= < ∞∑  and 

infinite series 
1 nn s∞

=∑  absolutely converges to η  in .  Then  

( ) ( )# ### - sup ,n n
kn n k

Ext s s η ε∗ ∗ ∗

∈∈ ≤

  = − ∈ 
 

∑ ∑


d d                         (2.23) 

(iv) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that ( )[ ]0 ,nn n s∀ ∈ <  

1 nn s η∞

=
= > −∞∑  

and infinite series
1 nn s∞

=∑  absolutely converges to η  in .  Then 

( ) ( )# ### - inf ,n nkn n k
Ext s s η ε∗ ∗ ∗

∈∈ ≤

  = + ∈ 
 

∑ ∑


d d                          (2.24) 

(v) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that  

(1) { } { } { } ( ) ( )1 2 1 21 1 2 2
1 1 1 2 2 21

ˆ ˆ, 0 , 0 ,n n n n nn n n
s s s n n s n n s

∞ ∞∞

= ∈ ∈
   = ∀ ∈ ≥ ∀ ∈ <   

 
   1 2

ˆ ˆ=     and  

(2) 
1 2

1 1 2 2

1 2
ˆ ˆ

, .n n
n n

s sη η
∈ ∈

= < ∞ = > −∞∑ ∑
 

  

Then  

( ) ( )1 2
1 1 2 2

# ## # #
1 2

ˆ ˆ
# - # - # - .n n n

n n n

Ext s Ext s Ext s η η ε∗ ∗ ∗

∈ ∈ ∈

+ = + − ∈∑ ∑ ∑
 




d d               (2.25) 

Proof. (i) Let ( )[ ]1n nn n s s+∀ ∈ >  and lim .n ns η→∞ =  Then obviously: ( )[ ].nn n s η∀ ∈ <  
Thus ε∀ ∈  there exists M ∈  such that (1)  
(1) : .M kk sη ε η+∀ ∈ − < <   
Therefore from (1) by Robinson transfer one obtains (2) 
(2) ( ) ( ) ( ) ( ), : .M kk sε η ε η∗ ∗ ∗ ∗

+∀ ∈ ∀ ∈ − < <         

Using now Wattenberg embedding from (2) we obtain (3)  
(3) ( ) ( ) ( ) ( )# # # #, : .M kk sε η ε η∗ ∗ ∗ ∗

+∀ ∈ ∀ ∈ − < <    

From (3) one obtains (4)  
(4) ( ) ( ) ( ) ( )# # # #: sup .M k

k
sε η ε η∗ ∗ ∗ ∗

+
∈

∀ ∈ − < <


   

Note that ( ) ( )0δ δ δ∀ ∈ ∧ ≈    obviously  
(5) ( ) ( )# # #sup .n

n
s η δ∗ ∗

∈
< −



  

From (4) and (5) one obtains (6)  

(6) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }# # # # #0 sup .n
n

sε ε δ δ δ η ε η δ∗ ∗ ∗ ∗

∈
∀ ∈ ∀ ∈ ∧ ≈ − < < −  



    

Thus (i) immediately from (6) and from definition of the idempotent ε− d . 
Proof.(ii) Immediately from (i) by Lemma 2.3 (v). 
Proof.(iii)  Let 1

m
m nn sη

=
= ∑ . Then obviously: mη η<  and limm mη η→∞ = . Thus ε∀ ∈  there exists  

M ∈  such that (1)  
(1) : .M kk η ε η η+∀ ∈ − < <   
Therefore from (1) by Robinson transfer one obtains (2)   
(2) ( ) ( ) ( ) ( ), : .M kkε η ε η η∗ ∗ ∗ ∗

+∀ ∈ ∀ ∈ − < <    

Using now Wattenberg embedding from (2) we obtain (3)  
(3) ( ) ( ) ( ) ( )# # # #, : .M kkε η ε η η∗ ∗ ∗ ∗

+∀ ∈ ∀ ∈ − < <    

From (3) one obtains (4)  
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(4) ( ) ( ) ( ) ( )# # # #: sup .M k
k

ε η ε η η∗ ∗ ∗ ∗
+

∈
∀ ∈ − < <



   

From (4) by Definition 2.16 (i) one obtains  
(5) ( ) ( ) ( ) ( )# # # #: # - .n

n
Ext sε η ε η∗ ∗ ∗ ∗

∈

∀ ∈ − < <∑


   

Note that ( ) ( )0δ δ δ∀ ∈ ∧ ≈    obviously  

(6) ( ) ( )# # ## - .n
n

Ext s η δ∗ ∗

∈

< −∑


  

From (5)-(6) follows (7)  

(7) ( ) ( ) ( ) ( ) ( ) ( ) ( )# # # # #0 # - .n
n

Ext sε ε δ δ δ η ε η δ∗ ∗ ∗ ∗

∈

 ∀ ∈ ∀ ∈ ∧ ≈ − < < −      
∑ 


  

Thus Equation (2.23) immediately from (7) and from definition of the idempotent ε− d . 
Proof.(iv) Immediately from (iii) by Lemma 2.3 (v). 
Proof.(v) From Definition 2.16.(iii) and Equation (2.23)-Equation (2.24) by Theorem 2.7.(iii) one obtains  

( ) ( )( )
( ) ( ) ( ) ( )

1 2
1 1 2 2

# ## # #
1 2

ˆ ˆ

# # # #

1 2 1 2

# - # - # -

.

n n n
n n n

Ext s Ext s Ext s η ε η ε

η η ε ε η η ε

∗ ∗

∈ ∈ ∈

∗ ∗ ∗ ∗ ∗

+ = − + +

= + − + = + − ∈

∑ ∑ ∑
 

 d d

d d d d




 

Theorem 2.12. Let { } 1n n
a ∞

=
 be a countable sequence :na →   such that ( )0nn a∀ ≥  and infinite series 

1 nn a∞

=∑  absolutely converges in  . Let ## - n
n

s Ext a
∈

= ∑


 be external sum of the corresponding countable 

sequence { }
1n n

a
∞∗

=
. Let { } 1n n

b ∞

=
 be a countable sequence where ( )n m nb a=  is any rearrangement of terms of 

the sequence { } 1n n
a ∞

=
. Then external sum ## - n

n
Ext bσ

∈

= ∑


 of the corresponding countable sequence { }
1n m

b
∞∗

=
 

has the same value s as external sum of the countable sequence { }na∗ , i.e. .sσ ε= − d  

Theorem 2.13. (i) Let { } 1n n
a ∞

=
 be a countable sequence : ,na → d  such that (1) ( )0 ,nn a∀ ≥  (2) 

infinite series 
1 nn a∞

=∑  absolutely converges to η ≠ +∞  in   and let ## - n
n

Ext a
∈
∑


 be external sum of the 

corresponding sequence { }
1n n

a
∞∗

=
. Then for any c ∗

+∈   the equality is satisfied 

( )## # # # # ## - # - .n n
n n

c Ext a Ext c a c cη ε∗

∈ ∈

 × = × = × − × 
 

∑ ∑
 

d                      (2.26) 

(ii) Let { } 1n n
a ∞

=
 be a countable sequence : ,na →   such that (1) ( )0 ,nn a∀ <  (2) infinite  series 

1 nn a∞

=∑  absolutely converges to η ≠ −∞  in   and let ## - n
n

Ext a
∈
∑


 be external sum of the corresponding 

sequence { }
1n n

a
∞∗

=
. Then for any c ∗

+∈   the equality is satisfied:  

( )## # # # # ## - # - .n n
n n

c Ext a Ext c a c cη ε∗

∈ ∈

 × = × = × − × 
 

∑ ∑
 

d                     (2.27) 

(iii) Let { } 1n n
s ∞

=
 be a countable sequence :ns →   such that 

(1) { } { } { } ( ) ( )
1 2 1 21 1 2 2

1 1 1 2 2 21
, 0 , 0 ,n n n n nn n n

s s s n n s n n s
∞ ∞∞

= ∈ ∈
   = ∀ ∈ ≥ ∀ ∈ <   

 

    1 2 ,=     

(2) infinite series 
11 nn s∞

=∑  absolutely converges to 1η ≠ +∞  in  , 

(3) infinite series 
21 nn s∞

=∑  absolutely converges to 2η ≠ −∞  in  . 
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Then the equality is satisfied: 

( ) ( )( )
1 2

1 1 2 2

# # # # # #

ˆ ˆ

# ## #
1 2

# - # - # -

.

n n n
n n n

c Ext s Ext c s Ext c s

c cη η ε

∈ ∈ ∈

∗ ∗

 × = × + × 
 

= × + − ×

∑ ∑ ∑
  

d

                    (2.28) 

Proof. (i) From Definition 2.16. (i) by Theorem 2.1, Theorem 2.11. (i) and Lemma (2.4) (ii) one obtains  

( )( ) ( )# ## # # # # # ## - # - .n n
n n

Ext c a c Ext a c c cη ε η ε∗ ∗

∈ ∈

 × = × = × − = × − × 
 

∑ ∑
 

d d  

(ii) Straightforward from Definition 2.16. (i) and Theorem 2.1, Theorem 2.11. (ii) and Lemma (2.4) (ii) one 
obtains 

( )( ) ( )# ## # # # # # ## - # - .n n
n n

Ext c a c Ext a c c cη ε η ε∗ ∗

∈ ∈

   × = × = × + = × + ×   
   

∑ ∑
 

d d  

(iii) By Theorem 2.11. (iii) and Lemma (2.4). (ii) one obtains 

( ) ( )( ) ( ) ( )( )# # # ## # # # #
1 2 1 2# - .n

n
c Ext s c c cη η ε η η ε∗ ∗ ∗ ∗

∈

 × = × + − = × + − × 
 

∑


d d   

But other side from (i) and (ii) follows 

( ) ( )
( ) ( )( )

1 2
1 1 2 2

# # # #

ˆ ˆ

# ## # # #
1

# ## #
1 2

# - # -

.

n n
n n

Ext c s Ext c s

c c c c

c c

η ε η ε

η η ε

∈ ∈

∗ ∗

∗ ∗

× + ×

= × − × + × + ×

= × + − ×

∑ ∑
 

d d

d

 

Definition 2.17. Let { } 1n n
a ∞

=
 be a countable sequence : ,na →   such that infinite series 

1 nn a∞

=∑  

absolutely converges in   to .η ≠ ±∞  We assume now that: 

(i) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ >∑  or 

(ii) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ <∑  or 
(iii) there exists infinite sequence , 1, 2,in i =   such that 
(a) 

1, :
i

m
nii m a η

=
∀ >∑  and infinite series 

1 ini a∞

=∑  absolutely converges in   to η  and 

(b) there exists infinite sequence , 1, 2,jn j =   such that 
1, :

j

m
njj m a η

=
∀ <∑  and infinite series 

1 jnj a∞

=∑  

absolutely converges in   to η . 
Then: (i) external upper sum (#-upper sum) of the corresponding countable sequence :na∗ →   is 

defined by  

( ) ( )

( ) ( )

##

##

i # - inf ,

ii # - inf ,
i i

n nkn n k

n nki i k

Ext a a

Ext a a

∨
∗

∈∈ ≤

∨
∗

∈∈ ≤

  
 

  


     

∑ ∑

∑ ∑









                       (2.29) 

(ii) external lower sum (#-lower sum) of the corresponding countable sequence :na∗ →   is defined by  

( ) ( )

( ) ( )

##

#
#

i # - sup ,

ii # - sup .
j j

n n
kn n k

n n
kj j k

Ext a a

Ext a a

∧
∗

∈∈ ≤

∧
∗

∈∈ ≤

  
 
 


     

∑ ∑

∑ ∑









                      (2.30) 
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Theorem 2.14. (1) Let { } 1n n
a ∞

=
 be a countable sequence : ,na →   such that infinite series 

1 nn a∞

=∑  

absolutely converges in   to .η ≠ ±∞  We assume now that: 

(i) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ >∑  or 

(ii) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ <∑  or 
(iii) there exists infinite sequence , 1, 2,in i =   such that 
(a) 

1, :
i

m
nii m a η

=
∀ >∑  and infinite series 

1 ini a∞

=∑  absolutely converges in   to η  and 

(b) there exists infinite sequence , 1, 2,jn j =   such that 
1, :

j

m
njj m a η

=
∀ <∑  and infinite series 

1 jnj a∞

=∑  

absolutely converges in   to η . 
Then  

( ) ( )

( ) ( )

# ##

# ##

# - inf ,

# - sup .

n nkn n k

n n
kn n k

Ext a a

Ext a a

η ε

η ε

∨
∗ ∗ ∗

∈∈ ≤

∧
∗ ∗ ∗

∈∈ ≤

   = + ∈ 
  


  = − ∈   

∑ ∑

∑ ∑













d d

d d

                (2.31) 

and  

( ) ( )

( ) ( )

# ##

# ##

# - inf ,

# - sup .

i i

j j

n nki i k

n n
kj j k

Ext a a

Ext a a

η ε

η ε

∨
∗ ∗ ∗

∈∈ ≤

∧
∗ ∗ ∗

∈∈ ≤

   = + ∈ 
 


  = − ∈   

∑ ∑

∑ ∑













d d

d d

                     (2.32) 

Proof. (i), (ii), (iii) straightforward from definitions. 
Theorem 2.15. (1) Let { } 1n n

a ∞

=
 be a countable sequence : ,na →   such that infinite series 

1 nn a∞

=∑  

absolutely converges in   to .η ≠ ±∞  We assume now that: 

(i) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ >∑  or 

(ii) there exists 1m >  such that 
1: ,k

nnk m a η
=

∀ ≥ <∑  or 
(iii) there exists infinite sequence , 1, 2,in i =   such that 
(a) 

1, :
i

m
nii m a η

=
∀ >∑  and infinite series 

1 ini a∞

=∑  absolutely converges in   to η  and 

(b) there exists infinite sequence , 1, 2,jn j =   such that 
1, :

j

m
njj m a η

=
∀ <∑  and infinite series 

1 jnj a∞

=∑  

absolutely converges in   to η . 
Then for any c ∗

+∈   the equalities is satisfied  

( )

( )

## # # # # #

## # # # # # #

# - # - ,

# - # - .

n n
n n

n n
n n

Ext c a c Ext a c c

Ext c a c Ext c a c c

η ε

η ε

∨ ∨
∗ ∗

∈ ∈

∧ ∧
∗ ∗

∈ ∈

  × = × = × + × ∈  
  


  × = × = × − × ∈   

∑ ∑

∑ ∑

 

 





d d

d d

                (2.33) 

and 

( )

( )

## # # # # #

## # # # # #

# - # - ,

# - # - .

i i

j j

n n
i i

n n
j j

Ext c a c Ext a c c

Ext c a c Ext a c c

η ε

η ε

∨ ∨
∗ ∗

∈ ∈

∧ ∧
∗ ∗

∈ ∈

  × = × = × + × ∈  
 


  × = × = × − × ∈   

∑ ∑

∑ ∑

 

 





d d

d d

                (2.34) 

Proof. Copy the proof of the Theorem 2.13. 
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Theorem 2.16. (1) Let { } 1n n
a ∞

=
 be a countable sequence : ,na →   such that infinite series 

1 nn a∞

=∑  

absolutely converges in   to 0.η =  We assume now that: 

(i) there exists 1m >  such that 
1: 0,k

nnk m a
=

∀ ≥ >∑  or 

(ii) there exists 1m >  such that 
1: 0,k

nnk m a
=

∀ ≥ <∑  or 
(iii) there exists infinite sequence , 1, 2,in i =   such that 
(a) 

1, : 0
i

m
nii m a

=
∀ >∑  and infinite series 

1 ini a∞

=∑  absolutely converges in   to 0η =  and 

(b) there exists infinite sequence , 1, 2,jn j =   such that 
1, : 0

j

m
njj m a

=
∀ <∑  and infinite series 

1 jnj a∞

=∑  

absolutely converges in   to 0.η =  

Then for any c ∗
+∈   the equalities is satisfied  

# # # # #

# # # # # #

# - # - ,

# - # - .

n n
n n

n n
n n

Ext c a c Ext a c

Ext c a c Ext c a c

ε

ε

∨ ∨
∗

∈ ∈

∧ ∧
∗

∈ ∈

  × = × = × ∈  
  


  × = × = − × ∈   

∑ ∑

∑ ∑

 

 





d d

d d

                     (2.35) 

and 

# # # # #

# # # # #

# - # - ,

# - # - .

i i

j j

n n
i i

n n
j j

Ext c a c Ext a c

Ext c a c Ext a c

ε

ε

∨ ∨
∗

∈ ∈

∧ ∧
∗

∈ ∈

  × = × = × ∈  
 


  × = × = − × ∈   

∑ ∑

∑ ∑

 

 





d d

d d

                     (2.36) 

Proof. (1) From Equation (2.31) we obtain 

#

#

# - ,

# - .

n
n

n
n

Ext a

Ext a

ε

ε

∨

∈

∧

∈

 = +

 = −


∑

∑





d

d

                                   (2.37) 

From Equation (2.37) by Theorem 2.1 we obtain directly 

# # # # #

# # # # # #

# - # - ,

# - # - .

n n
n n

n n
n n

Ext c a c Ext a c

Ext c a c Ext c a c

ε

ε

∨ ∨

∈ ∈

∧ ∧

∈ ∈

  × = × = ×  
  


  × = × = − ×   

∑ ∑

∑ ∑

 

 

d

d

                      (2.38)  

(2) From Equation (2.32) we obtain 

#

#

# - ,

# - .

i

j

n
i

n
j

Ext a

Ext a

ε

ε

∨

∈

∧

∈

 = +

 = −


∑

∑





d

d

                                  (2.39) 

From Equation (2.39) by Theorem 2.1 we obtain directly  

# # # # #

# # # # #

# - # - ,

# - # - .

i i

j i

n n
i i

n n
j i

Ext c a c Ext a c

Ext c a c Ext a c

ε

ε

∨ ∨
∗

∈ ∈

∧ ∧
∗

∈ ∈

  × = × = × ∈  
 


  × = × = − × ∈   

∑ ∑

∑ ∑

 

 





d d

d d

                 (2.40) 

Remark 2.13. Note that we have proved Equation (2.35) and Equation (2.36) without any reference to the 



J. Foukzon 
 

 
605 

Lemma 2.4. 
Definition 2.18. (i) Let { } 1n n

α ∞

=
 be a countable sequence : ,nα

∗→ d   such that  

( )[ ] ( ) ( ) ( )#0 0 and 1n n n nn n m n n m a aα α ∗ ∀ ≥ > > ∀ ≤ − = ∧ ∈              (2.41) 

Then external countable upper sum (#-sum) of the countable sequence :na ∗→ d   is defined by 
1

0
# - # -

# - sup .

m

n n n
n n n m

k

n n
kn m n m

Ext Ext

Ext

α α α

α α

∧ − ∞

∈ = =

∞

∈= =

= +∑ ∑ ∑

∑ ∑





                          (2.42) 

In particular if { } { }#
1 1

,n nn n
aα

∞∞

= =
=  where nn a ∗ ∀ ∈ ∈    the external countable upper sum (#-sum) of 

the countable sequence :nα
∗→ d   is defined by  

1
# #

0

#

# - # - ,

# - sup .

m

n n n
n n n m

k

n n
kn m n m

Ext a Ext a

Ext a

α

α

∧ − ∞

∈ = =

∞

∈= =

= +∑ ∑ ∑

∑ ∑





                          (2.43) 

(ii) Let { } 1n n
α ∞

=
 be a countable sequence : ,nα

∗→ d   such that 

( )[ ] ( ) ( ) ( )#0 0 and 1n n n nn n m n n m a aα α ∗ ∀ ≥ > < ∀ ≤ − = ∧ ∈           (2.44) 

Then external countable lower sum (#-sum) of the countable sequence :na ∗→ d   is defined by 
1

0
# - # -

# - inf .

m

n n n
n n n m

k

n nkn m n m

Ext Ext

Ext

α α α

α α

∨ − ∞

∈ = =

∞

∈= =

= +∑ ∑ ∑

∑ ∑





                         (2.45) 

In particular if { } { }#
1 1

,n nn n
aα

∞∞

= =
=  where nn a ∗ ∀ ∈ ∈    the external countable lower sum (#-sum) of 

the countable sequence :nα
∗→ d   is defined by  

1
# #

0

#

# - # - ,

# - inf .

m

n n n
n n n m

k

n nkn m n m

Ext a Ext a

Ext a

α

α

∨ − ∞

∈ = =

∞

∈= =

= +∑ ∑ ∑

∑ ∑





                        (2.46) 

Theorem 2.17. (i) Let { } 1n n
α ∞

=
 be a countable sequence : ,nα

∗→ d   such that valid the property (2.41).  

Then for any c ∗
+∈   the equality is satisfied  

1
# # # # # #

0
# - # # - .

m

n n n n
n n n n m

c Ext Ext c c a Ext c aα α
∧ ∧ − ∞

∈ ∈ = =

 × = − × = × + × 
 

∑ ∑ ∑ ∑
 

        (2.47) 

(ii) Let { } 1n n
α ∞

=
 be a countable sequence : ,nα

∗→ d   such that valid the property (2.44). 

Then for any c ∗
+∈   the equality is satisfied  

1
# # # # # #

0
# - # - # - .

m

n n n n
n n n n m

c Ext Ext c c a Ext c aα α
∨ ∨ − ∞

∈ ∈ = =

 × = × = × + × 
 

∑ ∑ ∑ ∑
 

        (2.48) 

Proof. Immediately from Definition 2.18 by Theorem 2.1. 
Definition 2.19. Let { } { }1 1n n nn n

z a b∞ ∞

= =
= +  be a countable sequence :n n nz a ib= + →   such that infinite 
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series 
1 nn z∞

=∑  absolutely converges in  . Then external countable complex sum (#-sum) of the corresponding 

countable sequence :nz∗ ∗→   is defined by  

# # #

# # #

# # #

# - # - # - ,

# - # - # - ,

# - # - # - .

n n n
n n n

n n n
n n n

n n n
n n n

Ext z Ext a i Ext b

Ext z Ext a i Ext b

Ext z Ext a i Ext b

∈ ∈ ∈

∧ ∧ ∧

∈ ∈ ∈

∨ ∨ ∨

∈ ∈ ∈

 = + ×  
 
 = + ×  
 
 = + ×  
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

  

  

  

                          (2.49) 

correspondingly. 
Note that any properties of this sum immediately follow from the properties of the real external sum. 
Definition 2.20. (i) We define now Wattenberg complex plane ∗

d  by i∗ ∗ ∗= ⊕ ×d d d    with 2 1i = . 

Thus for any z ∗∈ d  we obtain z x iy= + , where ,x y ∗∈ d , (ii) for any z ∗∈ d  such that z x iy= +  we 

define 2z  by 2 2 2z x y ∗= + ∈ d .  

Theorem 2.18. Let { } { }1 1n n nn n
z a ib∞ ∞

= =
= +  be a countable sequence :n n nz a ib= + →   such that infinite 

series 1 nn z∞

=∑  absolutely converges in   to 1 2z iζ ζ= +  and z ≠ ∞ . Then 

(i) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

# ## # #
1 2

# # # # #
1 2

# # # # #
1 2

# - # - # -

1 # - # - # -

1 # - # # -

n n n
n n n

n n n
n n n

n n n
n n n

Ext z Ext a i Ext b i

i i Ext z Ext a i Ext b

i i Ext z Ext a i Ext b

ζ ε ζ ε

ζ ζ ε

ζ ζ ε

∗ ∗

∈ ∈ ∈

∨ ∨ ∨
∗ ∗

∈ ∈ ∈

∧ ∧ ∧
∗ ∗

∈ ∈ ∈

     = + × = − + −         
 = + − + = + × 
 

= + + + = − + ×

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

d d

d

d

  

  

  

( ) ( ) ( )
# #

1 2 1i iζ ζ ε∗ ∗

 
 
 

= + − +

∑

d

 

(ii) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

22 2# ## # #
1 2

22 2# ## # #
1 2

22
# ## # #

1 2

# - # - # - 1 ,

# - # - # 1 ,

# - # - # -

n n n
n n n

n n n
n n n

n n n
n n n

Ext z Ext a i Ext b i i

Ext z Ext a i Ext b i i

Ext z Ext a i Ext b i

ζ ζ ε

ζ ζ ε

ζ ζ

∗ ∗

∈ ∈ ∈

∨ ∨ ∨
∗ ∗

∈ ∈ ∈

∧ ∧ ∧
∗ ∗

∈ ∈ ∈

 = + × = + − + 
 

 = + × − = + + + 
 

 = + × = + + 
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

d

d

  

  

  
( )

2

1 .iε +d

 

2.9. Gonshor Transfer 

Definition 2.21. [7]. Let [ ] ( )[ ]{ }S x y y S x y= ∃ ∈ ≤d
. 

Note that [ ]S d  satisfies the usual axioms for a closure operator,i.e. if (i) ,S S ′≠ ∅ ≠ ∅  and 
(ii) S has no maximum, then [ ] .S ∗∈ dd    

Let f be a continuous strictly increasing function in each variable from a subset of n  into  . Specifically, 
we want the domain to be the cartesian product 

1 ,n
ii A

=∏  where { }i iA x x a= >  for some .ia ∈  By Robin- 

son transfer f extends to a function : nf∗ ∗ ∗→   from the corresponding subset of n∗  into ∗  which is 
also strictly increasing in each variable and continuous in the Q topology (i.e. ε  and δ  range over arbitrary 
positive elements in ∗ ). We now extend f∗  to f∗  d
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: .nf∗ ∗ ∗  →  d dd
                                       (2.50) 

Definition 2.22. [7]. Let ,iα
∗∈ d  ,i iaα >  ,ib ∗∈   then  

( ) ( ){ }1 2 1 2, , , , , , .n n i i if f b b b a bα α α α∗ ∗   = < ∈   d d
                      (2.51) 

Theorem 2.19. [7]. If f and g are functions of one variable then  

( ) ( ) ( )( ) ( )( ).f g f gα α α∗ ∗ ∗     ⋅ = ⋅     d d d
                        (2.52) 

Theorem 2.20. [7]. Let f be a function of two variables. Then for any α ∗∈    and a ∗∈    

( ) ( ), , , .f a f b c b c aα α∗ ∗   = ∈ <   d
                           (2.53) 

Theorem 2.21. [7]. Let f and g be any two terms obtained by compositions of strictly increasing continuous 
functions possibly containing parameters in ∗ . Then any relation f g∗ ∗=  or f g∗ ∗<  valid in ∗  
extends to ,∗

d  i.e.  

( ) ( ) ( ) ( )or .f g f gα α α α∗ ∗ ∗ ∗       = <       d d d d
                     (2.54) 

Remark 2.14. For any function : nf∗ ∗ ∗→   we often write for short #f  instead of f∗  d
. 

Theorem 2.22. [7]. (1) For any ,a b ∗
+∈    

( ) ( ) ( )
( )( ) ( )

#

# # # # # # #

# # # # #

exp exp exp ,

exp exp .
b

a b a b

a b a

 + =


 =

                          (2.55) 

For any , , , 0α β α β∗∈ >d  

( ) ( ) ( )
( )( ) ( )

# # #

# #

exp exp exp ,

exp exp .
β

α β α β

α βα

 + =


=
                          (2.56) 

(2) For any ,a b ∗∈    

( ) ( )
## # .

bba a=                                   (2.57) 

(3) For any , , , , , 0α β γ α β γ∗∈ >d  

( )γβ γβα α=                                    (2.58) 

(4) For any a ∗∈    

( )( )
( )( )

# # # #

# # # #

ln exp ,

exp ln .

a a

a a

=

=
                               (2.59) 

Note that we must always beware of the restriction in the domain when it comes to multiplication. 
Theorem 2.23. [7]. The map [ ] ( )expα αd  maps the set of additive idempotents onto the set of all 

multiplicative idempotents other than 0.  

3. The Proof of the #-Transcendene of the Numbers , ∈ke k  
In this section we will prove the #-transcendence of the numbers , .ke k ∈  Key idea of this proof reduction of 
the statement of e  is #-transcendental number to equivalent statement in ∗

d  by using pseudoring of 
Wattenberg hyperreals ∗ ∗⊃d d   [6] and Gonshor idempotent theory [7]. We obtain this reduction by three 
steps, see Subsections 3.2.1 - 3.2.3. 
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3.1. The Basic Definitions of the Shidlovsky Quantities 
In this section we remind the basic definitions of the Shidlovsky quantities [8]. Let ( ) ( )0 , , ,kM n p M n p  and 

( ),k n pε  be the Shidlovsky quantities: 

( ) ( ) ( )
( )

1

0
0

1
, d 0,

1 !

pp xx x x n e
M n p x

p

− −+∞  − −   = ≠
−  

∫


                   (3.1) 

( ) ( ) ( )
( )

1 1
, , 1, 2,

1 !

pp x
k

k
k

x x x n e
M n p e dx k

p

− −+∞  − −   = =
−  

∫


                (3.2) 

( ) ( ) ( )
( )

1

0

1
, d , 1, 2,

1 !

pp xk
k

k

x x x n e
n p e x k

p
ε

− − − −   = =
−  

∫


                 (3.3) 

where p∈  this is any prime number. Using Equations (3.1)-(3.3.) by simple calculation one obtains:  

( ) ( ) ( )0, , , 0, 1, 2, .k
k kM n p n p e M n p kε+ = ≠ =                   (3.4) 

and consequently 

( ) ( )
( )0

, ,
, 1, 2,

,
k kk M n p n p

e k
M n p

ε+
= =                         (3.5) 

Lemma 3.1. [8]. Let p be a prime number. Then ( ) ( ) ( )0 1 1, 1 ! , .n pM n p n p= − + Θ Θ ∈  
Proof. ([8], p. 128) By simple calculation one obtains the equality  

( ) ( ) ( ) ( )
( )

( )

1
1 1 1

1
1

1 1 ! ,

, , 1, , 1 1, 0,

n p
p n pp p

p
x x x n n x c x

c p p n p n

µ
µ

µ

µ µ

+ ×
− − −

−
= +

− − = − +  

∈ = + + × − >  

∑


              (3.6) 

where p is a prime. By using equality ( ) ( )1
0

d 1 !,xx e xµµ µ
∞ − −Γ = = −∫  where ,µ ∈  from Equations (3.1) and 

(3.6) one obtains  

( ) ( ) ( ) ( )
( )

( )
( )

( )

( ) ( ) ( )
( ) ( )

1

0 1
1

1

1 1

, 1 !
1 ! 1 !

1 ! 1

1 ! , .

n p
n p

p

n p
p p

n p

p
M n p n c

p p

n c p c p p

n p

µ
µ

µ+ ×

−
= +

+

Γ Γ
= − +

− −

= − + + + +

= − + ×Θ Θ ∈

∑





                     (3.7) 

Thus  

( ) ( ) ( ) ( ) ( )0 1 1, 1 ! , , , .n pM n p n p n p n p= − + ⋅Θ Θ ∈                     (3.8) 

Lemma 3.2. [8]. Let p be a prime number. Then ( ) ( )2, , ,kM n p p n p= ⋅Θ  ( )2 , ,n pΘ ∈  1, 2, ,k n=  . 
Proof. ([8], p. 128) By subsitution d dx k u x u= + ⇒ =  from Equation (3.3) one obtains 

( ) ( ) ( ) ( )
( )

1

0

1
, , 1, 2,

1 !

pp u

k

u k u k u u k n e
M n p du k

p

− −+∞  + + − × × × × + −   = =
−  

∫
 

      (3.9) 

By using equality 

( ) ( ) ( )
( )

( )

1
1 1

1
1

1 ,

, , 1, , 1 1,

n p
pp

p
u k u k u u k n d u

d p p n p

µ
µ

µ

µ µ

+ ×
− −

−
= +

+ + − × × × × + − =  

∈ = + + × −  

∑ 


             (3.10) 

and by subsitution Equation (3.10) into RHS of the Equation (3.9) one obtains  
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( ) ( )
( )

( )

( )

1
1

1 2
10

2

1, d , ,
1 !

, , 1, 2, .

n p

k
p

M n p d u u p n p
p

n p k

µ
µ

µ

+∞ + ×
−

−
= +

= = ⋅Θ
−

Θ ∈ =

∑∫


                  (3.11) 

Lemma 3.3. [8]. (i) There exists sequences ( ) ,a n n∈  and ( ) ,g n n∈  such that  

( ) ( ) ( )
( )

1

, ,
1 !

p

k

n g n a n
n p

p
ε

−
⋅ ⋅   ≤

−
                            (3.12) 

where sequences ( ) ,a n n∈  and ( ) ,g n n∈  does not depend on number p. (ii) For any ( ): , 0kn n pε∈ →  
if p →∞ . 

Proof. ([8], p. 129) Obviously there exists sequences ( ) ,a n n∈  and ( ) , , .g n k n∈ ∈   such that 

( ) ,a n n∈  and ( ) ,g n n∈  does not depend on number p  

( ) ( ) ( )1 ,0x x x n a n x n− − < ≤ ≤
                        (3.13) 

and  

( ) ( ) ( )1 , 0 , 1, 2, , .x kx x n e g n x n k n− +− − < ≤ ≤ = 
                  (3.14) 

Substitution inequalities (3.13)-(3.14) into RHS of the Equation (3.3) by simple calculation gives 

( ) ( ) ( )
( )

( ) ( )
( )

1 1

0

, d .
1 ! 1 !

p pk

k

a n n g n a n
n p g n x

p p
ε

− −
⋅ ⋅      ≤ ≤

− −∫                   (3.15) 

Statement (i) follows from (3.15). Statement (ii) immediately follows from a statement (ii). 
Lemma 3.4. [8]. For any k n≤  and for any δ  such that 0 1δ< <  there exists p∈  such that 

( )
( )0

,
.

,
kk M n p

e
M n p

δ− <                                 (3.16) 

Proof. From Equation (3.5) one obtains  

( )
( )

( )
( )0 0

,,
.

, ,
kkk n pM n p

e
M n p M n p

ε
− =                             (3.17) 

From Equation (3.17) by using Lemma 3.3. (ii) one obtains (3.17). 
Remark 3.1. We remind now the proof of the transcendence of e  following Shidlovsky proof is given in his 

book [8]. 
Theorem 3.1. The number e  is transcendental. 
Proof. ([8], pp. 126-129) Suppose now that e  is an algebraic number; then it satisfies some relation of the 

form  

0
1

0,
n

k
k

k
a a e

=

+ =∑                                 (3.18) 

where 0 1, , , na a a ∈   integers and where 0 0.a >  Having substituted RHS of the Equation (3.5) into 
Equation (3.18) one obtains  

( ) ( )
( )

( )
( )

( )
( )0 0

1 1 10 0 0

, , , ,
0.

, , ,

n n n
k k k k

k k k
k k k

M n p n p M n p n p
a a a a a

M n p M n p M n p
ε ε

= = =

+
+ = + + =∑ ∑ ∑          (3.19) 

From Equation (3.19) one obtains  

( ) ( ) ( )0 0
1 1

, , , 0.
n n

k k k k
k k

a M n p a M n p a n pε
= =

+ + =∑ ∑                   (3.20) 
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We rewrite the Equation (3.20) for short in the form  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
1 1

0 0
1 1

, , ,

, , , 0, , , .

n n

k k k k
k k

n n

k k k k
k k

a M n p a M n p a n p

a M n p n p a n p n p a M n p

ε

ε

= =

= =

+ +

= + Ξ + = Ξ =

∑ ∑

∑ ∑
         (3.21) 

We choose now the integers ( ) ( ) ( )1 2, , , , , ,nM n p M n p M n p  such that:  

( ) ( ) ( )1 2 0| , , | , , , | , , wherenp M n p p M n p p M n p p a>               (3.22) 

and ( )0 ,p M n p . Note that ( )| , .p n pΞ  Thus one obtains  

( ) ( )0 0 , ,p a M n p n p+ Ξ                                (3.23) 

and therefore  

( ) ( ) ( ) ( )0 0 0 0, , , where , , 0.a M n p n p a M n p n p+ Ξ ∈ +Ξ ≠                (3.24) 

By using Lemma 3.4 for any δ  such that 0 1δ< <  we can choose a prime number ( )p p δ=  such that:  

( )
1 1

, 1.
n n

k k k
k k

a n p aε δ
= =

< = <∑ ∑                              (3.25) 

From (3.25) and Equation (3.21) we obtain  

( ) ( )0 0 , , 0.a M n p n p+ Ξ + =                             (3.26) 

From (3.26) and Equation (3.24) one obtains the contradiction.This contradiction finalized the proof. 

3.2. The Proof of the #-Transcendene of the Numbers ke k ∈, . We Will Divide the Proof  
into Four Parts 

3.2.1. Part I. The Robinson Transfer of the Shidlovsky Quantities ( ) ( ) ( )k kM n p M n p n p0 , , , , ,ε  
In this subsection we will replace using Robinson transfer the Shidlovsky quantities  

( ) ( ) ( )0 , , , , ,k kM n p M n p n pε  by corresponding nonstandard quantities ( ) ( )0 , , , ,kM M∗ ∗n p n p  ( ), .kε
∗ n p  

The properties of the nonstandard quantities ( ) ( ) ( )0 , , , , ,k kM M ε∗ ∗ ∗n p n p n p  one obtains directly from the pro-  
perties of the standard quantities ( ) ( ) ( )0 , , , , ,k kM n p M n p n pε  using Robinson transfer principle [4] [5]. 

1. Using Robinson transfer principle [4] [5] from Equation (3.8) one obtains directly 

( ) ( ) ( ) ( ) ( )0 1 1, 1 ! , , , , , . \ .M∗ ∗ ∗ ∗ ∗ ∗
∞ ∞ ∞= − + × Θ Θ ∈ ∈     n pn p n p n p n p n p           (3.27) 

From Equation (3.11) using Robinson transfer principle one obtains ( )k k∀ ∈ : 

( ) ( )( ) ( )2 2, , , , 1, 2, , , , .kM k k∗ ∗ ∗ ∗ ∗
∞ ∞= × Θ Θ ∈ = ∈ ∈  n p p n p n,p n p            (3.28) 

Using Robinson transfer principle from inequality (3.15) one obtains ( )k k∀ ∈ : 

( )
( )( ) ( )( )
( )

1

, , 1, 2, , , , .
1 !k

g a
k kε

−∗ ∗

∗ ∗
∞

 ⋅ ⋅  
≤ = ∈ ∈

−
  

p
n n n

n p n p
p

                (3.29) 

Using Robinson transfer principle, from Equation (3.5) one obtains ( )k k∀ ∈ : 

( ) ( ) ( ) ( )( )
( )0

, ,
, 1, 2, , , , .

,
k k kk

M
e e k k

M

ε∗ ∗
∗ ∗ ∗

∞∗

+
= = = ∈ ∈  

n p n p
n p

n p
              (3.30) 

Lemma 3.5. Let ∗
∞∈ n , then for any k∈  and for any 0,δ δ ∗≈ ∈   there exists ∗

∞∈ p  such that  

( )
( )0

,
.

,
kk M

e
M

δ
∗

∗
∗− <

n p
n p

                                (3.31) 
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Proof. From Equation (3.30) we obtain ( )k k∀ ∈ : 

( )
( )

( )
( )0 0

,,
, , , .

, ,
kkk M

e k
M M

ε∗∗
∗ ∗

∞∗ ∗
− = ∈ ∈ 

n pn p
n p

n p n p
                     (3.32) 

From Equation (3.32) and (3.29) we obtain (3.31). 

3.2.2. Part II. The Wattenberg Imbedding ( )ke
∗

 into ∗ d  
In this subsection we will replace by using Wattenberg imbedding [6] and Gonshor transfer the nonstandard 
quantities ( )ke∗  and the nonstandard Shidlovsky quantities ( ) ( )0 , , , ,kM M∗ ∗n p n p  ( ),kε

∗ n p  by correspond- 

ing Wattenberg quantities ( ) ( )( ) ( )( ) ( )( )# # # #

0, , , , , , .k
k ke M M ε∗ ∗ ∗ ∗n p n p n p  The properties of the Wattenberg 

quantities ( ) ( )( ) ( )( ) ( )( )# # # #

0, , , , , ,k
k ke M M ε∗ ∗ ∗ ∗n p n p n p  one obtains directly from the properties of the co- 

rresponding nonstandard quantities ( ) ( ) ( ) ( )0, , , , , ,k
k ke M M ε∗ ∗ ∗ ∗n p n p n p  using Gonshor transfer principle [4] 

[7]. 
1. By using Wattenberg imbedding # ,∗ ∗→ d  from Equation (3.30) one obtains 

( ) ( ) ( ) ( )
( )

# #
# #

#

0

, ,
, 1, 2, ; , , .

,

k
k kk

M
e e k k

M

ε∗ ∗
∗ ∗ ∗

∞
∗

   +      = = = ∈ ∈       
  

n p n p
n p

n p
     (3.33) 

2. By using Wattenberg imbedding # ,∗ ∗→ d  and Gonshor transfer (see Subsection 2.9 Theorem 2.19) 
from Equation (3.27) one obtains 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

# ## ##
0 1

## ### #
1 1 ,

, 1 ! ,

1 ! , , , , , .

M∗ ∗

∗ ∗ ∗ ∗
∞ ∞

      = − × + × Θ      
    = − × + × Θ Θ ∈ ∈       

 

n p

pn

d

n p n p n p

n p n p n p n p
          (3.34) 

3. By using Wattenberg imbedding ( )# # ,∗ →   from Equation (3.28) one obtains  

( ) ( ) ( )
# # ##

2 2 ,, , , , , 1, 2, , , , .kM k k∗ ∗ ∗ ∗ ∗
∞ ∞     = × Θ Θ ∈ = ∈ ∈        dn p p n p n p n p      (3.35) 

Lemma 3.6. Let ,∗
∞∈ n  then for any k∈  and for any 0,δ δ ∗≈ ∈   there exists ∗

∞∈ p  such that  

( ) ( )
( )

#
# #

#

0

,
.

,

kk
M

e
M

δ
∗

∗

∗

  − <
  

n p

n p
                              (3.36) 

Proof. Inequality (3.36) immediately follows from inequality (3.31) by using Wattenberg imbedding 
#∗ ∗→ d  and Gonshor transfer. 

3.2.3. Part III. Reduction of the Statement of e Is #-Transcendental Number to Equivalent  
Statement in ∗ d  Using Gonshor Idempotent Theory 

To prove that e  is #-transcendental number we must show that e is not w-transcendental, i.e., there does not 

exist real  -analytic function ( )
=0

n
n

n
g x a x

∞

=∑  with rational coefficients 0 1, , , ,na a a ∈    such that  

=0

=0

0,

.

n
k

n

n
k

n

a e

a e

∞

∞

 =

 ≠ ∞


∑

∑
                                     (3.37) 
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Suppose that e is w-transcendental, i.e., there exists an  -analytic function ( )
=0

,n
n

n
g x a x

∞

=∑ 

  with rational 

coefficients: 

0 1
0 1 0

0 1

, , , , , 0,n
n

n

k kka a a a
m m m

= = = ∈ >   

                           (3.38) 

such that the equality is satisfied: 

=0

=0

0.

.

n
n

n

n
k

n

a e

a e

∞

∞

 =

 ≠ ∞


∑

∑



                                    (3.39) 

In this subsection we obtain an reduction of the equality given by Equation (3.39) to equivalent equality given 
by Equation (3). The main tool of such reduction that external countable sum defined in Subsection 2.8. 

Lemma 3.7. Let ( )k≤∆  and ( )> k∆  be the sum correspondingly 

( )

( )

1

0
1

1

,

.

k
n

n
n

n
n

n k

k a a e

k a e

≥

≤
=

∞

>
= +

∆ = +

∆ =


∑

∑

 



                                 (3.40) 

Then ( ) 0, 1, 2,k k>∆ ≠ =   
Proof. Suppose there exists k such that ( ) 0.k>∆ =  Then from Equation (3.39) follows ( ) 0.k≤∆ =  There- 

fore by Theorem 3.1 one obtains the contradiction. 
Remark 3.2. Note that from Equation (3.39) follows that in generel case there is a sequence { } 1i i

m ∞

=
 such 

that 

( ) 0
=1 =1

lim , 0 , lim 0,
i im m

n n
i n ni in n

m i a e a a e
→∞ →∞

   
= ∞ ∀ ∈ < + =  

   
∑ ∑                   (3.41) 

or there is a sequence { } 1j j
m

∞

=
 such that   

( ) 0
1 1

lim , 0 , lim 0,
j jm m

n n
j n ni jn n

m j a e a a e
→∞ →∞= =

   
= ∞ ∀ ∈ > + =        

∑ ∑  


               (3.42) 

or both sequences { } 0i i
m ∞

=
 and { } 0j j

m
∞

=
 with a property that is specified above exist. 

Remark 3.3. We assume now for short but without loss of generelity that (3.41) is satisfied. Then from (3.41) 
by using Definition 2.17 and Theorem 2.14 (see Subsection 2.8) one obtains the equality [4] 

( ) ( ) ( )# # #

0 # - .n
n

n
a Ext a e ε

∧
∗ ∗ ∗

∈

 + × = −  
∑ 


d                        (3.43) 

Remark 3.4. Let ( )# k≤∆  and ( )# k>∆  be the upper external sum defined by   

( ) ( ) ( )

( )

1 # ##
0

=1

#

1

,

# - .

k
n

n
n

n
n

n
n k

k a a e

k Ext a e

≥
∗ ∗

≤

∧

>
∈
= +

∆ = + ×


∆ =



∑

∑

 





                             (3.44) 

Note that from Equation (3.43)-Equation (3.44) follows that 

( ) ( )# # .k k ε≤ >∆ + ∆ = − d                                    (3.45) 

Remark 3.5. Assume that ,α β ∗∈ d  and β ∗∉  . In this subsection we will write for a short α β  ab  
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iff β  absorbs α , i.e. .β α β+ =  

Lemma 3.8. ( ) ( )# # , 1, 2,k k k≤ >
 ¬ ∆ ∆ =  ab  

Proof. Suppose there exists k ∈  such that ( ) ( )# # .k k≤ >
 ∆ ∆ ab  Then from Equation(3.45) one obtains 

( )# .k ε>∆ = − d                                    (3.46) 

From Equation (3.46) by Theorem 2.11 follows that ( ) 0k>∆ =  and therefore by Lemma 3.7 one obtains the 
contradiction. 

Theorem 3.2. [4] The equality (3.43) is inconsistent.  
Proof. Let us consider hypernatural number ∗

∞ℑ∈   defined by countable sequence  

( )0 0 1 0 1, , , ,nm m m m m mℑ = × × × ×                            (3.47) 

From Equation (3.43) and Equation (3.47) one obtains  

( ) ( ) ( )# # ## # #
0 # - .n

n
n

a Ext a e ε
∧

∗ ∗ ∗

∈

 ℑ × + ℑ × × = −ℑ ×  
∑ 


d                   (3.48) 

Remark 3.6. Note that from inequality (3.27) by Wattenberg transfer one obtains 

( )
( ) ( )

( )

## 1#
#

#, , , , .
1 !

n

n

g a
nε

−

∗ ∗
∞

 ⋅ ⋅          ≤ ∈ ∈ 
−  

 

p
n n n

n p n p
p

              (3.49) 

Substitution Equation (3.30) into Equation (3.48) gives 

( )
{ }

( ) ( )
( ) ( )

( )

( ) ( )

# #
## ## # #

0 0 #
\ 0

0

# ## # # #
0 0

, ,
# - # - ,

,

, , .

n nn
n n

n n

n n

M
Ext e Ext

M

a n a

ε
ε

∗ ∗∧ ∧
∗

∗∈ ∈

∗ ∗

    +      ℑ + ℑ × = ℑ + ℑ × = −ℑ ×          

ℑ ℑ × ∈ ℑ = ℑ ×

∑ ∑ d

n p n p

n p

 



 



 (3.50) 

Multiplying Equation (3.50) by Wattenberg hyperinteger ( )
#

0 ,M∗ ∗  ∈  dn p  by Theorem 2.13 (see subsec- 
tion 2.8) one obtains 

( ) ( ) ( ) ( ){ }
( )

# # ### #
0 0

##
0

, # - , ,

, .

n n k n
n

M Ext M

M

ε

ε

∧
∗ ∗ ∗

∈

∗

     ℑ × + ℑ × +ℑ ×     

 = −ℑ × × 

∑


d

n p n p n p

n p
           (3.51) 

By using inequality (3.49) for a given ,δ ∗∈   0δ ≈  we will choose infinite prime integer ∗
∞∈ p  such 

that: 

( ) ( ) ( )
# ## # #

0# - , ,k k
k

Ext Mε δ ε
∧

∗ ∗

∈

   ℑ × ⊆ ℑ × × ×   ∑


dn p n p                 (3.52) 

Now using the inequality (3.49) we are free to choose a prime hyperinteger ∗
∞∈ p  and # ,δ ∗∈ d  

( )# # 0δ δ= ≈p  in the Equation (3.51) for a given , 0∗∈ ≈   such that: 

( ) ( )
## # #

0 , .M δ∗ ℑ × × =  n p p                             (3.53) 

Hence from Equation (3.52) and Equation (3.53) we obtain 

( ) ( )
## ## - , .n n

n
Ext ε ε

∧
∗

∈

 ℑ × ⊆ − × ∑


 dn p                        (3.54) 

Therefore from Equations (3.51) and (3.54) by using definition (2.15) of the function ( ). αInt p  given by 
Equation (2.20)-Equation (2.21) and corresponding basic property I (see Subsection 2.7) of the function 
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( ). αInt p  we obtain   

( ) ( ) ( ){ }
( ) ( ){ }

( )( ) ( )

# # ## # #
0 0

# ## #
0 0

# ## #
0 0

. , # - , ,

, # - ,

. , , .

n n n n
n

n n
k

M Ext M

M Ext M

M M

ε

ε ε

∧
∗ ∗ ∗

∈

∧
∗ ∗

∈

∗ ∗

      ℑ × + ℑ × + ℑ ×       

   = ℑ × + ℑ ×   

   = − ℑ × × = −ℑ × ×   

∑

∑

d d

Int p n p n p n p

n p n p

Int p n p n p




          (3.55) 

From Equation (3.55) using basic property I of the function ( ). αInt p  finally we obtain the main equality  

( ) ( ) ( ){ } ( )
# # ### #

0 0 0, # - , , .k n
n

M Ext M M ε
∧

∗ ∗ ∗

∈

     ℑ × + ℑ × = ℑ × ×     ∑


dn p n p n p          (3.56) 

We will choose now infinite prime integer p  in Equation (3.56) ˆ ∗
∞= ∈ p p  such that 

( )# # #
0ˆ max ,> ℑp n                                   (3.57) 

Hence from Equation (3.34) follows 

( )
##

0ˆ ˆ, .M∗  p n p                                   (3.58) 

Note that ( )
# #

0 ˆ, 0 .M∗  ≠ n p  Using (3.57) and (3.58) one obtains: 

( ) ( )
# ##

0 0ˆ ˆ, .M∗  × ℑ p n p                              (3.59) 

Using Equation(3.35) one obtains 

( )
##ˆ ˆ| , 1, 2, .nM n∗  =  p n p ,                             (3.60)  

3.2.4. Part IV. The Proof of the Inconsistency of the Main Equality (3.56) 
In this subsection we wil prove that main equality (3.56) is inconsistent. This prooff based on the Theorem 2.10 
(v), see Subsection 2.6. 

Lemma 3.9. The equality (3.56) under conditions (3.59)-(3.60) is inconsistent. 
Proof. (I) Let us rewrite Equation (3.56) in the short form  

( ) ( ) ( )#ˆ ˆ ˆ, , ,ε∧Γ + Σ = −Λ × dn p n p p                          (3.61) 
where  

( ) ( ) ( ){ }
( ) ( )

( ) ( )

##

1

##
0 0

## #
0

ˆ ˆ, # - , ,

ˆ ˆ, , ,

ˆ ˆ, .

n n
n
n

Ext M

M

M

∧
∧ ∗

∈
≥

∗

∗

  Σ = ℑ ×  

  Γ = ℑ ×  


 Λ = ℑ ×  


∑n p n p

n p n p

p n p



                     (3.62) 

From (3.59)-(3.60) follows that  

( )
( )

#

#

ˆ ˆ, ,

ˆ ˆ, .∧

 Γ


Σ

p n p

p n p
                                     (3.63) 

Remark 3.7. Note that ( )ˆ, .∧ ∗Σ ∉ n p  Otherwise we obtain that ( ) ( )( ) { }ˆ ˆ. , , .∧Γ + Σ = ∅ab p n p n p  But the 

other hand from Equation (3.61) follows that ( ) ( )( ) ( )#ˆ ˆ ˆ. , , .ε∧Γ + Σ = −Λ × dab p n p n p p  But this is a contradic- 
tion. This contradiction completed the proof of the statement (I).  

(II) Let ( ) ( ) ( )# # #
> 1 2ˆ ˆ ˆ, , , , , , , , ,k k k k≤ ≤∆ ∆ ∆  n p n p n p  and ( ) ( )# # # #

>ˆ ˆ, , , , , , , ,n nk kε ε≤∆ ∆ n p n p  
be the external sum 
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correspondingly   

( ) ( ) ( ){ }
( ) ( ){ }

( ){ }
( ) ( ) ( ) ( ){ }

2

1

1 ## #

=1

## #
>

1

## #
1 2

=

1 # ## # # #

=1

#
>

ˆ ˆ ˆ, , , , ,

ˆ ˆ, , # - , ,

ˆ, , , ,

ˆ ˆ ˆ, , , , , , ,

ˆ, ,

k

n n
n

n n
n

n k

k

n n
n k

k

n n n n n
n

k M

k Ext M

k k M

k M

k

ε ε

≥
∗

≤

∧
∗

∈
≥ +

∗
≤

≥
∗ ∗

≤

 ∆ = Γ + ℑ ×  

 ∆ = ℑ ×  

   ∆ = ℑ ×    

   ∆ = Γ + ℑ × + ℑ ×   

∆

∑

∑

∑

∑















n p n p n p

n p n p

n,p n p

n p n p n p n p

n p( ) ( ) ( ){ }# ## # #

1

ˆ, # - , , ,n n n n n
n

n k

Ext Mε ε
∧

∗ ∗

∈
≥ +
















   = ℑ × + ℑ ×    


∑


n p n p

           (3.64) 

Note that from Equation (3.61) and Equation (3.64) follows that 

( ) ( ) ( )# # #ˆ ˆ ˆ, , , , .k k ε≤ >∆ + ∆ = −Λ × dn p n p p                          (3.65) 

Lemma 3.10. Under conditions (3.59)-(3.60)  

( ) ( )# # # #ˆ ˆ, , , , , , , 1, 2,.n nk k kε ε≤ >
 ¬ ∆ ∆ = ab n p n p 

                     (3.66) 

and  

( ) ( )# #
>ˆ ˆ, , , , , 1, 2,k k k≤

 ¬ ∆ ∆ = ab n p n p 

                       (3.67) 

Proof. First note that under conditions (3.59)-(3.60) one obtains 

( )# #ˆ, , , 0nk k ε≤
 ∀ ∆ ≠ n p                              (3.68) 

Suppose that there exists an 0k ≥  such that ( ) ( )# # # #
>ˆ ˆ, , , , , , .n nk kε ε≤

 ∆ ∆ ab n p n p   Then from Equation (3.65) 

one obtains  

( ) ( )# # #
> ˆ ˆ, , , .nk ε ε∆ = −Λ × dn p p                           (3.69) 

From Equation (3.69) by Theorem 2.17 one obtains 

( ) ( ) ( ) ( ) ( )
1 1# # # # # # #

> > >ˆ ˆ ˆ ˆ ˆ, , , , , , , .n nk k kε ε ε
− −

   − = Λ ×∆ = Λ ×∆ = ∆   d p n,p p n p n p         (3.70) 

Thus  

( )#
> ˆ, , .kε− = ∆d n p                                (3.71) 

From Equation (3.71) by Theorem 2.11 follows that ( ) 0k>∆ =  and therefore by Lemma 3.7 one obtains the 
contradiction. This contradiction finalized the proof of the Lemma 3.10. 

Part (III) 
Remark 3.8. (i) Note that from Equation (3.62) by Theorem 2.10 (v) follws that ( )ˆ,∧Σ n p  has the form 

( ) ( )( ) ( )( )# # #ˆ ˆ ˆ, . , ,ε∧ ∧Σ = + Σ = + −Λ × dn p q ab p n p q p                (3.72) 

where  

( ) ( )# #
>ˆ ˆ ˆ, 1, , , and∧ ∗

∞∈Σ = ∆ ∈q n p n p q p q.                    (3.73) 

(ii) Substitution by Equation (3.72) into Equation (3.61) gives  

( ) ( ) ( ) ( )( ) ( )# # #ˆ ˆ ˆ ˆ ˆ, , , .ε ε∧Γ + Σ = Γ + + −Λ × = −Λ ×d dn p n p n p q p p           (3.74) 
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Remark 3.9. Note that from (3.74) by definitions follows that  

( )( ) ( )( )# #ˆ ˆ, .ε Γ + −Λ × dab n p q p                        (3.75) 

Remark 3.10. Note that from (3.73) by construction of the Wattenberg integer ( )ˆ,∧Σ n p  obviously follows 
that there exists some ,k d ∈  such that  

( ) ( )# # #ˆ ˆ1, , , 1, , , , .k d k d≤ ≤∆ < ≤ ∆ <n p q n p                      (3.76) 

Therefore 

( ) ( ) ( ) ( ) ( )# # #ˆ ˆ ˆ ˆ ˆ, 1, , , , , 1, , , .k d≤ ≤Γ + ∆ < Γ + ≤ Γ + ∆n p n p n p q n p n p              (3.77) 

Note that under conditions (3.59)-(3.60) and (3.73) obviously one obtains  

( ) ( ) ( ) ( ) ( ) ( )# # # #ˆ ˆ ˆ ˆ ˆ ˆ0 , 1, , , , , 1, , , 0, , 0.k d≤ ≤≠ Γ + ∆ < Γ + ≤ Γ + ∆ Γ + ≠n p n p n p q n p n p n p q      (3.78) 

From Equation(3.74) follows that  

( ) ( )( ) ( )# # #ˆ ˆ ˆ, .ε εΓ + + −Λ × = −Λ ×d dn p q p p                      (3.79) 

Therefore 

( )( ) ( ) ( )
1# #ˆ ˆ, .ε ε
−
 Λ Γ + + − = −  d dp n p q                       (3.80) 

From (3.78) follows that  

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

1 1# # # #

1# #

1# #

ˆ ˆ ˆ ˆ ˆ0 , 1, , , ,

ˆ ˆ ˆ, 1, , , 0,

ˆ ˆ, 0.

k

d

− −

≤

−

≤

−

   ≠ Λ Γ + ∆ < Λ Γ +   

 ≤ Λ Γ + ∆ 

 Λ Γ + 

p n p n p p n p q

p n p n p

p n p q



 



             (3.81) 

Note that by Theorem 2.8 (see Subsection 2.5) and Formula (3.44) one otains  

( )( ) ( ) ( ){ } ( ) ( )

( )( ) ( ) ( ){ } ( ) ( )

( )( ) ( ){ }

1 ## # #
0

1 ## # #
0

1# #

ˆ ˆ ˆ ˆ0 , 1, , , 1, , , ,

ˆ ˆ ˆ ˆ, 1, , , 1, , , 0,

ˆ ˆ, 0.

k a k

d a d

− ∗
≤ ≤

− ∗
≤ ≤

−

  ≠ Λ Γ + ∆ = + ∆    
  Λ Γ + ∆ = + ∆    

 Λ Γ + ≠ 

Wst p n p n p Wst n p

Wst p n p n p Wst n p

Wst p n p q



          (3.82) 

From Equation (3.81)-Equation (3.82) follows that  

( ) ( ) ( )( ) ( ){ }
( ) ( )

( )( ) ( ){ }

# 1# # #
0

# #
0

1# #

ˆ ˆ ˆ0 1, , , ,

ˆ1, , , 0,

ˆ ˆ, 0.

a k

a d

−∗
≤

∗
≤

−

   ≠ + ∆ < Λ Γ +   
 ≤ + ∆  

 Λ Γ + 

Wst n p Wst p n p q

Wst n p

Wst p n p q



 



             (3.83) 

Thus    

( )( ) ( ) ( )
1# #ˆ ˆ, ε
−  ¬ Λ Γ + −   dab p n p q                       (3.84) 

and therefore  

( )( ) ( ) ( )
1# #ˆ ˆ, .ε ε
−
 Λ Γ + + − ≠ −  d dp n p q                      (3.85) 

But this is a contradiction. This contradiction completed the proof of the Lemma 3.9.  
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4. Generalized Shidlovsky Quantities 
In this section we remind the basic definitions of the Shidlovsky quantities, see [8] pp. 132-134. 
Theorem 4.1. [8] Let ( ) , 1, 2, ,lf z l r=   be a polynomials with coefficients in  . Assume that for any 

1,2, ,l r=   algebraic numbers over the field 1, ,: , , ,
ll k lβ β   1, 1, 2, ,lk l r≥ =   form a complete set of the 

roots of ( )lf z  such that 

( ) [ ] ( ), deg , 1, 2, ,l l lf z z f z k l r∈ = =                         (4.1) 

and 0, 1, 2, , , 0.la l r a∈ = ≠  Then:  

,
0

=1 =1
0.

l
k l

kr

l
l k

a a eβ+ ≠∑ ∑                                 (4.2) 

Let ( )rf z  be a polynomial such that  

( ) ( ) ( )0 1 , 0
11 1 1

, 0, 0, .
l

r
r r

kr r r
N

r l N N k l N r l
ll l k

f z f z b b z b z b z b b N kβ
== = =

= = + + + = − ≠ > = ∑∏ ∏∏     (4.3) 

Let ( ) ( )0 ,, , ,r k l rM N p M N p  and ( ), ,k l rN pε  be the quantities [8]:  

( )
( ) ( )

( )

1 1 1

0
0

d
, ,

1 !

r
r

N p p p z
N r

r

b z f z e z
M N p

p

− − − −+∞

=
−∫                              (4.4) 

where in (4.4) we integrate in complex plane   along line [ ]0, ,+∞  see Picture 1.  

( )
( ) ( )

( )
,

,

1 1 1

,

d
, ,

1 !

r
k l r

k l

N p p p z
N r

k l r

b z f z e z
M N p e

p
β

β

− − − −+∞

=
−∫                           (4.5) 

where 1, , lk k=   and where in (4.5) we integrate in complex plane   along line with initial point ,k lβ ∈  
and which are parallel to real axis of the complex plane  , see Picture 1. 

( )
( ) ( )

( )
,

,

1 1 1

,
0

d
, ,

1 !

rk l
k l r

N p p p z
N r

k l r

b z f z e z
N p e

p

β
βε

− − − −

=
−∫                           (4.6) 

where 1, , lk k=   and where in (4.6) we integrate in complex plane   along contour ,0, ,k lβ    see Picture 
1. 

From Equation (4.3) one obtains  

( ) ( ) ( )
( )1

1 1 1 11 1 1
0 1

1
,

r
r r

r r

N p
N p N pp p p p s

N r N s
s p

b z f z b b z c z
+

− − − −− − −
−

= +

= + ∑                        (4.7) 

where ( )0 0, , , , 1 1.
rN s rb b c s p N p≠ ∈ = − −  Now from Equation (4.4) and Equation (4.7) using formula  

( ) ( )1
0

d 1 !,s xs x e x s s
∞ − −Γ = = − ∈∫   

 

 

Picture 1. Contour ,0, k lβ    in complex plane  . 
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one obtains  

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )

1 1 1
0 1 11

0
10 0

1
1 1 1 1

0 1 0
1

, d d
1 ! 1 !

1 !
,

1 !

r r
r

r
r r

r r

N p p N p
N p z s zs

r
s p

N p
N p N pp p

N s N
s p

b b cM N p z e z z e z
p p

s
b b c b b pC

p

− − +∞ +∞+
− − − −−

= +

+
− − − −

−
= +

= +
− −

−
= + = +

−

∑∫ ∫

∑
                 (4.8) 

where 0 0, .
rNb b C≠ ∈  We choose now a prime p such that ( )0 0max , , .

rNp a b b>  Then from Equation (4.8) 

follows that  

( )0 0 , .rp a M N p                                       (4.9) 

From Equation (4.3) and Equation (4.5) one obtains  

( ) ( ) ( )
,

,

,

1 1 1
, ,

1 1
, d ,

1 !

k l j
k lr

r
k l

kr p zN p p p
k l r N i j

j i

eM N p b z z z e z
p

β
β

β

β
+∞

− +− − −

= =

   = −  −    
∏∏∫              (4.10) 

where 1, , , 1, , .lk k l r= =   By change of the variable integration ,k lz u β= +  in RHS of the Equation (4.10) 
we obtain  

( ) ( ) ( ) ( )11
, , , ,

1 10

1, d ,
1 !

j
r
r

kr ppN p p u
k l r N k l k l i j

j i
j l i k

M N p b u u e z u
p

β β β
+∞

−− −

= =
≠ ≠

  
  = + + −  −     

∏∏∫          (4.11) 

where 1, , , 1, , .lk k l r= =   Let us rewrite now Equation (4.11) in the following form  

( ) ( ) ( ) ( )1

, , , ,
=1 =10

1, d
1 !

j

r r r r r
i

krp pp u
k l r N N k l N N k l N i j

j r
j l i k

M N p b u b u e b u b b u
p

β β β
+∞ − −

≠ ≠

  
  = + + −  −     

∏∏∫       (4.12) 

Let A  be a ring of the all algebraic integers. Note that [8]  

, , , 1, , , 1, , .
ri j N i j jb i k j rα β= ∈ = =A                         (4.13) 

Let us rewrite now Equation (4.12) in the following form  

( ) ( ) ( ) ( )1

, , , ,
1 10

1, d
1 !

j

r r

krp pp u
k l r N k l N k l i j

j i
j l i k

M N p b u u e b u u
p

α α α
+∞ − −

= =
≠ ≠

= + + −
− ∏∏∫         (4.14) 

where 1, , , 1, , .lk k l r= =   From Equation (4.14) one obtains  

( ) ( )
( )

( ) ( ) ( )

,
=1 =1 0

1

, , ,
=1 =1 1 1

, d ,
1 !

l

jl

r r

p ukr
r

l k l r
l k

kk rr p pp u
r l N k l N k l i j

l k j i
j l i k

u e u
a M N p u

p

u a b u u e b uα α α

−∞

− −

= =
≠ ≠

 Φ
= −


Φ = + + −



∑ ∑ ∫

∑ ∑ ∏∏
            (4.15) 

The polinomial ( )r uΦ  is a symmetric polynomial on any system l∆  of variables 1, 2, ,, , , ,
ll l k lα α α  where 

{ }1, 2, ,

1, 2, ,

, , , , 1, , .

, , , , 1, , .
l l l k ll

l l k ll

l r

l r

α α α

α α α

∆ = =

∈ =A

 

 
                          (4.16) 

It well known that ( ) [ ]r u uΦ ∈  [8] and therefore  

( )
( )1

1
1

1
, .

rN p
p s

r s s
s p

u u c u c
+

−
−

= +

Φ = ∈∑                              (4.17) 
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From Equation (4.15) and Equation (4.17) one obtains  

( ) ( )
( )

( )

( )
( ) ( )

( )

1
11

,
=1 =1 10 0

1

1
1

, d d
1 ! 1 !

1 !
, .

1 !

rl

r

p u N pkr
r s us

l k l r
l k s p

N p

s
s p

u e u ca M N p u u e u
p p

s
c pC C

p

− ∞∞ +
− −−

= +

+

−
= +

Φ
= =

− −

−
= = ∈

−

∑ ∑ ∑∫

∑ 
               (4.18) 

Therefore  

( ) ( ) ( ),
=1 =1

, , , , .
lkr

r l k l r r
l k

N p a M N p p N pΞ = ∈ Ξ∑ ∑                     (4.19) 

Let RO ⊂   be a circle wth the centre at point ( )0,0 . We assume now that ( ),k l Rk l Oβ∀ ∀ ∈ . We will 
designate now  

( ) ( )

( ) ( ) ( ) ( )

,

,

1
,

1
0 1 ,1

max ,

max , max .

k l
r

k l r
l

z
k l N rz R

N rk k l r z R

g r b f z e

g r g r g r b zf z

β− +−

≤

−

≤ ≤ ≤ ≤ ≤

=

= =
                   (4.20) 

From Equation (4.6) and Equation (4.20) one obtains  

( )
( ) ( )

( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

,,

,
,

1 1 1

,
0

11 1

0

1 1
0 , 0

d
,

1 !

1 d
1 !

,
1 ! 1 !

k lrk l
r

k l
k l

r r

zN p p p
N r

k l r

pz
N N r

p p
k l

b z f z e z
N p

p

b f z e b zf z z
p

g r g r g r g r R
p p

ββ

β
β

ε

β

− +− − −

−− +− −

− −

=
−

 ≤  −

≤ ≤
− −

∫

∫                 (4.21) 

where 1, , , 1, , .lk k l r= =   Note that   

( ) ( )
( )

1
0 0 if .

1 !

pg r g r R
p

p

−

→ →∞
−

                           (4.22) 

From (4.22) follows that for any [ ]0,δ∈  there exists a prime number p such that  

( ) ( ),
=1 =1

, 1.
lkr

l k l r
l k

a N p pε = <∑ ∑                               (4.23) 

where 1, , , 1, , .lk k l r= =   From Equation (4.4)-Equation (4.6) follows  
( ) ( )

( )
, , ,

0

, ,
,

k l k l r k l r

r

M N p N p
e

M N p
β ε+

=                            (4.24) 

where 1, , , 1, , .lk k l r= =   Assume now that  

,
0

1 1
0.

l
k l

kr

l
l k

a a eβ

= =

+ =∑ ∑                                (4.25) 

Having substituted RHS of the Equation (4.24) into Equation (4.25) one obtains 

( ) ( )
( )

( )
( )

( )
( )

, , , ,
0 0

=1 =1 =1 =1 =1 =10 0 0

, , , ,
0.

, , ,

l l lk k kr r r
k l r k l r k l r k l r

l l l
l k l k l kr r

M N p N p M N p N p
a a a a a

M N p M N p M N p
ε ε+

+ = + + =∑ ∑ ∑ ∑ ∑ ∑    (4.26) 

From Equation (4.26) by using Equation (4.19) one obtains  

( ) ( )0 ,
=1 =1

, , 0.
lkr

r l k l r
l k

a N p a N pε+ Ξ + =∑ ∑                          (4.27) 
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We choose now a prime p∈  such that ( )0 0max , ,
rNp a b b>  and ( ) 1.p <  Note that ( ),rp N pΞ  

and therefore from Equation (4.19) and Equation (4.27) one obtains the contradiction. This contradiction com- 
pleted the proof. 

5. Generalized Lindemann-Weierstrass Theorem 
Theorem 5.1. [4] Let ( ) , 1, 2, ,lf z l =   be a polynomials with coefficients in  . Assume that for any l∈
algebraic numbers over the field 1, ,: , , ,

ll k lβ β   1, 1, 2, ,lk l≥ =   form a complete set of the roots of ( )lf z  
such that 

( ) [ ] ( ), deg , 1, 2,l l lf z z f z k l∈ = =                              (5.1) 

and 0, 0, 1, 2, , , 1, 2,la a l r r∈ ≠ = =   . We assume now that  

,

1 1
.

l
k l

k

l
l k

a eβ
∞

= =

< ∞∑ ∑                                    (5.2) 

Then  

,
0

1 1
0.

l
k l

k

l
l k

a a eβ
∞

= =

+ ≠∑ ∑                                   (5.3) 

We will divide the proof into three parts. 
Part I. The Robinson transfer 
Let ( ) ( ) [ ], , 1, 2, ,f z f z z z l∗ ∗ ∗

∞= ∈ ∈ = ∈r r,r    be a nonstandard polynomial such that  

( ) ( ) ( )

( )( )

( )

0 1
=1

, 0
=1 1

=1

, 0, 0,

.

l

l
l

k

k l
l k

l
l

f z f z f z z z

z

k

β
∗

∗

=

∗ ∗
∞

= = = + + +

= − ≠ >

= = ∈

∏

∏∏

∑

r
N

r N

r

N N

r

r

b b b

b b b

N N





                    (5.4) 

Let ( )0 ,M∗ N p , ( ), ,k lM∗ N p  and ( ), ,k lε∗ N p  be the quantities:  

( )
( ) ( )

( )

( ) 1 1 1

0
0

d
, , , ,

1 !

zb z f z e z
M

∗ − − − ∗ −+∞
∗ ∗

∞

  = ∈
−∫

N p p p
NN p N p

p
                 (5.5) 

where in (5.5) we integrate in nonstandard complex plane ∗  along line [ ]0, ,∗ +∞  see Picture 1.  

( ) ( )
( ) ( )

( )

( )
,

,

1 1 1

,

d
, , , ,

1 !
k l

k l

z

k l

z f z e z
M e β

β

∗
∗

∗

− − − ∗ −+∞
∗ ∗ ∗

∞

  = ∈
−∫

N p p p
Nb

N p N p
p

             (5.6) 

where 1, , lk k∗=   and where in (5.6) we integrate in nonstandard complex plane ∗  along line with initial 

point ,k lβ∗ ∗∈   and which are parallel to real axis of the complex plane ∗ , see Picture 1. 

( ) ( )
( ) ( )

( )
,

,

1 1 1

,
0

d
, , , ,

1 !

k l
k l

z

k l

b z f z e z
e

β
βε

∗
∗

− − − ∗ −
∗ ∗ ∗

∞

  = ∈
−∫

N p p p
NN p N p

p
               (5.7) 

where 1, , lk k∗=   and where in (5.7) we integrate in nonstandard complex plane ∗  along contour ,0, ,k lβ∗ ∗    
see Picture 1. 

1. Using Robinson transfer principle [4]-[6] from Equation (5.5) and Equation (4.8) one obtains directly  

( ) ( )1 1
0 0, ,M b − −∗ = +N p p

NN p b pC                                (5.8) 
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where 0 0, .∗
∞≠ ∈Nb b C   We choose now infinite prime ∗

∞∈p   such that 

( ){ 0 0max , , .> Np a b b                                   (5.9) 

2. Using Robinson transfer principle from Equation (5.6) and Equation (4.19) one obtains directly  

( ) ( ) ( ) ( )( ),
=1 =1

: , , , .
lkr

l k l r
l k

r r r a M∗ ∗ ∗ ∗
∞∀ ∈ Ξ = = ∈∑ ∑N p N p pC                  (5.10) 

and therefore  

( ) ( ): , , .r r r∗∀ ∈ Ξp N p                                (5.11) 

3. Using Robinson transfer principle from Equation (5.7) and Equation (4.21) one obtains directly 

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

,
,

,
,

1 1 1

,
0

11 1

0

1 1
0 , 0

d
,

1 !

1 d
1 !

,
1 ! 1 !

k l
k l

k l
k l

r

z

k l

z
N

k l

z f z e z
e

b f z e b zf z z

g g g g

β
β

β
β

ε

β

∗
∗

∗
∗

− − − ∗ −
∗ ∗

−− +− ∗ −

∗ ∗ − ∗ ∗ ∗ −

  =
−

   ≤    −  

              ≤ ≤
− −

∫

∫

N p p p
N

p

N

p p

b
N p

p

p

r r r r
p p

                 (5.12) 

where 1, , , 1, , .lk k l∗= = r   Note that ( )[ ]0 ,∗∀ ∈ ≈    there exists ( )=p p     

( ) ( )
( )

1
0 .

1 !
g g∗ ∗ −       ≤

−

pr r
p

                                 (5.13) 

4. From (5.13) follows that for any [ ]0,δ∈  there exists an infinite prime ∗
∞∈p   such that  

( ) ( ) ( )( ) ( ),
=1 =1

: , 1
lkr

l k l
l k

r r a ε∗ ∗∀ ∈ = <∑ ∑ N p p                         (5.14) 

where 1, , , 1, , .lk k l∗= = r   
5. From Equation (5.5)-Equation (5.7) we obtain 

( ) ( )( )
( )

, , ,

0

, ,
,

,
k l k l k lM

e
M

β ε∗
∗ ∗

∗
∗

 +
 =
  

N p N p

N p
                           (5.15)  

where 1, , , 1, , .lk k l∗= = r   

Part II. The Wattenberg imbedding ,k l
e

β∗∗  into ∗
d  

1. By using Wattenberg imbedding # ,∗ ∗→ d   and Gonshor transfer (see Subsection 2.8 Theorem 2.17) 
from Equation (5.8) one obtains 

( )( ) ( )( ) ( )( ) ( )
# ### 1 11 1 # # #

0 0 0M
− −− −∗ = + = +

#N p pN p p # # #
N NN,p b b p C b b p C               (5.16) 

where # # # #
0 0 , .∗≠ ∈N db b C   We choose now an infinite prime ∗∈p   such that  

( ){ # # # #
0 0max .> Np a ,b , b                                    (5.17) 

2. By using Wattenberg imbedding # ,∗ ∗→ d   and Gonshor transfer from Equation (5.10) one obtains 
directly  

( ) ( )( ) ( )( ) ( )( )# # # #
,

=1 =1
: , , ,

lkr

l k l r
l k

r r r a M∗ ∗ ∗ ∗∀ ∈ Ξ = = ∈∑ ∑ #
dN p N p p C                  (5.18) 
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and therefore  

( ) ( )( )## , , .r r r∗ ∀ ∈ Ξ  
p N p                                 (5.19) 

3. By using Wattenberg imbedding # ,∗ ∗→ d   and Gonshor transfer from Equation (5.14) one obtains 
directly  

( ) ( )( ) ( )( ) ( )# # # #
,

=1 =1
: , 1.

lkr

l k l
l k

r r a ε ε∗ ∗∀ ∈ = <∑ ∑ N p p                      (5.20) 

4. By using Wattenberg imbedding # ,∗ ∗→ d   and Gonshor transfer from Equation (5.15) one obtains 
directly  

( ) ( )( ) ( )( )
( )( )

#
, ,

# #
# , ,

#

0

, ,
,

,
k l k l k l k lM

e e
M

β β ε∗
∗ ∗

∗

∗

+
=

N p N p

N p
                       (5.21) 

where 1, , , 1, , .lk k l ∗= = ∈r    
Part III. Main equality 

Remark 5.1. Note that in this subsection we often write for a short #a  instead ( )#
, .a a∗ ∈  For example 

we write  

( ) ( ) ( )
( )

#
,

## #
, ,

#
0

, ,
:

,
k l k l k lM

r r e
M

β ε+
∀ ∈ =

N p N p
N p

  

instead Equation (5.21). 
Assumption 5.1. Let ( ) , 1, 2, ,lf z l =   be a polynomials with coefficients in  . Assume that for any 

l∈  algebraic numbers over the field  : 1, ,, , ,
ll k lβ β  1,lk ≥  1, 2,l =   form a complete set of the roots 

of ( )lf z  such that 

( ) [ ] ( ), deg , 1, 2,l l lf z z f z k l∈ = =                              (5.22) 

0 01, 2, , , 0, 1, 2, .l a a r= ∈ ≠ =   

Note that from Assumption 5.1 follows that algebraic numbers over the field ∗
d :  

( ) ( )### #
1, 1, , ,, , ,

l ll l k l k lβ β β β∗ ∗
    1, 1, 2, ,lk l≥ =   for any 1, 2, ,l =   form a complete set of the roots of   

( ) ( )( ) [ ] ( )
## #, deg , 1, 2,l l l lf z f z z f z k l∗ ∗∈ = =d                     (5.23) 

Assumption 5.2. We assume now that there exists a sequence  

, 1, 2,l
l

l

q
a l

m
= ∈ =

                                     (5.24) 

and rational number  

0
0

0

,qa
m

= ∈                                         (5.25) 

such that   

,

=1 =1
.

l
k l

k

l
l k

a eβ
∞

< ∞∑ ∑                                     (5.26) 

and  

,
0

=1 =1
0.

l
k l

k

l
l k

a a eβ
∞

+ =∑ ∑                                     (5.27) 
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Assumption 5.3. We assume now for a short but without loss of generality that the all numbers 1, ,, , ,
ll k lβ β  

1, 1, 2,lk l≥ =   are real. 
In this subsection we obtain an reduction of the equality given by Equation (5.27) in   to some equivalent 

equality given by Equation (3) in ∗
d . The main tool of such reduction that external countable sum defined in 

Subsection 2.8. 
Lemma 5.1. Let ( )r≤∆  and ( )r>∆  be the sum correspondingly 

( )

( )

1
,

0
=1 =1

,

1 =1

,

.

l

l

kr
k l

l
l k

k
k l

l
l r k

r a a e

r a e

β

β

≥

≤

∞

>
= +


∆ = +

∆ =

∑ ∑

∑ ∑

 



                               (5.28) 

Then ( ) 0, 1, 2,r r>∆ ≠ =   
Proof. Suppose there exists r such that ( ) 0.r>∆ =  Then from Equation (5.27) follows ( ) 0.r≤∆ =  There- 

fore by Theorem 4.1 one obtains the contradiction. 
Remark 5.2. Note that from Equation (5.27) follows that in generel case there is a sequence { } 1i i

m ∞

=
 such 

that 

( ) ,

,

0
=1 =1

0
=1 =1

lim , 0 ,

lim 0,

i l
k l

i l
k l

m k

i li l k

m k

li l k

m i a a e

a a e

β

β

→∞

→∞

 
= ∞ ∀ ∈ + < 

 
 

+ = 
 

∑ ∑

∑ ∑

 

 


                        (5.29)  

or there is a sequence { } 1j j
m

∞

=
 such that   

( ) ,

,

0
=1 =1

0
=1 =1

lim = , 0 ,

lim 0,

j l
k l

j l
k l

m k

j li l k

m k

lj l k

m j a a e

a a e

β

β

→∞

→∞

 
∞ ∀ ∈ + > 

 
 

+ =  
 

∑ ∑

∑ ∑

 

 


                       (5.30) 

or both sequences { } 0i i
m ∞

=
 and { } 0j j

m
∞

=
 with a property that is specified above exist. 

Remark 5.3. We assume now for short but without loss of generelity that (5.29) is satisfied. Then from (5.29) 
by using Definition 2.17 and Theorem 2.14 (see Subsection 2.8) one obtains the equality [4]  

( ) ( ) ( ),
## #

0
=1

# - .
l

k l
k

l
l k

a Ext a e β ε
∗∧

∗ ∗ ∗

∈

 
+ = − 
 

∑ ∑ d
 


                      (5.31) 

Remark 5.4. Let ( )# r≤∆  and ( )# r>∆  be the upper external sum defined by   

( ) ( ) ( )
( ) ( ) ( )

,

,

#1 ##
0

=1 =1

###
>

=1
1

,

# - .

l
k l

l
k l

kr

l
l k

k

l
n k

l r

r a a e

r Ext a e

β

β

∗

∗

≥
∗ ∗

≤

∧
∗ ∗

∈
= +


∆ = +


∆ =



∑ ∑

∑ ∑

 





                        (5.32) 

Note that from Equation (5.31)-Equation (5.32) follows that 

( ) ( )# #
> .r r ε≤∆ + ∆ = − d                                (5.33) 

Remark 5.5. Assume that ,α β ∗∈ d  and .β ∗∉   In this subsection we will write for a short α β  ab  
iff β  absorbs α , i.e. .β α β+ =  

Lemma 5.2. ( ) ( )# # , 1, 2,r r r≤ >
 ¬ ∆ ∆ = ab   
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Proof. Suppose there exists ∈r  such that ( ) ( )# #
> .r r≤

 ∆ ∆ ab  Then from Equation (5.33) one obtains 

( )#
> .r ε∆ = − d                                   (5.34) 

From Equation (5.34) by Theorem 2.11 follows that ( ) 0r>∆ =  and therefore by Lemma 5.1 one obtains the 
contradiction. 

Theorem 5.2. [4] The equality (5.31) is inconsistent.  
Proof. Let us considered hypernatural number ∗

∞ℑ∈   defined by countable sequence  

( )0 0 1 0 1, , , ,nm m m m m mℑ = × × × ×                       (5.35) 

From Equation (5.31) and Equation (5.35) one obtains  

( ) ( ) ( ) ( ), ,
# ## ## # # # #

0 0
=1 =1

# - # -
l l

k l k l
k k

l l
l k l k

a Ext a e Ext eβ β ε
∗ ∗∧ ∧

∗ ∗ ∗ ∗

∈ ∈

   
ℑ × + ℑ × = ℑ + ℑ × = −ℑ ×   

   
∑ ∑ ∑ ∑ d

 

 
  (5.36) 

where  
# #

# # 0
0 0 #

0
# #

# # # 0
#

,

.l
l l

l

qa
m

qa
m

ℑ
ℑ = ℑ =

ℑ
ℑ = ℑ =





                                 (5.37) 

Remark 5.6. Note that from inequality (5.12) by Gonshor transfer one obtains 

( )
( ) ( )

( )

# #1 #
0 ,#

, # #
, , , .

1 !
k l

k l

g g β
ε

∗ ∗ − ∗
∗ ∗

∞

      ≤ ∈
−

pr r
N p N p

p
              (5.38) 

Substitution Equation (5.21) into Equation (5.36) gives 

( ) ( )
( )

## #
, ,# # #

0 #
=1 0

, ,
# - .

,

lk
k l k l

l
l k

M
Ext

M
ε

ε
∧

∈

+
ℑ + ℑ × = −ℑ ×∑ ∑ d

N p N p
N p

              (5.39) 

Multiplying Equation (5.39) by Wattenberg hyperinteger ( )
#

0 ,M∗ ∗  ∈  dN p   by Theorem 2.13 (see sub- 
section 2.8) we obtain 

( ) ( ) ( )

( )

# # # # #
0 0 , ,

=1 =1
##

0

, # - , ,

, .

l lk k

r l k l k l
l k k

M N Ext M

M

ε

ε

∧

∈

∗

 ℑ × + ℑ × + 

 = −ℑ × × 

∑∑ ∑

d

p N p N p

N p

                  (5.40) 

By using inequality (5.38) for a given ,δ ∗∈   0δ ≈  we will choose infinite prime integer  
( ), δ∗

∞∈ =p p p  such that:  

( )# # #
,

=1 =1
# - , .

l lk k

l k l
l k k

Ext ε δ ε
∧

∈

ℑ ⊆ − ×∑∑ ∑ dN p


                          (5.41) 

Therefore from Equations (5.40) and (5.41) by using definition (2.15) of the function ( ). αInt p  given by 
Equation (2.20)-Equation (2.21) and corresponding basic property I (see Subsection 2.7) of the function 

( ). αInt p  we obtain 

( ) ( ) ( )

( ) ( )

( )( ) ( )

# # # # #
0 0 , ,

1 1

# # # #
0 0 ,

1 1

# ## #
0 0

. , # - , ,

, # - ,

. , , .

l l

l l

k k

l k l k l
l k k

k k

l k l
l k k

M Ext M

M Ext M

M M

ε

ε ε

∧

∈ = =

∧

∈ = =

∗ ∗

  ℑ × + ℑ × +   

= ℑ × + ℑ ×

   = − ℑ × × = −ℑ × ×   

∑∑ ∑

∑∑ ∑

d d

Int p N p N p N p

N p N p

Int p N p N p




            (5.42) 

From Equation (5.42) finally we obtain the main equality  
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( ) ( ) ( )
## # # # #

0 0 , 0
=1 =1

, # - , , .
l lk k

l k l
l k k

M Ext M M ε
∧

∗

∈

 ℑ × + ℑ × = −ℑ × × ∑∑ ∑ dN p N p N p


          (5.43) 

We will choose now infinite prime integer p  in Equation (3.56) ˆ ∗
∞= ∈p p   such that  

( )# # # # #
0 0 0ˆ max , , , .> ℑNp a b b                              (5.44) 

Hence from Equation (5.16) follows 

( )# #
0ˆ ˆ, .Mp N p                                     (5.45) 

Note that ( )
# #

0 ˆ, 0 .M∗  ≠ n p  Using (5.44) and (5.45) one obtains: 

( )# # #
0 0ˆ ˆ, ,M r ×ℑp N p .                                (5.46) 

Using Equation (5.11) one obtains 

( )# #
,ˆ ˆ| , , , 1, 2, .k lM k l =p N p                                (5.47) 

Part IV. The proof of the inconsistency of the main equality (5.43) 
In this subsection we wil prove that main equality (5.43) is inconsistent. This proof is based on the Theorem 

2.10 (v), see Subsection 2.6. 
Lemma 5.3. The equality (5.43) under conditions (5.46)-(5.47) is inconsistent. 
Proof. (I) Let us rewrite Equation (5.43) in the short form  

( ) ( ) ( )#ˆ ˆ ˆ, , ,ε∧Γ + Σ = −Λ × dN p N p p                         (5.48) 

where  

( ) ( )

( ) ( ) ( ) ( )

# #
,

=1 =1
# ## # #

0 0 0

ˆ, # - , ,

ˆ ˆ ˆ ˆ, , , , .

l lk k

l k l
l k k

Ext M

M M

∧
∧

∈

∗ ∗


Σ = ℑ ×

    Γ = ℑ × Λ = ℑ ×   

∑∑ ∑N p N p

n p N p p N p
                 (5.49) 

From (5.46)-(5.47) follows that 

( )
( )

#

#

ˆ ˆ, ,

ˆ ˆ, .∧

 Γ


Σ

p N p

p N p


                                  (5.50) 

Remark 5.7. Note that ( )ˆ, .∧ ∗Σ ∉N p   Otherwise we obtain that  

( ) ( )( ) { }ˆ ˆ. , , .∧Γ + Σ = ∅ab p N p N p                             (5.51) 

But the other hand from Equation (5.48) follows that  

( ) ( )( ) ( )#ˆ ˆ ˆ. , , .ε∧Γ + Σ = −Λ × dab p N p N p p                         (5.52) 

But this is a contradiction. This contradiction completed the proof of the statement (I). 
(II) Let ( ) ( ) ( )# # #

> 1 2ˆ ˆ ˆ, , , , , , , , ,k k k k≤ ≤∆ ∆ ∆N p N p N p    and ( ) ( )# # # #
>ˆ ˆ, , , , , , , ,n nk kε ε≤∆ ∆N p N p   be the external sum 

correspondingly 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

2

1

1
# # #

,
=1 =1 =1

# # #
> ,

1 =1 =1

# # #
1 2 ,

= =1 =1

1
# # # # #

, , ,
=1 =1 =1

ˆ ˆ, , , , ,

ˆ, , , ,

ˆ, , , , ,

ˆ ˆ, , , , ,

l l

l l

l l

l l

k kr

l k l
l k k

k k

l k l
l r k k

k kr

l k l
l r k k

k kr

k l l k l k l
l k k

r M

r M

r r M

r Mε ε

≥

≤

∧

≥ +

≤

≥

≤

∆ = Γ + ℑ ×

∆ = ℑ ×

∆ = ℑ ×

∆ = Γ + ℑ × +

∑∑ ∑

∑∑ ∑

∑∑ ∑

∑∑ ∑

N p N p N p

N p N p

N p N p

N p N p N p N







 ( ){ }

( ) ( ) ( ){ }# # # # #
> , , ,

1 =1 =1

, ,

ˆ, , , # - , , .
l lk k

k l l k l k l
l r k k

r Ext Mε ε
∧

≥ +














∆ = ℑ × +


∑ ∑ ∑

p

N p N p N p

               (5.53) 
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Note that from Equation (5.43) and Equation (5.53) follows that 

( ) ( ) ( )# # #
>ˆ ˆ ˆ, , , , , 1, 2,r r rε≤∆ + ∆ = −Λ × =dN p N p p 

                     (5.54) 

Lemma 5.4. Under conditions (5.46)-(5.47)  

( ) ( )# # # #
, > ,ˆ ˆ, , , , , , , 1, 2,k l k lr r rε ε≤

 ¬ ∆ ∆ = ab N p N p 

                      (5.55) 

and  

( ) ( )# #
>ˆ ˆ, , , , , 1, 2,r r r≤

 ¬ ∆ ∆ = ab N p N p 

                         (5.56) 

Proof. First note that under conditions (5.46)-(5.47) one obtains  

( )# #
,ˆ, , 0 , 1, 2,k lr rε≤

 ∆ ≠ = N,p

                              (5.57) 

Suppose that there exists 0r ≥  such that ( ) ( )# # # #
, > ,ˆ ˆ, , , , , , .k l k lr rε ε≤

 ∆ ∆ ab N p N p   hen from Equation (5.54) 
one obtains  

( ) ( )# # #
> ,ˆ ˆ, , , .k lr ε ε∆ = −Λ × dN p p                               (5.58) 

From Equation (5.58) by Theorem 2.17 one obtains 

( ) ( ) ( ) ( ) ( )1 1# # # # # # # #
> , > , > ,ˆ ˆ ˆ ˆ ˆ, , , , , , , , , .k l k l k lr r rε ε ε ε

− −
   − = Λ ×∆ = Λ ×∆ = ∆   d p N p p N p N p           (5.59) 

Thus  

( )# #
> ,ˆ, , , .k lrε ε− = ∆d N p                             (5.60) 

From Equation (5.60) by Theorem 2.11 follows that ( ) 0r>∆ =  and therefore by Lemma 5.2 one obtains the 
contradiction. This contradiction finalized the proof of the Lemma 5.4. 

(III) 
Remark 5.8. (i) Note that from Equation (5.49) by Theorem 2.10 (v) follws that ( )ˆ,∧Σ N p  has the form 

( ) ( )( ) ( )( )# # #ˆ ˆ ˆ, . , ε∧ ∧Σ = + Σ = + −Λ × dN p q ab p N p q p                    (5.61) 

where  

( ) ( )# #
>ˆ ˆ ˆ, 1, , , and∧ ∗

∞∈Σ = ∆ ∈q N p N p q p q.                        (5.62) 

(ii) Substitution by Equation (5.61) into Equation (5.48) gives  

( ) ( ) ( ) ( )( ) ( )# # #ˆ ˆ ˆ ˆ ˆ, , , .ε ε∧Γ + Σ = Γ + + −Λ × = −Λ ×d dN p N p N p q p p              (5.63) 

Remark 5.9. Note that from (5.63) by definitions follows that  

( )( ) ( )( )# #ˆ ˆ, .ε Γ + −Λ × dab N p q p                            (5.64) 

Remark 5.10. Note that from (5.62) by construction of the Wattenberg integer ( )ˆ,∧Σ N p  obviously follows 
that there exists some 1 2,r r ∈  such that  

( ) ( )# # #
1 2 1 2ˆ ˆ1, , , 1, , , , .r r r r≤ ≤∆ < ≤ ∆ <N p q N p                         (5.65) 

Therefore 

( ) ( ) ( ) ( ) ( )# # #
1 2ˆ ˆ ˆ ˆ ˆ, 1, , , , , 1, , , .r r≤ ≤Γ + ∆ < Γ + ≤ Γ + ∆N p N p N p q N p N p            (5.66) 

Note that under conditions (5.46)-(5.47) and (5.66) obviously one obtains  

( ) ( ) ( ) ( ) ( ) ( )# # # #
1 2ˆ ˆ ˆ ˆ ˆ ˆ0 , 1, , , , , 1, , , 0, , 0.r r≤ ≤≠ Γ + ∆ < Γ + ≤ Γ + ∆ Γ + ≠N p N p N p q N p N p N p q       (5.67) 

From Equation (5.63) follows that  



J. Foukzon 
 

 
627 

( ) ( )( ) ( )# # #ˆ ˆ ˆ, .ε εΓ + + −Λ × = −Λ ×d dN p q p p                    (5.68) 

Therefore  

( )( ) ( ) ( )
1# #ˆ ˆ, .ε ε
−
 Λ Γ + + − = −  d dp N p q                     (5.69) 

From (5.69) follows that  

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

1 1# # # #
1

1# #
2

1# #

ˆ ˆ ˆ ˆ ˆ0 , 1, , , ,

ˆ ˆ ˆ, 1, , , 0,

ˆ ˆ, 0.

r

r

− −

≤

−

≤

−

   ≠ Λ Γ + ∆ < Λ Γ +   

 ≤ Λ Γ + ∆ 

 Λ Γ + 

p N p N p p N p q

p N p N p

p N p q



 



              (5.70) 

Note that from (5.70) by Theorem 2.8 (see Subsection 2.5) and Formula (5.32) one otains  

( )( ) ( ) ( ){ } ( ) ( )

( )( ) ( ) ( ){ } ( ) ( )

( )( ) ( ){ }

1 ## # #
1 0 1

1 ## # #
2 0 2

1# #

ˆ ˆ ˆ ˆ0 , 1, , , 1, , , ,

ˆ ˆ ˆ ˆ, 1, , , 1, , , 0,

ˆ ˆ, 0.

r a r

r a r

− ∗
≤ ≤

− ∗
≤ ≤

−

  ≠ Λ Γ + ∆ = + ∆    
  Λ Γ + ∆ = + ∆    

 Λ Γ + ≠ 

Wst p N p N p Wst n p

Wst p N p n p Wst N p

Wst p n p q



           (5.71) 

From Equation (5.70)-Equation (5.71) follows that  

( ) ( ) ( )( ) ( ){ }
( ) ( )

( )( ) ( ){ }

# 1# # #
0 1

# #
0 2

1# #

ˆ ˆ ˆ0 1, , , ,

ˆ1, , , 0,

ˆ ˆ, 0.

a r

a r

−∗
≤

∗
≤

−

   ≠ + ∆ < Λ Γ +   
 ≤ + ∆  

 Λ Γ + 

Wst N p Wst p n p q

Wst N p

Wst p N p q



 



              (5.72) 

Thus   

( )( ) ( ) ( )
1# #ˆ ˆ, ε
−  ¬ Λ Γ + −   dab p N p q                        (5.73) 

and therefore  

( )( ) ( ) ( )
1# #ˆ ˆ, .ε ε
−
 Λ Γ + + − ≠ −  d dp N p q                       (5.74) 

But this is a contradiction. This contradiction completed the proof of the Lemma 5.3. 
Remark 5.11. Note that by Definition 2.18 and Theorem 2.18 from Assumption 5.1 and Assumption 5.2 fol-

lows  

( ) ( ) ( ),

2
## # 2

0 0
=1

# -
l

k l

k

l k
a Ext a e β ε ε

∗∧
∗ ∗ ∗

∈

 
+ = − = 
 

∑ ∑ d d
 


 

Theorem 5.3.The equality (5.75) is inconsistent. 
Proof. The proof of the Theorem 5.3 obviously copies in main details the proof of the Theorem 5.3. 
Theorem 5.3 completed the proof of the main Theorem 1.6. 
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