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Abstract 
Methods which calculate state feedback matrices explicitly for uncontrollable systems are consi-
dered in this paper. They are based on the well-known method of the entire eigenstructure as-
signment. The use of a particular similarity transformation exposes certain intrinsic properties of 
the closed loop w-eigenvectors together with their companion z-vectors. The methods are ex-
tended further to deal with multi-input control systems. Existence of eigenvectors solution is es-
tablished. A differentiation property of the z-vectors is proved for the repeated eigenvalues as-
signment case. Two examples are worked out in detail. 
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1. Introduction 
A study by [1] on eigenvalue assignment for single-input linear systems is followed in this paper. It is based on 
the well-known entire eigenstructure assignment method [2]-[4]. A survey on the entire eigenstructure method 
has been conducted by [5], and used by [6] for control system design. An algorithmic approach to eigenvalue 
assignment has been conducted by [7], besides, partial assignment using orthogonality relations by [8]. In addi-
tion, studies regarding existence, uniqueness, and numerical solution have been conducted by [9]. 

As required by this method, the w-eigenvectors and companion z-vectors are extracted out of the null space of 
an augmented n n m× +  matrix . 

Basically, the method in [1] deals with a transformed system representation. It also avoids manipulating null 
spaces. Instead, it relies on explicit determination of the closed loop w-eigenvectors and the companion z-vec- 
tors of the transformed system. The determination process is systematic and conceptually simple. The compo-
nents of the w-eigenvectors depend explicitly on the assigned eigenvalues and on the coefficients of the charac-
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teristic equation. The companion z-vectors turn out to be straightforward, being the open loop characteristic eq-
uation evaluated at the closed loop eigenvalues to be assigned. 

The procedure in [1] has been applied to single-input controllable systems. In this paper, the method is revi-
sited and shown to apply to uncontrollable systems equally well. Besides, the method has also been extended to 
deal with a particular case of multi-input systems. To achieve this, the transformation matrices have been mod-
ified accordingly to suit the uncontrollable case and the multi-input case. The case of repeated eigenvalues is al-
so revisited, proving the facts established by demonstration in [1]. Furthermore, existence of the solution of the 
assigned closed loop eigenvectors is also proved. 

For the single-input and multi-input cases, the study shows that calculations of the needed w-eigenvectors and 
the z-vectors are based on lower order matrices specifying the controllable part and the uncontrollable part of the 
system. Such approach simplifies the design process, and provides numerical advantages. 

Finally, the two examples are worked out in Section 8 to illustrate the ease of use of the assignment process. 

2. Basis of the Method 
Consider the linear time-invariant system given by 

x Ax Bu= +                                            (2.1) 

where nx∈ , mu∈ , and the rank of B is m. It is required to change the eigenvalues by states feedback us-
ing u Kx= , where K  assigns n  eigenvalues iλ  together with the corresponding iw  eigenvectors accord-
ing to 

( ) i i iA BK w wλ+ =                                        (2.2) 

or 

[ ] 0;i
i n i i

i

w
A I B K w z

z
λ

 
− = = 

 
                                 (2.3) 

Such setup as in (2.3) is associated in the control literature with the entire eigenstructure assignment method 
(see [2] [3]).  

It is assumed that the open loop characteristic equation is given by 

( ) 1 2
1 2 1 0n n n

n npc a a a aλ λ λ λ λ− −
−= + + + + + =                          (2.4) 

In the development of the explicit methods, a state transformation T  is used where x Tp= , and as has been 
shown in [1], the T  matrix needed is 

2 1nT B AB A B A B− =  
                                 (2.5) 

resulting in the system  
p G p H u= +                                          (2.6) 

1
1 1

2

1

0 0 0 1
1 0 0 0

where   such that  0 1 0
0

0 0 1 0

n

n

a
a

G T AT H T B
a
a

−
− −

−   
   −   
   = = = =
   −   
   −   





  

   



              (2.7) 

A similar transformation will be used in this paper, together with the following rearrangement of (2.3) as 

( )i n i i iG I w HKw Hzλ− = − = −                                  (2.8) 

Such rearrangement is preferable in order to avoid a mixture pluses and minuses in the resulting formulae. 

3. The Uncontrollable Case 
The design procedure outlined in [1] applies to controllable systems only. It will now be extended to the case of 
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uncontrollable systems. It turns out that the same explicit w-eigenvectors and z-vectors determination still ap-
plies with the added advantage of manipulating lower order matrices and vectors. A transformation matrix T 
different from that in (2.5) should be used since that of (2.5) will not be invertible due to the uncontrollability of 
the system. The modified T assumes the following form. 

2 1qT B AB A B A B N− =   
                             (3.1) 

where q is the number of controllable eigenvalues and N is any nxn q−  matrix chosen to guarantee the non-
singularity of T. With this particular transformation the partitioned G and H matrices will assume the following 
forms. 

2 and
0 0

c q

n qxq u n qxm

G G H
G H

G− −

   
= =   
   

                             (3.2) 

where cG  and qH  will retain the forms of (2.7) but of reduced dimension, that is 

1

2

1

0 0 0 1
1 0 0 0

and    0 1
0 0

0 0 1 0

q

q

c q

g
g

G H
g
g

−

−   
   −   
   = =
   −   
   −   





   

  



                        (3.3) 

where q n< , cG  is a q q×  matrix representing the controllable part of the system, uG  and 2G  are 
n q n q− × −  and q n q× −  matrices respectively which depend on the particular choice of N . Although ma- 
trix uG  is not unique (depending on N ), its eigenvalues are unique being equal to the uncontrollable eigen-
values. 

4. Solutions by Decomposition of the Eigenvectors 
It will now be shown that the calculation complexity can be eased through decomposing the closed loop eigen-
vectors into two vector parts. By doing so, reduced order matrices are dealt with, resulting in vector parts of di-
mension 1q×  and 1n q− × . The z-vector remains an 1m×  vector. If the original method of calculation of the 
entire eigenstructure method were to be used [2] [3], then vectors of dimension 1n m+ ×  are determined for 
real eigenvector assignment, and vectors of dimension 2 1n m+ ×  are determined for the complex eigenvector 
assignment. 

Consider assignment of an eigenvalue iλ  which is not aneigenvalue of uG , then the matrix i n q n q uI Gλ − × − −  
is nonsingular. Let the associated eigenvector be decomposed as 

ic
i

iu

W
W

W
 

=  
 

                                            (4.1) 

where icW  and iuW  are 1q×  and 1n q− ×  vectors respectively. According to (2.8), and dealing with the 
transformed system, we solve 

2

0 0
c i qic

i
n q q u i n q miu

G I G HW
z

G I W
λ

λ− × − ×

− −    
=    −     

                            (4.2) 

So  

( )0 0n q q ic u i iu n q mW G I Wλ− × − ×+ − =                                  (4.3) 

Since u iG Iλ−  is nonsingular then iuW  is necessarily the zero vector, also 

( ) 2c i ic iu q iG I W G W H zλ− + = −                                  (4.4) 

Since 2G  multiplies iuW  which is the zero vector then icW  has only to satisfy the reduced order equations 
given by 
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[ ]c i ic m iG I W H zλ− = −                                        (4.5) 

Equations in (4.5) are in the same format of as (3.3) where a solution always exists irrespective of iλ  (see Sec-
tion 7). In which case, and provided ( ),1 1icW q =  the solution of iz , icW , and iuW , are systematically ob-
tained according to the explicit formulae as 

( ) 1 2
1 2 1

q q q
i i i i i q i qz pq g g g gλ λ λ λ λ− −

−= = + + + + +                          (4.6) 

( )( )( )( )

( )

1 2 2 1

1 2

1

1

i i i i q q

ic i i

i

g g g g

W g g
g

λ λ λ λ

λ λ
λ

− −
 + + + + +
 
 
 = + + 
 + 
  

  



                       (4.7) 

and 

10iu n qW − ×=                                           (4.8) 

Note that both solutions of icW  and iz  now depend on the coefficients of the reduced qth  order ( )pq λ  
characteristic equation of the controllable subspace. 

Consider now reassignment of an uncontrollable eigenvalue iλ  with an associated qualifying eigenvector, 
then the matrix u i n q n qG Iλ − × −−  is singular. Let the associated eigenvector be decomposed as in (4.1). 

One choice for iuW  is the zero vector, rendering the product 2 iuG W  zero, in which case (4.4) becomes 

[ ]]c i ic q iG I W H zλ− = −                                    (4.9) 

Since cG  and qH  are in the form given in (3.3), then icW  is evaluated as in (4.7). According to (4.6), iz  
is calculated through the reduced order characteristic equation of the controllable part evaluated at the uncon-
trollable eigenvalue. 

A second choice is that iuW  is non-zero, given by the matrix representation of the null space of u iG Iλ− , in 
which case, icW  is obtained through the solution of 

[ ] 2c i ic iu q iG I W G W H zλ− + = −                                (4.10) 

Since 2 iuG W  is already calculated as mentioned above, and when c iG Iλ−  is nonsingular, the solution for 
icW  is given by.  

[ ] ( )1
2ic c i iu q iW G I G W H zλ −= − − −                             (4.11) 

The arbitrariness in icW  is due to the arbitrariness in choosing iz  and in whatever arbitrariness is available 
in the null space of u iG Iλ− . 

This second choice is a must when using the entire eigenstructure assignment method. If iuW  is a zero vector 
then the W matrix of the n closed loop eigenvectors will be singular. Obviously this should be avoided as 

1
TK Z W −=  implies an invertible W matrix. 
It is worth mentioning that an eigenvector corresponding to an uncontrollable eigenvalue can be tailored out 

of the two possible ones stemming from the two choices. 
Finally, having obtained n independent eigenvectors 1 2 1 2q u u u n qw w w w w w −   

 with companion z- 

vectors 1 2 1 2q u u u n qz z z z z z −    , the state feedback matrix determined by the entire eigenstructure 

method in the original state space representation is 1
TK K T −= , i.e. 

1 1
1 2 1 2 1 2 1 2q u u u n q q u u u n qK z z z z z z w w w w w w T

− −
− −   =                   (4.12) 

5. A Multi-Input Case 
The explicit nature of the method can be extended to a multi-input case. This is possible in the case where ma-
trices A and B have a particular structure which results in the following augmented matrix 
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2 1T B AB A B Aσ − =  
                                 (5.1) 

To be an nxn square and nonsingular, where σ  is such that n mσ= . 
To prove such assertion, use the same similarity transformation x Tp=  with T as in (5.1), giving. 

1
1 1

2

1

0 0 0
0 0 0

0 and     0
0

0 0 0

m

m n m

m m

m m

A I
I A

G T AT I H T B
A

I A

σ

−
− −

−   
   −   
   = = = =
   

−   
   −   





  

   



                 (5.2) 

where 1 2, , ,A A Aσ  are square submatrices of order m. Let the eigenvalues assigned be that of the m m×  
matrix iΛ . Invoking (2.3), with A replaced by G, and B by H, we get 

i i i iGW W H Z− Λ = −                                       (5.3) 

The following proof is straightforward, achieved by substituting generalized matrix forms for the w-eigen- 
vectors and z-vectors in (5.3). It is presented for the case 4σ = . In analogy with the single-input case with 
careful attention now to the order of matrix multiplication (i.e. iΛ  postmultiplies other submatrices), and pro-
vided the last m m×  submatrix of iW  is normalized to mI , the solutions iW  and iZ  are 

( )( )
( )

1 2 3

1 2

1

i i i

i i
i

i

m

A A A

A AW
A

I

 Λ + Λ + Λ +
 

Λ + Λ + =  Λ + 
  

                               (5.4) 

and 

( )( )( ) 4 3 2
1 2 3 4 1 2 3 4i i i i i i i i iZ A A A A A A A A= Λ + Λ + Λ + Λ + =Λ + Λ + Λ + Λ +                (5.5) 

Note that the z-vectors iZ  are now given through what may be called a generalized reduced order characte-
ristic equation.  

The nested nature of the solutions is imminent, easily generalized for cases where 5σ ≥ . Note that a iΛ ei-
ther specifies a single eigenvalue, in which case we get m  independent eigenvectors to choose from, or it spe-
cifies m distinct eigenvalues in which case we get a single eigenvector corresponding to an eigenvalue. Besides, 
a real-element iΛ  can be used to assign complex eigenvalues whenever the number m caters for that. 

The extension of the assignment to multi-input uncontrollable systems is also straightforward. The number of 
the uncontrollable eigenvalues should be an integer multiple of m  in this case. If their number is n mg−  
then matrices T, G, and H assume the following forms. 

2 1T Ng
n n gB AB A B A B−
× − =  

                           (5.6) 

1
2

1 1

2

1

0 0 0
0 0

0
0

and  0
0

0 0
0

0

g
m

m n
m

m g n g

m
m

n gu
n g g n g n g

A
II A

I G
G T AT H T BA

I A

G

−

× −− −

−
− × − × −

− 
  −   
  
  = = = =−   
  −
      





  



  



             (5.7) 

The same theory developed in Section 4 still applies. The uncontrollable eigenvalues are those of uG . 2G  
will be a g n g× −  zero matrix, and uG  will be diagonal or a Jordan form if matrix N is a basis of the span of 
the uncontrollable subspsce. 

6. Repeated Eigenvalues 
In [1], it has been demonstrated that the z-vectors associated with the repeated eigenvalues can be obtained by 
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successive differentiation of the basic z-vector .It remains to prove this property irrespective of the transforma-
tion used. 

Consider the general setup of the entire eigenstructure assignment as formulated in (2.2). Let there be p iden-
tical eigenvalues iλ  together with their associated eigenvectors iw , and let 1w  be the basic first eigenvector , 
hence 

( ) 1 0i nA BK I wλ+ − =                                       (6.1) 

and 

( ) 1 1, 2, , 1i n j jA BK I w w j pλ ++ − = = −                           (6.2) 

To facilitate the proof, a convenient rearrangement for 1w  and 2w  is 

( ) 1 1i nA I w Bzλ− = −                                        (6.3) 

( ) 2 1 2i nA I w w Bzλ− = −                                     (6.4) 

Differentiating (6.3) with respect to λ , we get 

( ) 1 1
1

d d
d di n
w zA I w Bλ
λ λ

− = −                                   (6.5) 

Comparing (6.4) with (6.5), we infer 

1 1
2 2

d d
and

d d
w zw z
λ λ

= =                                   (6.6) 

Similarly, differentiating (6.4) with respect to λ , we get 

( ) 2 1 2
2

d d d
d d di n
w w zA I w Bλ
λ λ λ

− − = −                              (6.7) 

or 

( ) 2 2
2

d d
2

d di n
w zA I w Bλ
λ λ

− = −                               (6.8) 

Comparing (6.8) with (6.9) 

( ) 3 2 3i nA I w w Bzλ− = −                                   (6.9) 

We get 

2 2
3 3

d d1 1and
2 d 2 d

w zw z
λ λ

= =                              (6.10) 

Repeating the same process, it can be shown that 

1 1

d d1 1and 1,2, , 1
d d

j j
j j

w z
w z j p

j jλ λ+ += = = −                   (6.11) 

or 

1 1
1 1

d d1 1and 1,2, , 1
! !d d

j j

j jj j

w zw z j p
j jλ λ+ += = = −                 (6.12) 

Confirming what has been demonstrated in [1]. Such differential properties regarding the w-eigenvectors and 
z-vectors are pertinent to the vectors irrespective of the transformation used. 

7. Existence of the Solution 
It’s worth considering the existence of the solutions when considering the controllable and uncontrollable sub-
spaces. For the controllable subspace, we seek the solution icW  where 
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and ic
c i q ic q i

iu

W
G I W H z W

W
λ

 
 − = − =   

 
                          (7.1) 

For the solution of icW , using (7.1) 

1

2

1

0 0 1
1 0 0
0 1

0
0 0 1 0

i q

i q

ic i

i

i

g
g

W z
g

g

λ
λ

λ
λ

−

− −   
   − −   
   = −
   − −   
   − −   





   

  



                        (7.2) 

If iλ  is not an eigenvalue of cG , then c i qG Iλ −   is nonsingular and the solution always exists. Otherwise, 

iλ  is an eigenvalue of cG  and c i qG Iλ −   is singular, and for a solution to exists the following condition 
should hold [10]-[13]. 

( ) ( )c q i crank G H z rank G − =                                (7.3) 

Alternatively,  

( ) ( )q i crange H z range G⊆                                  (7.4) 

i.e. m iH z−  can be expressed as a linear combination of scalar multiples of the columns of cG . For the case 
4q = , the following combination of the left hand columns gives, 

( ) ( )( ) ( )( )( )
4

3
1 1 2 1 2 3

2

1

0 0
0 1 0

1 0 0
1 0 0 0

i i

i
i i i i i i

i

i

g z
g

g g g g g g
g

g

λ
λ

λ λ λ λ λ λ
λ

λ

− − −         
         − −         + + + + + + + + + =
         − −
         − −         

  (7.5) 

i.e. (7.4) holds. Hence, a solution always exists irrespective of iλ  assigned. 
For the uncontrollable subspace  

0u i n q iuG I Wλ − − =                                      (7.6) 

Since the right hand side is zero the condition in (7.4) always holds and the solution always exists given by a 
matrix representation of the null space of u i n qG Iλ − −  . 

8. Examples 
Example 1 
An uncontrollable system has the following system matrices  

5 3 3 0 1
6 3 4 0 1

,
0 1 0 1 0
0 0 0 3 1

A B

−   
   −   = =
   
   

−   

                              (8.1) 

The system is unstable having eigenvalues 1, −1, −2, and −3. It is required to assign the eigenvalues −3, −4, 
−5, and of course to reassign the uncontrollable eigenvalue −2. 

The similarity transformation used is  

2

2 1 2 7 2
0 1 3 11 0
0 0 2 6 0
1 1 3 9 1

T B AB A B

  −   
    −    = =
    −
    

−     

                          (8.2) 
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Leading to G and H matrices 
0 0 3 0.5 1
1 0 1 16 0

,
0 1 3 5.5 0
0 0 0 2 0

G H

   
   −   = =
   − −
   

−   

                              (8.3) 

As evident by the system after transformation, −2 is the uncontrollable eigenvalue, and that the controllable 
subspace has the matrix representation as that of (3.3). 

Hence, the reduced order characteristic equation is 
3 23 3 0s s s+ − − =                                       (8.4) 

Utilizing explicit determination, the closed loop eigenvector corresponding to the −2 eigenvalue is calculated 
using (4.11), the remaining ones using (4.7), and the companion z-vector using (4.6) where 1 2 33 , 1 , 3g g g= = − = −  
giving. 

[ ]1 2 3 4

33 1 3 9
54 0 1 2
21 1 1 1
6 0 0 0

W w w w w

− − 
 − − = =
 
 
 

                           (8.5) 

[ ] [ ]1 2 3 4 0 0 15 48Z z z z z= = − −                             (8.6) 

In order to have a nonsingular W matrix, the eigenvector 1w  associated with the uncontrollable eigenvalue 
has been calculated according to the second choice with 1 0z = , then scaled to have its elements as integers.. 

According to (4.12), the state feedback matrix in the original system representation is  

[ ]1 1 96 84 72 21K Z W T− −= = − − −                              (8.7) 

N.B.; The state feedback matrix above assigns the four eigenvalues required according to the entire eigen-
structure method. If the answer is to be checked using any other method like the Matlab place function, a differ-
ent result for K may be obtained. This is due to the fact that K for uncontrollable systems is not unique.  

Example 2 
Consider an unstable multi-input system having the following A and B matrices  

1 1.5 0 2 1 0 3 1.5
4 1 0 4 0 0 6 3
1 1 6 0 1 3 2 2

  and   
4 1.5 0 7 1 0 6 3.5

1 1.5 0 2 3 0 1 0.5
1 1 0 0 1 3 1 0

A B

− − − −   
   − − −   
   −

= =   
− − − − −   
   − −
   

− −      

                      (8.8) 

using the transformation 2T B AB A B =   , one gets 

0 0 0 0 2.0748 11.3271
0 0 0 0 75.8692 67.1776
1 0 0 0 16.6636 2.9720
0 1 0 0 46.6822 52.8598
0 0 1 0 7.4019 0.6168
0 0 0 1 7.8224 13.5981

G

− − 
 
 
 −

=  
− − 

 −
 
  

                            (8.9) 

Hence, 
7.4019 0.6168 16.6636 2.9720 2.0748 11.3271

1  , 2 , 3
7.8224 13.5981 46.6822 52.8598 75.8692 67.1776

A A A
− −     

= = =     − − − −     
        (8.10) 
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Let the eigenvalues assigned be 1,  2,  3,  4,  and 2 4 j− − − − − ± , with assigned eigenvector 1 2 6, , ,w w w  
and associated z-vectors 1 2 6, , ,z z z  respectively. One choice for 1 2 3, ,Λ Λ Λ  are 

1 2 3

1 0 0 1 2 4
,  ,  and  

0 2 12 7 4 2
− −     

Λ = Λ = Λ =     − − − − −     
                    (8.11) 

Using the formulae given in (5.4) the closed loop eigenvectors are calculated pair-wise, i.e.  
[ ] [ ] [ ]1 2 3 4 5 6, ,w w w w w w , and are respectively 

25.0654 4.2056 2.7383 21.6916 17.0000 49.8131
54.5047 84.0561 293.8598 177.2243 132.7196 36.7664

8.4019 0.6168 7.4019 1.6168 9.4
, ,

7.8224 15.5981 19.8224 20.5981
1 0 1 0
0 1 0 1

− − − −   
   
   
   − − −
   
− − − −   
   
   
      

019 4.6168
11.8224 15.5981

1 0
0 1

 
 
 
 
 
− − 
 
 
  

             (8.12) 

The companion z-vectors 1 2 3, , and Z Z Z  are calculated using (5.5) and are respectively 

22.9907 19.7383 262.4 160.4 167.3271 178.9533
, ,

130.3738 235.2897 2202.6 1013.9 488.3738 390.1682
−     

     − − − − −     
            (8.13) 

According to (4.12) with iZ  being now column vectors, the feedback matrix K, is 

441.1 136.4 256.9 489.2 276.4 552.7
797.6 291.5 509.7 945.4 513.1 1015.8

K
− − − 

=  − − − 
                  (8.14) 

Note that Matlab calculates in double precision, however, format short of matlab has been used in the print 
out of the above results. So, to check the results, one may have to go through the calculations once more in case 
the precision of K provided in (8.14) is not adequate.  

9. Conclusion 
The study has shown that the explicit methods can be extended to uncontrollable systems just as easy with the 
benefit of dealing with lower order matrices, and consequently with reduced w-eigenvectors. The z-vectors are 
also determined using lower order characteristic equations and shown to bear a differentiation property for the 
repeated eigenvalues case. For the uncontrollable case, it turns out that the z-vectors have more degrees of free-
dom which can be used to shape the system response. The methods can also be extended to a special case of 
multi-input controllable and uncontrollable systems. The solutions of the w-eigenvectors and the z-vectors are 
always guaranteed. The two examples demonstrate the ease of application of the formulae in the design of state 
feedback matrices. 
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