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Abstract 
In this paper, we prove the Hyers-Ulam stability of the following mixed additive-quadratic Jensen 

type functional equation: ( ) ( )     
     
     

2
2 2 2

x y x y y xf f f f x f y+ − −
+ + = + . 
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1. Introduction 
In 1940, Ulam [1] proposed the stability problem of functional equations concerning the stability of group ho-
momorphisms. Suppose that ( )1,G ⋅  is a group and that ( )2 ,G ∗  is a metric group with the metric ( ),d ⋅ ⋅ . 
Given 0ε > , does there exist a 0δ >  such that if a mapping 1 2:h G G→  satisfies the inequality 

( ) ( ) ( )( ), *d h x y h x h y δ⋅ <  

for all 1,x y G∈ , then a homomorphism 1 2:H G G→  exists with ( ) ( )( ),d h x H x ε<  for all 1x G∈ ? 
The case of approximately additive functions was solved by Hyers [2] under the assumption that G1 and G2 

are Banach spaces. In 1978, Rassias [3] proved a generalization of the Hyers theorem for additive mappings. 
The result of Rassias has provided a lot of influences during the past more than three decades in the develop-
ment of a generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-Ulam-Rassias 
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stability of functional equation. 
The stability problems of several functional equations have been extensively investigated by a number of au-

thors and there are many interesting results concerning this problem. A large list of references can be found in 
[4]-[11]. 

Pinsker [12] characterized orthogonal additive functional equation on an inner product space. The orthogonal 
Cauchy functional equation 

( ) ( ) ( ) ,    f x y f x f y x y+ = + ⊥  

in which ⊥  is an orthogonality relation, is first investigated by Gudder and Strawther [13]. In 1985, Rätz [14] in-
troduced a new definition of orthogonality by using more restrictive axioms than Gudder and Strawther. More- 
over, he investigated the structure of orthogonally additive mappings. Rätz and Szabό [15] investigated the pro- 
blem in a rather more general framework. 

In [16], Kenary and Cho proved the Hyers-Ulam-Rassias stability of mixed additive-quadratic Jensen type 
functional equation in non-Archimedean normed spaces and random normed spaces. In this paper, we prove the 
Hyers-Ulam stability of the following mixed additive-quadratic Jensen type functional equation: 

( ) ( )2
2 2 2

x y x y y xf f f f x f y+ − −     + + = +     
     

                     (1) 

in multi-Banach spaces. 
The notion of multi-normed space is introduced by Dales and Polyakov [17]. This concept is somewhat simi-

lar to operator sequence space and has some connections with operator spaces and Banach lattices. Motivations 
for the study of multi-normed spaces and many examples are given in [17]. Also, the stability problems in mul-
ti-Banach spaces are studied by Dales and Moslehian [18], Moslehian et al. ([19]-[21]) and Wang et al. [22]. 

Now, let us recall some concepts concerning multi-Banach space. 
Let ( ),E ⋅  be a complex normed space, and let k ∈ . We denote by Ek the linear space E E E⊕ ⊕ ⊕  

consisting of k-tuples ( )1, , kx x
, where 1, , kx x E∈ . The linear operations on Ek are defined coordinate 

wise. The zero element of either E or Ek is denoted by 0. We denote by k  the set { }1,2, , k
 and by kΩ  

the group of permutations on k symbols. 
Definition 1.1 ([17]) A multi-norm on { }:kE k ∈  is a sequence 

( ) ( ):k k k⋅ = ⋅ ∈  

such that k⋅  is a norm on Ek for each k ∈ , 
1x x=  for each x E∈ , and the following axioms are sa-

tisfied for each k ∈  with 2k ≥ : 
(A1) ( ) ( )( ) ( )11 , , = , , kk kk

x x x xσ σ   ( )1, , ,k kx x Eσ ∈Ω ∈ ; 

(A2) ( ) ( )1 1 1, , max , ,
k

k k i kk ki
x x x xα α α

∈

 ≤  
 

   ( )1 1, , , , ,n kx x Eα α ∈ ∈   ; 

(A3) ( ) ( )1 1 1 1 1
, , ,0 , ,k kk k

x x x x− − −
=   ( )1 1, , kx x E− ∈ ; 

(A4) ( ) ( )1 1 1 1 1 1
, , , , ,k k kk k

x x x x x− − − −
=   ( )1 1, , kx x E− ∈ . 

In this case, we say that ( )( ), :k
kE k⋅ ∈  is a multi-normed space. 

Suppose that ( )( ), :k
kE k⋅ ∈  is a multi-normed space and take k ∈ . We need two properties of mul-

ti-norms which can be found in [17]. 
(a) ( ), ,

k
x x x=  ( )x E∈ ; 

(b) ( )1
=1

max , , max
k k

k

i k i iki ii
x x x x k x

∈ ∈
≤ ≤ ≤∑

 

  ( )1, , kx x E∈
. 

It follows from (b) that, if ( ),E ⋅  is a Banach space, then ( ),k
kE ⋅  is a Banach space for each k ∈ ; in 

this case, ( )( ), :k
kE k⋅ ∈  is a multi-Banach space. 
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Now, we state two important examples of multi-norms for an arbitrary normed space E (see, for details, [17]). 
Example 1.2 ([17]) The sequence ( ):k k⋅ ∈  on { }:kE k ∈  defined by 

( )1 1, , : max ,    , ,
k

k i kk i
x x x x x E

∈
= ∈



   

is a multi-norm called the minimum multi-norm. The terminology “minimum” is justified by property (b). 
Example 1.3 ([17]) Let ( ){ }: :k k Aα⋅ ∈ ∈  be the (non-empty) family of all multi-norms on { }:kE k ∈ . 

For k ∈ , set 

( )1 1 1, , : sup , , ,    , ,k k kkk A
x x x x x x Eα

α∈
= ∈   . 

Then ( ):
k

k⋅ ∈  is a multi-norm on { }:kE k ∈ , which is called the maximum multi-norm. 
We need the following observation which can be easily deduced from the triangle inequality for the norm 
k⋅  and the property (b) of multi-norms. 
Lemma 1.4 [17] Suppose that k ∈  and ( )1, , k

kx x E∈ . For each { }1, ,j k∈ 
, let { }jn n

x
∈

 be a se-
quence in E such that lim j

n jn
x x

→∞
= . Then for each ( )1, , k

ky y E∈ , we have 

( ) ( )1
1 1 1lim , , , ,k

n n k k kn
x y x y x y x y

→∞
− − = − −  . 

Definition 1.5 [17] Let ( )( ), :k
kE k⋅ ∈  be a multi-normed space. A sequence { }nx  in E is a multi-null  

sequence if, for each 0ε > , there exists 0n ∈  such that 

( )1 0, , ,    sup n n k k
k

x x n nε+ −
∈

< ≥


 . 

Let x E∈ . We say that the sequence { }nx  is multi-convergent to x in E and write 

lim nn
x x

→∞
= . 

if { }nx x−  is a multi-null sequence. 
There are several orthogonality notations on a real normed space available. But here, we present the ortho-

gonal concept introduced by Rätz [14]. This is given in the following definition. 
Definition 1.6 Suppose that X is a vector space (algebraic module) with dim 2X ≥ , and ⊥  is a binary 

relation on X with the following properties: 
1) Totality of ⊥  for zero: 0x ⊥ , 0 x⊥  for all x X∈ ; 
2) Independence: if { }, 0x y X∈ −  and x y⊥ , then x and y are linearly independent; 
3) Homogeneity: if ,x y X∈  and x y⊥ , then x yα β⊥  for all ,α β ∈ ; 
4) Thalesian properity: if P is a 2-dimensional subspace of X, x P∈  and λ +∈ , which is the set of non-

negative real numbers, then there exists 0y P∈  such that 0x y⊥  and 0 0x y x yλ+ ⊥ − . 
The pair ( ),X ⊥  is called an orthogonality space (resp., module). By an orthogonality normed space (normed 

module) we mean an orthogonality space (resp., module) having a normed (resp., normed module) structure. 
Definition 1.7 Let X be a set. A function [ ]: 0,d X X× → ∞  is called a generalized metric on X if and only if 

d satisfies 
(M1) ( ), 0d x y =  if and only if x y= ; 
(M2) ( ) ( ), ,d x y d y x=  for all ,x y X∈ ; 
(M3) ( ) ( ) ( ), , ,d x z d x y d y z≤ +  for all , ,x y z X∈ . 
Theorem 1.8 ([23]) Let ( ),X d  be a generalized complete metric space. Assume that :J X X→  be a stri- 

ctly contractive mapping with Lipschitz constant 1L < . Then, for all x X∈ , either 

( )1,n nd J x J x+ = ∞  

for all nonnegative integers n or there exists a positive integer 0n  such that 
1) ( )1,n nd J x J x+ < ∞  for all 0n n≥ ; 

2) the sequence { }nJ x  converges to a fixed point x∗  of J; 
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3) x∗  is the unique fixed point of J in the set ( ){ }0 ,nX y X d J x y∗ = ∈ < ∞ ; 

4) ( ) ( )1, ,
1

d y x d Jy y
L

∗ ≤
−

 for all y X ∗∈ . 

2. Hyers-Ulam Stability of Mixed Additive-Quadratic Jensen Type Functional 
Equation 

Throughout this section, let 0α > , E be an orthogonality space and let ( )( ), :n
nF n⋅ ∈  be a multi-Banach 

space. For convenience, we use the following abbreviation for a given mapping :f E F→ , 

( ) ( ) ( ), 2
2 2 2

x y x y y xDf x y f f f f x f y+ − −     = + + − −     
     

 

for all ,x y E∈  with x y⊥ . 

2.1. Hyers-Ulam Stability of Functional Equation (1): An Odd Case 
In this section, using direct method, we prove the Hyers-Ulam stability of the functional Equation (1) in multi- 
Banach space. 

Definition 2.1 An odd mapping :f E F→  is called an orthogonally Jensen additive mapping if 

( ) ( )2
2 2 2

x y x y y xf f f f x f y+ − −     + + = +     
     

 

for all ,x y E∈  with x y⊥ . 
Theorem 2.2 Suppose that α is a nonnegative real number and :af E F→  is an odd mapping satisfying 

( ) ( )( )1 1, , , ,sup a a k k kk
Df x y Df x y α

∈
≤



                          (2.1) 

for all 1 1, , , , ,k kx x y y E∈   and ( )1, ,i ix y i k⊥ = 
. Then there exists a unique orthogonally Jensen addi-

tive mapping :A E F→  such that 

( ) ( ) ( ) ( )( )1 1 , ,sup a a k k kk
f x A x f x A x α

∈
− − ≤



                       (2.2) 

for all 1, , kx x E∈ . 
Proof. Replacing 1, , ky y  by 0, ,0  in (2.1), we get 

( ) ( )1
12 , , 2sup

2 2
k

a a a a k
k k

xxf f x f f x α
∈

    − − ≤    
    

                     (2.3) 

for all 1, , kx x E∈  since ( )0 1, ,ix i k⊥ = 
. Replacing 1, , kx x  by 12 , , 2n n

kx x
 in (2.3) and dividing 

both sides by 2n , we get 

( ) ( ) ( ) ( )1 1
1 1

1 1

2 2 2 2
, , 2sup

2 2 2 2

n n n n
a a a k a k n

n n n n
k

k

f x f x f x f x
α

− −
−

− −
∈

 
 − − ≤
 
 

               (2.4) 

for all 1, , kx x E∈  since ( )0 2 1, ,n
ix i k⊥ =  . By using (2.4) and the principle of mathematical induction, 

we can easily get 

( ) ( ) ( ) ( )1 1

= 1

2 2 2 2
, , 2sup

2 2 2 2

n m n n m n n ma a a k a k i
n m n n m n

k i n
k

f x f x f x f x
α

+ +
+

−
+ +

∈ +

 
 − − ≤
 
 

∑


             (2.5) 

for all 1, , kx x E∈ , ,n m∈ , 1m ≥ . 
We now fix x E∈ . We have 
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( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )

1 1

1 1

1 1

1

1

2 2 2 2
, ,sup

2 2 2 2

2 2 2 22 2 1  , ,sup
2 2 2 2 2

2 2 2 22 2
  , ,

2 2 2

n m n n m k n k
a a a a

n m n n m k n k
k

k

n m k n kn m n
a aa a

n m n k n m n
k

k

n m k nn m n
a aa a

n m n n m

f x f x f x f x

f x f xf x f x

f x ff x f x

+ + + − + −

+ + + − + −
∈

+ − −+

+ − +
∈

+ −+

+ +

 
 − −
 
 

  
  = − −     

≤ − −











( )( )1

1

2

  2 .

k

n

k
n m

i

i n

x

α

−

+
−

= +

 
 
 
 

≤ ∑

 

where we have used the Definition 1.1 and also replaced 1, , kx x  by 1, 2 , , 2kx x x−
  in (2.5). It follows that  

( )2

2

n
a

n

f x  
 
  

 is a Cauchy sequence and so it is convergent in the multi-Banach spaces F. Set 

( )
( )2

lim
2

n
a

nn

f x
A x

→∞
=  

for all x E∈ . Hence, for each 0ε > , there exists 0n  such that 

( )
( )

( )
( )

1

1

2 2
, ,sup

2 2

n n k
a a

n n k
k

k

f x f x
A x A x ε

+ −

+ −
∈

 
 − − <
 
 

  

for all 0n n≥ . In particular, by property (b) of multi-norms, we have 

( )
( ) ( )

2
lim 0,    

2

n
a

nn

f x
A x x E

→∞
− = ∈ .                          (2.6) 

We next put 0n =  in (2.5) to get 

( )
( )

( )
( )1

=1

2 2
, , 2sup

2 2

m m ma a i
a a km m

k i
k

f x f x
f x f x α −

∈

 
 − − ≤
 
 

∑


 . 

Letting m →∞  and using Lemma 1.4 and (2.6), we obtain 

( ) ( ) ( ) ( )( )1 1 , ,sup a k a k kk
A x f x A x f x α

∈
− − ≤



 . 

Let ,x y E∈  and x y⊥ . Considering Definition 1.6, we have 2 2n nx y⊥ . Put 1 2n
kx x x= = =

, 
1 2n

ky y y= = =
 in (2.1) and divide both sides by 2n . Then, using property (a) of multi-norms, we obtain 

( ) ( )
1

2 2 2 2 22 2 2 2
2 2 2 2 2

n n n
n na a a

a a n
n n n n n

x y x y y xf f f f x f y
α−

−

+ − −     ⋅ ⋅ ⋅     
     + + − − ≤  

for all ,x y E∈  and x y⊥ . Taking n →∞ , we get 

( ) ( )2 = 0
2 2 2

x y x y y xA A A A x A y+ − −     + + − −     
     

 



X. Z. Yang et al. 
 

 
330 

for all ,x y E∈  and x y⊥ . Since f is an odd mapping, according to the definition of A, we know that A is an 
odd mapping. By Definition 2.1, the mapping A is an orthogonally additive mapping. 

If A′  is another orthogonally additive mapping satisfying (2.2), then 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2
2
1 1                       2 2 2 2
2 2
1                       2 .
2

n n
n

n n n n
a an n

n

A x A x A x A x

A x f x f x A x

α

′ ′− = −

′≤ − + −

≤ ⋅

 

Taking ∞→n , we get A A′= . This completes the proof. 

2.2. Hyers-Ulam Stability of Functional Equation (1): An Even Case 
In this section, we prove the Hyers-Ulam stability of the functional Equation (1) in multi-Banach space with the 
fixed point method. 

Definition 2.3 An even mapping :f E F→  is called an orthogonally Jensen quadratic mapping if 

( ) ( )2
2 2 2

x y x y y xf f f f x f y+ − −     + + = +     
     

 

for all ,x y E∈  with x y⊥ . 
Theorem 2.4 Suppose that α is a nonnegative real number and :qf E F→  is an even mapping satisfying 

( ) ( )( )1 1, , , ,sup q q k k kk
Df x y Df x y α

∈
≤



                          (2.7) 

for all 1 1, , , , ,k kx x y y E∈   and ( )1, ,i ix y i k⊥ = 
 and ( )0 0qf = . Then there exists a unique orthogo-

nally Jensen quadratic mapping :Q E F→  such that 

( ) ( ) ( ) ( )( )1 1
1, ,sup
3q q k k kk

f x Q x f x Q x α
∈

− − ≤


                      (2.8) 

for all 1, , kx x E∈ . 
Proof. Letting 1 2 0ky y y= = ⋅⋅⋅ = =  in (2.7), we get 

( ) ( )1
14 , , 4sup

2 2
k

q q q q k
k k

xxf f x f f x α
∈

    − − ≤    
    

                    (2.9) 

for all 1, , kx x E∈  since ( )0 1, ,ix i k⊥ = 
. Replacing 1 2, , ,

2 2 2
kxx x

  by 1, , kx x  and dividing both sides 

by 4, we get 

( ) ( ) ( ) ( )1 1
1 1 12 , , 2sup
4 4 4q q q k q k

k k

f x f x f x f x α
∈

 − − ≤ 
 


                (2.10) 

Let ( ){ }: 0 0S g X Y g= → =  and introduce the generalized metric d defined on S by 

( ) [ ] ( ) ( ) ( ) ( )( ){ }1 1 1, inf 0, , , ,  for , ,sup k k kkk
d g h c g x h x g x h x c x x E

∈
= ∈ ∞ − − ≤ ∈



   

Then it is easy to show that ( ),S d  is a generalized complete metric space (see [5], Lemma 2.1). 
We now define an operator :J E E→  by 

( ) ( )1 2 ,    
4

Jg x g x x E= ∀ ∈ . 
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we assert that J is a strictly contractive operator. Given ,g h S∈ , let [ ]0,c∈ ∞  be an arbitrary constant with 
( ),d g h c≤ . From the definition of d, it follows that 

( ) ( ) ( ) ( )( )1 1 , ,sup k k kk
g x h x g x h x c

∈
− − ≤



  

for all 1, , kx x E∈ . Therefore 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1 1 1
1 1 1 1 1, , 2 2 , , 2 2
4 4 4 4 4k k k kk

k

Jg x Jh x Jg x Jh x g x h x g x h x c − − = − − ≤ 
 

 
 

for all 1, , kx x E∈ . Hence, it holds that ( ) 1,
4

d Jg Jh c≤ , i.e., ( ) ( )1, ,
4

d Jg Jh d g h≤  for all ,g h S∈ . This 

means that J is a strictly contractive operator on S with the Lipschitz constant 1
4

L = . 

By (2.10), we have ( ) 1,
4q qd Jf f α≤ < ∞ . According to Theorem 1.8, we deduce the existence of a fixed  

point of J, that is, the existence of a mapping :Q X Y→  such that ( ) ( )2 4Q x Q x=  for all x E∈ . Moreover, 
we have ( ), 0n

qd J f Q → , which implies 

( ) ( )
( )2

lim lim
4

n
qn

q nn n

f x
Q x J f x

→∞ →∞
= =  

for all x E∈ . Also, ( ) ( )1, ,
1q q qd f Q d Jf f

L
≤

−
 implies the inequality 

( ) ( )1 1, ,
1 31
4

q q qd f Q d Jf f α≤ ≤
−

. 

Let ,x y E∈  and x y⊥ . Considering Definition 1.6, we have 2 2n nx y⊥ . Set 1 2n
kx x x= ⋅⋅⋅ = = , 

1 2n
ky y y= ⋅⋅⋅ = =  in (2.7) and divide both sides by 4n . Then, using property (a) of multi-norms, we obtain 

( ) ( )2 2 2 2 2 22 2 2
4 4 4 4 4 4

n n n
n na a a

a a

n n n n n n

x y x y y xf f f f x f y α
+ − −     ⋅ ⋅ ⋅     

     + + − − ≤  

for all ,x y E∈  and x y⊥ . Taking n →∞ , we get 

( ) ( )2 0
2 2 2

x y x y y xQ Q Q Q x Q y+ − −     + + − − =     
     

 

for all ,x y E∈  and x y⊥ . Since f is an even mapping, Q is an even mapping. According to Definition 2.3, 
we know that Q is an orthogonally quadratic mapping. 

The uniqueness of Q follows from the fact that Q is the unique fixed point of J with the property that there 
exists ( )0,l∈ ∞  such that 

( ) ( ) ( ) ( )( )1 1 , ,sup q q k k kk
f x Q x f x Q x l

∈
− − ≤



  

for all 1, , kx x E∈ . This completes the proof of the theorem. 
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