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Abstract

The main purpose of this article is to define the super characteristic classes on a super vector
bundle over a superspace. As an application, we propose the examples of Riemann-Roch type for-
mula. We also introduce the helicity group and cohomology with respect to coefficient of the helic-
ity group. As an application, we propose the examples of Gauss-Bonnet type formula.
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1. Introduction

In this paper, we define various characteristic classes on a super vector bundle over a superspace, so called super
characteristic classes. We also propose the super Riemann-Roch formulas and the super Gauss-Bonnet formulas
as its application. In contrast, it is justified the definition of the super characteristic classes by establishing those
formulas. In [1], we defined the super Chern classes with values in the super number (a|b) , a,beZ and we
succeeded in applying the super ADHM construction of the super Yang-Mills instantons. But essentially the su-
per Chern classes ought to take with values in an integer a < Z . Meaning like it, we introduce the new defini-
tion of the super Chern classes with values in integer. In general, the characteristic classes consider that given
the vector bundles it corresponds to some cohomology class of the base manifolds. Hence, we need the coho-
mology reflecting the properties of superspaces. Therefore, we will define the cohomology with respect to coef-
ficient of the some finitely generated group, which is called the helicity group.

This article is organized as follows. After a brief sketch on the definition and examples of superspaces and its
cohomology in Section 2 ([1]-[6]), main result in this paper is that we define the Chern class, Chern character,
Todd class, Pontrjagin class, Eular class, A -genus and L-genus as in the case of super category in Section 3. In
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Section 4, as an application, we have the Riemann-Roch type formula of super structure sheaf on the complex
supercurves of dimension (]1 N) with genus g. Moreover, it generalizes the structure sheaf to any super line
sheaves. In particular, in the case of dimension 1|1 , with N =1 supersymmetric structure, we obtain the
Atiyah-Singer index type formula for any super line bundles. In Section 5, we attempt to define the helicity
group and cohomology with respect to coefficient of the helicity group. In Section 6, we give the Gauss-Bonnet
type formula on the complex supercurves of dimension (]1 N) with genus g and the complex super projectve
space of dimension (n|N).

2. Supermanifolds

We will summarize the definitions here in order to establish terminology and notation ([1]-[6]).
Definition 2.1 A superspace is defined to be a local ringed space M =(M ,@M) consisting a topological

space M and a sheaf of Z, -graded supercommutative rings O,, =0, ; ®0, ; on it such that the stalk éM,x
atany point xe M is a local ring.

In particular case of a superspace, a supermanifold is defined by the foIIowmg

Definition 2.2 A supermanifold of dimension (n| N) is a ringed space (M (9 ) with the following
properties:

1) the structure sheaf (’) (’) 7 ® (9 is a sheaf of Z, -graded supercommutatiye rings,

2) Let N, (9 . +(’)2 be the ideal sheaf of nllpotents in O, . Then M, —( O —(9 /N ) is a
classical manlfold M of dlmensmn n, so also called body. .

3) Let £=N /N2 be the locally free O, -module of rank (0[N). Then O, is locally isomorphic to
the exterior aIgebraA E.

A supermanifold is said to be split if the isomorphism 3) holds globally.

A local section f eI'(O,,) can be expressed as follows:

f(z|¢9):ZN: > i ()00, 6]

k=01<ij <---<iy <N

where z :(zl,zz,u-,z”), f,.i. (z) is a local coordinate function on M, and 9:(91,92,...,9'“) a local
generator of A'E. We refer to (zl,zz,~~-,zn|¢91,02,---,0’“) as a local coordinate of a supermanifold M .

Example 2.1 1) The typical example is the real (or complex) linear superspace R"™ (or C") which can
be defined by

IN _ (N
R" _(RH,A (R"®, A, ))
IN _ (N
c _((Cn'A (C"®c A, ))
where 'A]R" (or Acn) is the sheaf of the ring of differential functions on R" (or C"). It is easy to see that
the R"™ is isomorphic to (R”,A(S'(R“)@A‘RN ))
2) A real super sphere of dimension (n|2N) is defined by
2N _ (2N
S _(S”,A (R ®, A, ))

where A_, is the sheaf of the ring of differential functionson S".
3) A complex super projective space of dimensin (n| N) is defined by

P~ (P, (C" @, O, (1))
We denote by OH,N :@Pn the structure sheaf A (C" ®, O (- )) of P"™ . A super holomorphic

function 1) on p"™ should be a function of total homogeneity 0 in n+1 even variables (zl,m, z"*) and N
odd variables (¢",--,0"), thatis f,_, (z) has homogeneity (k). Let O (d)=0,,(d)®0,, be the
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even line sheaf of degree d on P"™™ and T10,,, (d)= no,, (d)@(’)ﬂN be the odd line sheaf of degree d on
pniN .
4) A quaternionic super projective space of dimension (n| N) is defined by

HP™ = (P, A (H" ®, A, (1))

H

The above are examples of the supermanifolds in Definition 2.2.
5) We have a new example of superspace in Definition 2.1 as follows. The complex supercurves of dimension

(1N) with genus g is defined by
~ 1
s :(2,02):(2,/\'(@“ ® KgD

where K; =T’ is the canonical line bundle on the classical Riemann surfaces £ and K;'=TZ. In the
case of N =1, it becomes the super Riemann surfaces with N =1 SUSY structure (c.f. [7], p.162). In the case
of N >2, we do not kown whether or not there exists a SUSY structure.

We can construct the super Euler sequence as follows ([1]).

0O, (-1) > P xC™M STP™®0,,, (-1) > 0.
Tensoring this with O, (1), we have
050, > (P™xC™)®0,,, (1) >TP™ 0.
Considering the super determinant ( so called Berezin bundle ) of the super Euler sequence, we obtain
BerTP"N = n”*““opnm (N+1-N).
Dualizing this, we can write
BerT'P™ =T1""""0O_, (-n-1+N),
P

where BerT "P"™ calls the canonical super line bundle of P"™ and IT is the parity change functor. The fol-
lowing is given by Manin ([5]).
Lemma 2.1

HO(P"‘N O (d)):

(P00 (0)) 0. p=120--1

S—d+N—(n+l) (le\N )® Ber(Cn+1|N )* (d <N _(n +1))

Hn PHIN'On\N (d) _
( F ) 0 (d>N-(n+1)),
where Ber(C”‘N "—m™NC and O (d)=0,
The following is given by Penkov ([8]). A
Theorem 2.1 (Super Serre Duality) Let E be a complex super vector bundle over M. Suppose that
BerT"M s the canonical super line bundle of M . Then we have the following.

2 (0)®0, 0 .

H ”(I\?I,E)* =H"(M,E"®BerT'M).

3. Super Characteristic Class

In this section, we will give a main result in this paper. Let @M = ém,a @@M 1 denote the structure sheaf on

()
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M . Then we have an exact sequence (cf. [2], p.166 Lemma 2.1)

052 —50,;—250,; >1,

M,0

where 1 is the natural injection and exp is defined by
exp( f)=exp(2zif) for f e(’}Mﬁ.

The exp(f)=1 implies f=1eZ, leZ. Hence Ker(exp)=7Z . This induces the exact sequence of
cohomology groups:

HY(M,0y o)~ H! (M0}, 5)—>H? (M, Z) >

We can identify H (M O ) with the equivalence classes of ]40 or 0|1 -super line bundles over M .
Then we can define the super flrst Chern class of (qo)-super line bundle L and (0|1) -super line bundle TIL

by
¢(L)=5(L), -g(L)=6(TL), LILeH!(M,0; ).

Remark 3.1 Note that we can define Z, = AZ" . We consider the line sheaf O |2 (d) over the complex
super projective space P"2. This line sheaf is decomposed into

Opre (d) =0, (d)+0 , (d-1)8"+ O, (d -1)6? +0,(d -2)0'0°.

The super first Chern calss and the classical first Chern class denote by ¢, and ¢, respectively. Then we
have

¢ (0, (d))=dez
60, (d))=d+(d-2)¢" +(d -1)6° +(d ~2) 86" € Z,_,.
Hence, we see that for the superline bundle L
c(L)eH?(M,Z), &(L)eH?(M,2Zy).

We will propose the axiomatic definition of super Chern classes (cf. [1] [2] [9]-[15]). We consider the
category of complex (r|s)-super vector bundles over an (n|N ) -superspace M =(M,0,

Axiom 1 For each complex super vector bundle E over M and for each positive mteger i, the i-th super
Chernclass c, (E)eHZ'(M,Z) is given, and ¢, (E)=1.

Weset c(E)=>"c (E) andcall c(E) the total super Chern class of E.
Axiom 2 (Naturality)

Let E be a complex super vector bundle over a superspace N and f :(M ,@M )—)(N,@N) a morphism of
superspaces. Then

c(1°E)=f"(c(E))eH"(M,2Z),

where f"E is the pull-back bundle over M .

Axiom 3 (Whitney sum formula)

Let L, L, L, becomplex line bundles of rank (10) or (0]1) and L, ®L,®--®L, be their Whitney
sum. Then

c(LOL®®L,)=c(L)c(L,)c(L,).

Axiom 4 (Normalization)
We put c((’)PnW (1)) 1+cl( o (1))eH*(P",Z) and c(HOleN (1)) 1+c1(nopn|N())eH*(P”,Z).
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Then it can be axiomatically as follows:

cl(opnw (1))=1e H?(P".Z)=1Z,
¢, (MO (1)) =, (O, (-1))-1e H?(P",Z) = Z,

6 (O ) =6, (11O, ) =0

In order to explicitly define the super characteristic classes we need the splitting principle ([2] Proposition 3.7)
as follows.

Proposition 3.1 (Bartocci, Bruzzo, Hernandez-Ruiperez) Let E be a complex (r| s) -super vector bundle over
an (n|N)-supermanifold M . Then there exists a supermanifold F (M ) and a proper fibration 7z : F (M ) —M
such that

1) The homomorphism 7 : H*(I\7I ,Z) - H*(F(M ),Z) is injective.

2) The pull-back bundle 7'E splits into a direct sum of even complex line bundles 1, of rank (110) and
odd complex line bundles m; of rank (0|1):

ZE=,® @l ®&m ®---&m,,
sdet(7'E) =1, ®--®l, ®m ' ®---@m.".

We will explicitly give the super characteristic classes. .
Definition 3.1 1) The total super Chern class c(E)e H*(M ,Z) is defined by

°(E)= H(1+7J)H(1 5) 716, <H*(M,2).
2) The total super Chern character ch(E)e H* (M ,Q) is defined by

ch(E):Zr:eyj +ye %,

j=1 k=1
3) The super Todd class td(E)eH" (I\7I ,Q) is defined by
S s B

(E)= T2 [T

i l-e7 ja1-e”

4) The super Eular class e(E) is defined by
e(E):Cr+s(E) (I’+SSI’]) or e(E):Cn(E) (r+5>n)

5) Let E; be a real vector bundle of rank (2r|2s). The i-th super Pontrjagin class p, (E;) and the total
super Pontrjagin class are defined by

pi(ER)z(—l)i ¢, (Ex ®C),
p(Ex)=TT(1+72)[T(2+57).
j=1 k=1
6) The super A -genus A( ( ,(@) is defined by
A _ . Vi /2 = 6k/2
A(ER) - i1 sinh (}/j /2) k=1 Sinh (5k/2)'

7) The super L-genus L(E;)e H*(l\7| ,Q) is defined by

()
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L(E) =TT

i1 tanh y; 4 tanh &,

We can consider that it is justified these definitions by the following (cf. [13] [14]).
Lemma 3.1 The first few terms of ch(E) and td(E) are given by the following.

ch (E)=r+s, ch(E)=c,(E), chz(E):%(cl(E)z—Zcz(E)).

ch, (E) =< (c(E) -3 (E)e, (E)+36, (E)). td(E) =1 1d,(E)=c,(E).

=%(01(E)2 +CZ(E)), tdg(E)=2_14Cl(E)CZ(E).

Proof. Let E be a complex rank- 2|1 super vector bundle over a complex (4|4)—dimensiona| supermani-
fold M . Then, total super Chern class is written by

c(E)=(1+»)(1+7,)(1-4,).

td; (E)

Hence, we have
¢(E)=p+7, -6, eH*(M,Z),
C, (E)zyﬂ/z =10, =750, € HA(M ,Z),
Cs(E)=_717251€ HG(M:Z)-
The total super Chern character is written by
ch(E)=e"+e”? +e ™.
Hence we have

chy (E)=3<H°(M,Q),

Chl(E):)/1+)/2—51eH2(I\7I,Q),

ChZ(E):%(712+7/22+512)e H4(I\7I,Q),

Chs(E):%(yf-i-)/g—Sf)e HG(M,Q).

It is well-known thtat

X :1+£x+ix2+0x3—ix4+---,
1-e7* 2 12 720
__X:1_£x+ixz +0X3 _ix“_;_..._
1-¢* 2 12 720

Hence the total super Todd class is written by

1 1 1 1 1 1
td(E)=|1+=p, +—p2 || 1+=y, +— 2)(1——5 +—52).
( ) [ 27’1 127’1)[ 27/2 1272 2 AT
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Therefore we have
tdy (E) =1 H° (M, Q),
1 2 -~
tdl(E):E(ylﬂ/z—&l)eH (M,Q),
td (E):i(s ~3110, 31,0, + 7 +75 + 6] ) e H* (M, Q)
2 2 V1V2 —OY10; —9Y,0, T T )5 1 A

1 ~
tdy (B) = (1077 + 72 4+ 10 =110, 4+ 120 =138, =328, ) € H° (M,Q).
Then, they satisfy that

chy(E)=r+s, ch(E)=

1 1
tdz(E)=E(cl(E)2+cz(E)), td (E) = (E)cy (E).
Lemma 3.2 The first few terms of A(ER), L(Eg) and p(E;) are given by the following.

'&O(ER):L 'B&(ER):_i P (Eg), AZ(ER):m(7p1(E]R)Z_4p2(E]R))1"':

L(E)=L L(E)=3R(E) L(E)=(-p(E) +7p.(E))

pl(ER):Cl(E)Z_ZCZ(E)’ pz(ER):Cz(E)2_ch(E)Ca(E)+ZC4(E)'
Proof. A(E,), L(E,) and p(E,) similarly form in the classical case. Therefore A(E,) and L(E,)

are of same argument (cf. [13]). A
Let E be a complex rank-(2|2) super vector bundle over a complex (4|6)-dimensional supermanifold M

The total super Chern class is written by
o(E)=(1+7)(1+7,)(1-5,)(1-5,).

Hence, we have
Q. (E)=r+7,-6,-8,eH*(M,Z),

¢, (E) =17, =18, 116, = 1,6, 1,0, + 8,6, e H* (M ,Z),
Cs(E)=_717251_717252 +7,0,0, +7,0,0, € HG(M .Z),
¢, (E)=7,00, € H8(I\7I,Z).

The total super Pontrjagin class is written by
P(Ex)=(1+77)(1+ 73 )(1+82)(1+57).

Hence, we have
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p(Ex)=0+7i+06.+0; € H4(|\7I,Z),
P, (Ex ) = 1173 + 176 + 1157 + 380 +y38} + 6267 e H* (ML Z).
Then, they satisfy that

p1(ER):C1(E)2_202(E)' pz(ER):Cz(E)2_ch(E)ca(E)+204(E)'

4. Riemann-Roch Type Formula

1
Let == (2,(92): {Z:A' ((CN ®KZ D be the complex supercurves with genus g, where K, =T, K'=TX,

in Example 2.1 (5). Then the canonical super line bundle on 3 is explicitly written by

P

1 1 N
K. =BerT"$ =0, ®[T*2® K2® - ® KZZJ=(’)Z ®(K; ? ]

Hence we have c, (K, )= (1—%)(29 -2)=(2-N)(g-1).
Note that for any object E and F the parity change functor IT satisfies
[E ®IIF :H(E(-BF), IE ®TIIF :HZ(E®F): E®F.

In general, if M =(M ,A'é‘[) is a supermanifold, then its tangent bundle can be written by
™ =0, ®(TM @E ) (cf. [16]). Hence we have

1 ®N
TE=0, ®[TZ@{KEZ} J

Using this decomposition, Euler number of TS get

1

e(T2)=¢(T2) =cl(T2)—cl[{K22} J:(z—zg)— N(1-g)=(2-N)(1-g).

Note that ¢, (K;)=—c, (Ti) .

Theorem 4.1 Let 5 be the complex (]1 N ) -dimensional supercurves with genus g. Then, we have a Noether
type formula as follows.

dimH®(£,0,)-dimH*(£,0,) = 2" "e(TZ) =2"td, (TS).
1
Proof. Let g =dimH° (2, KE) be the genus on the classical Riemann surfaces and g =dimH?° [E, KEZJ be

the number of linear independent Dirac zero modes or harmonic spinors which is not topologically invariant.
The structure sheaf of the complex supercurves have decomposition

1 1 3 N
2

@®N
- 1 1N N 3
OzzA{KZZJ =OE+NHK§+[ZJKE+[BJHK§+---+HNKZ .

In the case of genus g > 2, we have (cf. ([17]))
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o [(P-1)(g-1)  (p=3)
dimHo[Z,Kzzjz 1 (p=0)
0 (p<0)

P
In the case of genus g =1, it always satisfies dimH®° (T”N K2 ] =1 for any p. In the case of genus g =0,

it satisfies

dimHO[plN’Kng{gl— p) (p<0)

(p>0)

In the case of genus g > 2, we have the following.

1\®N 1
. 1 1 N
dimH”[z,A(KgJ J:dimHo(Z,OE)erimHo(Z,NK§J+dimH°(2,( szj
2
N) 3 N
+dimH°(2,[ szz}r“'erimHo[z’Kﬁzj
3
N NN
~1engey Jo+ 3 Jim-1(a-2)
2 moslm
1\®N 1
dimHl[i,A'(ng J:dimHl(Z,(’)z)+dimHl[Z,NK§J+dimH[ ]
NY) 3
+dimH1(2,[3jK§]+...+dimH [Z KZJ

=dimH®(Z,K, )+dimH° (2 NK2]+d|mH Z, j
Ny 2 N

+dimH°[Z,(3JK§]+ ~+dimH° (2 K, ? J

=g+Ng+ N

=9+Nat

Note that equal of second make use of the classical Serre duality. Hence we obtain

dimHO[i,A'(Ké}gN}_dim Hl[i,A'(KETN]4-9{2)(9—l)+ni£:](m—1)(g_1)
:((ZJ_1+§(:j<m—l>](g—l)

=2V (2-N)(1-g)=2""¢(TE)=2"1q,(TZ).

In the case of genus g =1 and g =0, we can prove similarly. O
Corollary 4.1 Let > be the complex (]4 N ) -dimensional supercurves with genus g. Then we have a Riemann-
Roch type formula as follows.

dimH° (5,0, )-dimH* (2,0, ) =2" (ch(@).td (Ti))[z],
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where [Z]eH,(Z,Z) isthe fundamental homology class.

Proof.
right hand side = 2" (cho( z) -td (TZ)+chl( ) (TZ))
=2N [1x%cl (Tﬁ)+0x1j = 2“’101(Ti) = 2“’1e(Tﬁ) = left hand side
From Theorem 4.1, this completes the proof of Corollary 4.1. |

The following Corollary essentially has been obtained by [18]. It needs the N =1 supersymmetric structure
onthe N =1 super Riemann surfaces (cf. [7] [19] [20]). The following rewrite the result of [21] to the super
characteristic classes.

Corollary 4.2 Let S be the complgx 1) -dimensional super Riemann surfaces and L, =L, ®(5E be any
super line bundles of rank (]10) on X . Then we have a Atiyah-Singer index type formula as follows.

dimKergLi —dimCokergLi = 2(ch(Li)~td (Tﬁ))[z]

where [Z]eH,(Z,Z) isthe fundamental homology class.
Proof. The canonlcal super line bundle K. of a super Riemann surface S can be defined by splitting the
Berezin bundle BerT’S using the super complex structure BerT'S = K:® K . We get an exact sequence ([21]

[22])
0->C <—>(§2—3>IZi —0.
We can define the operator of =[dzd¢]Df , Df :%JrH%, f eF(@z), (2/6) €= . Note that the

operator D is N =1 supersymmetric anti-holomorphic vector fields. Tensoring this exact sequence with any
super line bundles L., we have

0L s L, ®0, — 551 ®K, >0,

We can define the operator 3L, (fs)= (gf )~s+ f.2 s fe F(@ ) sel(L; ). We can describe H® (f: %)
as the space of sections s of L; satisfying the condition 6 .5=0. The group H (2 Lz) can be described as

the space of sections ('7‘ ® Kﬁ) modulo the image of the operator 6 . Hence dlmKera =dimH° (ﬁ Li)
and dimCokergLi =dimHl(i,Lﬁ). O

Let Z,,Z,,--,Z, €M be (r+1) distinct points and Z =(z]6".0,-,6"), (i=0,1,2,---,r). Then the
super meromorphic functions

where h(Z) is a super holomorphic function. We put x=z-z->"" 60*, x=X3+X;, X3 =2-7 and
Xg = —ZN 0“9 . Then the inverse element of X, which is unique, is given by the formula

= xBlZn 0( —Xg'Xs )n (cf. [23]). As an application, we have a main theorem as follows.

Theorem 4.2 Let S be the complex (JJ N)-dimensional supercurves with genus g and L, =L, ®(§2 be
any super line bundles of rank (]jo) on . Then we have a Riemann-Roch type formula as follows.
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dimH® (2, L )-dimH (£, 1) = 2" (en(L; ) 1d (T)) 2]

where [Z]eH,(%,Z) isthe fundamental homology class.
Proof. Let us consider the super divisor D :1~[ZO] on . The local equation on D is defined by
S =2-12, —22‘219”95 onaopenset U, of M.If Z,eU,, then s(Z,)=0. The super Weil divisor can be
considered as the super Cartier divisor. Then there is the exact sequence
0— L[1—¢>(’3zl>/.‘zo —0.

The line sheaf L, correspondingto D =1- [Zo] is defined by the transition functions
-1
9 = (z -2, —22216“05’)
on U;NU;. The sheaf L;* which is defined by
LY, ={# <0 (U)dl, N(L[2:]) =0}

is the coherent ideal sheaf. The fiber £ | of £, isofzeroin Z=Z, and C¥"1 in Z =Z,. The sheaf
L, is called the super skyscraper sheaf. Tensoring this with L, , we have

0—>(§2L>L1L>[ZO —0.

The map y is defined by yl, 10, >0, (2-2,- X 6% )'l on an open set U, of $ . Taking co-
homology, this gives a long exact sequence
05 H(£,0,) 5> H(S,L) > H(S,£,,)
SH(ZG) > H (S L) > H (2.4, ) >0
Taking the alternative sum, we have
dim Ho(i,@z)—dim HO(E,L)+dimH° (2,2, )
—dimH (2,6, ) +dimH* (5L ) -dimH* (2,2, ) =0,
Noting that H°(3,£, )=C*'* and H'(Z,£, )=0, we have
dimH° (2,6, )-dimH*(£,0, ) =dimH° (2,1, ) -dimH* (£,1,) - 2",
From ¢ (L)=1 and 2" =2"¢,(L,), we have
dimH° (2,6, )-dimH*(£,0; ) =dimH® (£,1, ) -dim H* (£, 1, )~ (1+ N ), (L),
We also take the exact sequence
0L »L®L L, —0.
This gives rise to a long exact sequence
0> H (S L) > H (S L ®L) > H(S.4,)
SH(E L) H (S L eL) > HY(S L, ) >0

Taking also the alternative sum, we have
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dimH® (2,1 )-dimH® (2,1, ® L, )+dimH° (£, £,, )
—dimH* (3, L )+dimH' (£, L, ® L ) -dimH' (2, £,, ) =0.
Hence, we havet
dimH®(, L )—dimH* (£, L5 ) =dimH° (£, ® L )-dimH* (£, L, ® L )-2".
Note that ¢, (L; )+c, (L) =c (L ®L,).Soadding —2"¢,(L;) inboth side, we see that
dimH® (2,1 )-dimH* (2,15 ) -2"¢, (L)
=dimH® (2, ® L )-dimH (£, ® L )-2"¢ (L ®L).
Therefore, dimHo(i,Li)—dimHl(i, Li)—2Ncl(Li) is independent of L., so that we can put L, =0,.
From Theorem 6.1, dimH°(i,@)—dimHl(i,@z)—2“01((52):2Ntd1(Ti). This completes the proof of
Theorem 4.2. O

5. Helicity Group

Definition 5.1 The helicity rank of finitely generated group G is defined by the positive generator of linearly
independent itself. The helicity rank is denoted by rank,G . The helicity rank of IIG is defined by the negative
generator of linearly independent itself. The helicity rank of G@®G also is defined by twice the positive
generator of linearly independent itself of G.

We define the finitely generated group of two type as follows.

EZ :{la
n n

an,neZ:fiX},
IZ = {T10 = 0,IT(+1) = F1,TT(+2) = ¥2,T1(+3) = 73,--}.

Note that TIZ, lZ and H(EZJ are isomorphic to Z, Z and lZ as abelian groups, respectively.
n n n

But its helicity rank is differently as follows.
Example 5.1 rank,Z =1, rank,Z®Z =2, rank,Z, =0,

rank, (EZJ _1 , rank, (nZ)=n, rank, (T1Z)=-1, rank, (IZ®MNZ)=-2,
n n

@N @®N
rank, (H(EZD:—E, rank, (EZ] =ﬁ, rank,, {n[iz) jz—ﬁ.
n n n n n n

Definition 5.2 Let M = (M ,@M ) be a (n| N)—dimensional complex supermanifold. Then the helicity group

G ) is defined by the following.

(n[N

1 @®N
=72l —Z , G, ., =7, G
n+1 (nlo)

G =T1Z°®".

(n[N) (oIN)

The helicity rank of G( ) can be represented by

n|N

- N

ranth(n‘N) 1

The super cohomology with coefficient in G( of an (n|N)—dimensional supermanifold (M,@M) is

nN)
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isomorphic to the G AN -valued cohomology with coefficient in Z of the classical manifold M using the uni-
versal coefficient theorem. That is to say, we have the following.

H (M, Gy )= H (M, Z2)® G, :(H‘(M,Z)®Z)®(H‘(M,Z)@H(ﬁzjwj.

This isomrphism is applied in section 6.

6. Gauss-Bonnet Type Formula

In this section, we will apply the super cohomology with coefficient in helicity group G
Theorem 6.1 Let S be the complex (]1 N) -dimensional supercurves with genus g. trhen we have a Gauss-
Bonnet type formula as follows.

e(T2)= i(—l)‘ rank,, H' {i,Z@HH%Z)@N D

i=0

Proof. Euler number of TS get

1

e(Ti)=cl(Ti)=cl(TZ)—01HKZZ} J=(2—Zg)—N(l—g)=(2—N)(1—g).

Note that ¢, (K;)=—c, (Ti) . On the other hand, the right hand side is

(1_%}29(1_%}(1_%) ~(2-N)(1-g).

Both sides coincide. O
Theorem 6.2 Let P"™ be the complex (n| N ) -dimensional super projective space. Then, we have

on _ _ 1 @N
TP ) =>"(~1) rank,H'| P Z@®TI|| —2Z .
o) B zene
Proof.
From the super Euler sequence, we can compute the total Chern class of hoIomorphic tangent bundle TP".
Setting O(d)=0,,, (d) for simplicity’s sake and x=c, (O(1)) e H ( )®(G )+ We have

o(TP™ ) =c(C BO() - [o<1>@~--@o<1)@no<1>@-~@no<1>J

(n+1)-times N -times

=c(0(n)@--@0(1))c(No1)@--®0(1)) = (1+x)" (1-x)"

:(1+(n+1)x+(n;rljx2+~--+(n+1)x”]x(l— Nx+(2)x2—(2]x3+~}

The sum of coefficient of x is the first super Chern number ¢, (TPnIN ) .

c, (TP”'N ) =(n+1)-N=(n +1)(1—lj

n+l
2n
:Z_c}ank ( ‘(P )®Gn|N> m}
3 rank,H' (P”'N,G(nlN))zright hand side

i=0
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