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Abstract 
Bell’s theorem determines the number of representations of a positive integer in terms of the ter-
nary quadratic forms 2 2 2x by cz+ +  with { }, 1, 2,4,8b c∈ . This number depends only on the num-
ber of representations of an integer as a sum of three squares. We present a modern elementary 
proof of Bell’s theorem that is based on three standard Ramanujan theta function identities and a 
set of five so-called three-square identities by Hurwitz. We use Bell’s theorem and a slight exten-
sion of it to find explicit and finite computable expressions for Tunnel’s congruent number criterion. 
It is known that this criterion settles the congruent number problem under the weak Birch-Swin- 
nerton-Dyer conjecture. Moreover, we present for the first time an unconditional proof that a 
square-free number ( )3 mod 8n ≡  is not congruent. 
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1. Introduction 
A seminal breakthrough in the theory of numbers is the determination by Gauss [1] of the number of representa-
tions ( )3r n  of an integer n as a sum of three squares 2 2 2x y z n+ + =  counting zeros, permutations and sign 
changes (e.g. Dickson [2], Preface, pp. ix, x). A very explicit modern expression for this counting function is 
given in Cooper and Hirschhorn [3], Lemma 4, Equation (3.1), and Theorem 3, Equation (1.27), (1.28). Note 
that the latter result has only been obtained quite recently by Hirschhorn and Sellers [4]. 
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More generally, given a ternary (diagonal) quadratic form ( ) 2 2 2, ,Q x y z ax by cz= + + , one is interested in 
the total number ( )Qr n  of integer solutions of the Diophantine equation ( ), ,Q x y z n= . This number is also  
denoted by ( ) ( ), ,a b cr n . By the time of Dickson’s monumental “History of the Theory of Numbers”, only few  

specific results are known for ( ) ( ) ( )3, ,a b cr n r n≠ . Bell [5] mentions an unproven result by Liouville and incom-
plete results by Torelli and Stieltjes (see Dickson [2], pp. 294, 295, and Dickson [6], pp. 133, 216). 

Using 13 identities about theta functions, including some important ones by Kronecker and Hermite, Bell [5] 
determines ( ) ( )1, ,b cr n  for the 10 possible ternary quadratic forms with { }, 1, 2, 4,8b c∈ , b c≤ . For these forms, 
the corresponding counting functions depend only upon ( )3r n . Bell’s theorem is relevant for an important con- 
temporary problem, namely the theorem of Tunnel [7], which states, conditionally on the weak Birch-Swinnterton- 
Dyer (BSD) conjecture for elliptic curves, a necessary and sufficient condition for a number to be congruent. 

The ancient but still unsolved congruent number problem has already been studied by Diophantus, the Arab 
scholars of the tenth century and Leonardo of Pisa (Fibonacci) (e.g. Dickson [2], Chap. XVI, Mordell [8], p. 71). 
A positive rational number is a congruent number if it is the area of some right triangle with rational sides. As 
shown by Koblitz [9], Section 1.1, one can restrict the analysis to square-free natural numbers, which will be 
assumed throughout. It is also known that n is a congruent number if, and only if, the elliptic curve  
( ) 2 3 2:E n y x n x= − ⋅  has a non-trivial rational point (for a precise constructive characterization see Hürlimann 

[10], criterion (E3)). Up to the weak Birch-Swinnerton-Dyer (BSD) conjecture for the elliptic curve ( )E n , an 
elegant characterization of congruent numbers has been obtained by Tunnel [7] (see Koblitz [9], Theorem, p. 
221, or Cohen [11], Theorem 6.12.4). Nowadays, it is even possible to compute large tables of congruent num-
bers conditionally on the validity of the weak BSD conjecture (e.g. Cohen [11], Remark, p. 568) without using 
Tunnel’s theorem. Nevertheless, this exercise requires advanced mathematics and, for this reason, Tunnel’s 
theorem remains attractive from the viewpoint of elementary number theory. According to this result, if n  is a 
square-free and odd, respectively even, congruent number, then one has 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,2,8 1,2,32 1,4,8 1,4,322 ,    respectively   2 2 2r n r n r n r n= ⋅ = ⋅ .                  (1.1) 

Moreover, if a weak form of the BSD conjecture holds (i.e. if the L-function of ( )E n  vanishes at 1, then the 
rank of ( )E n  is positive), then the converse also holds. Therefore, any computer algorithm able to verify the 
validity of (1.1) will produce congruent numbers under the truth of the weak BSD conjecture. Actually, Bell did 
a first step to make (1.1) effective by finding expressions for ( ) ( )1,2,8r n  and ( ) ( )1,4,8r n  that only depend upon 
( )3r n . In the Sections 2 and 3, we improve Bell’s approach and display explicit finite and computable expres-

sions for (1.1). 
A brief description of the content follows. In Section 2, a modern elementary proof of Bell’s theorem is given. 

It uses only three standard theta function identities and a set of five three-square identities by Hurwitz [12] that 
have been revisited in Cooper and Hirschhorn [13]. Henceforth, the proof is more direct and less complex than 
the original derivation by Bell [5]. In Section 3, explicit expressions for the counting functions involved in (1.1) 
are determined and applied to the congruent number problem. In particular, an unconditional proof that 

( )3 mod 8n ≡  is not congruent is given. Section 4 concludes with a brief description of some old and new facts 
about congruent numbers. 

2. Ramanujan’s Theta Functions and Bell’s Theorem 
We give a new elementary proof of Bell’s theorem. It uses Ramanujan’s theta functions 

( ) ( ) ( )2 1 2
0,    n nn

nq q q qϕ ψ∞ +
−∞ ≥

= =∑ ∑ ,                        (2.1) 
the three basic identities 

( ) ( ) ( )2 2q q qψ ϕ ψ= ,                                       (2.2) 

( ) ( ) ( )4 82q q q qϕ ϕ ψ= + ,                                    (2.3) 

( ) ( ) ( )2 22 44q q q qϕ ϕ ψ2 = + ,                                 (2.4) 

and the following three squares identities of Hurwitz [12] (see Cooper and Hirschhorn [13], Theorem 1, identi-
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ties (1.3)-(1.4), (1.6)-(1.8)) 

( ) ( ) ( )2 2
306 4 1 n

nq q r n qϕ ψ
≥

= +∑ ,                         (2.5) 

( ) ( ) ( )
22

3012 4 2 n
nq q r n qϕ ψ
≥

= +∑ ,                        (2.6) 

( ) ( ) ( )2
306 8 1 n

nq q r n qϕ ψ
≥

= +∑ ,                          (2.7) 

( ) ( ) ( )22
3012 8 2 n

nq q r n qϕ ψ
≥

= +∑ ,                         (2.8) 

( ) ( )3
308 8 3 n

nq r n qψ
≥

= +∑ .                               (2.9) 

Note that (2.2)-(2.4) follow from Berndt [14], Entry 25, p. 40. Equation (2.2) is entry 25(iv), Equation (2.3) is 
obtained by adding 25(i) and 25(ii), and Equation (2.4) is obtained by adding 25(v) and 25(vi). 

Theorem 2.1. (Theorem of Bell). The nine counting functions ( ) ( )1, ,b cr n , { }, 2 , 0,1, 2,3b c α α∈ = , b c≤ , 
( ) ( ), 1,1b c ≠ , are determined as follows: 

Form (1,1,2) 

( ) ( ) ( ) ( ) ( ) ( )3 31,1,2 1,1,2
12 ,    2 1 4 2
3

r n r n r n r n= + = + .                 (2.10) 

Form (1,1,4) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 31,1,4 1,1,4

31,1,4 1,1,4

24 ,    4 1 4 1 ,    
3

14 2 4 2 ,    4 3 0
3

r n r n r n r n

r n r n r n

= + = +

+ = + + =
.               (2.11) 

Form (1,1,8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 31,1,8 1,1,8 1,1,8

3 31,1,8 1,1,8

18 ,    4 1 8 2 ,    4 3 0,
3

2 18 2 4 1 ,    8 4 4 2 .
3 3

r n r n r n r n r n

r n r n r n r n

= + = + + =

+ = + + = +
           (2.12) 

Form (1,2,2) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 31,2,2 1,2,2

3 31,2,2 1,2,2 1,2,2

14 , 4 1 4 1 ,
3

14 2 4 2 , 8 3 8 3 , 8 7 0.
3

r n r n r n r n

r n r n r n r n r n

= + = +

+ = + + = + + =
       (2.13) 

Form (1,2,4) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 31,2,4 1,2,4 1,2,4

3 31,2,4 1,2,4 1,2,4

1 18 , 2 1 4 2 , 8 2 4 1 ,
6 3

18 4 4 2 , 16 6 8 3 , 16 14 0.
3

r n r n r n r n r n r n

r n r n r n r n r n

= + = + + = +

+ = + + = + + =
     (2.14) 

Form (1,2,8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 31,2,8 1,2,8 1,2,8

3 31,2,8 1,2,8 1,2,8 1,2,8

3 31,2,8 1,2,8 1,2,8

1 116 , 8 1 8 1 , 8 3 8 3 ,
3 2

1 18 5 8 7 0, 4 2 4 2 , 16 4 4 1 ,
6 3

116 8 4 2 , 32 12 8 3 , 32 28 0.
3

r n r n r n r n r n r n

r n r n r n r n r n r n

r n r n r n r n r n

= + = + + = +

+ = + = + = + + = +

+ = + + = + + =

  (2.15) 
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Form (1,4,4) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 31,4,4 1,4,4 1,4,4 1,4,4
14 , 4 1 4 1 , 4 2 4 3 0
3

r n r n r n r n r n r n= + = + + = + = .     (2.16) 

Form (1,4,8) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 31,4,8 1,4,8

31,4,8 1,4,8 1,4,8

18 , 4 1 8 2 ,
6

14 2 4 3 0, 8 4 4 2 .
3

r n r n r n r n

r n r n r n r n

= + = +

+ = + = + = +
                     (2.17) 

Form (1,8,8) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 31,8,8 1,8,8

1,8,8 1,8,8 1,8,8 1,8,8

3 31,8,8 1,8,8

31,8,8 1,8,8

116 , 8 1 8 1 ,
3

4 2 8 3 8 5 8 7 0,

1 116 4 4 1 , 16 8 4 2 ,
3 3

32 12 8 3 , 32 28 0.

r n r n r n r n

r n r n r n r n

r n r n r n r n

r n r n r n

= + = +

+ = + = + = + =

+ = + + = +

+ = + + =

                     (2.18) 

Proof. Recall that the generating function of ( ) ( ), ,a b cr n  (with ( ) ( ), , 0 1a b cr = ) is determined by  
( ) ( ) ( ) ( ) ( ), ,0

a b c n
a b cnq q q r n qϕ ϕ ϕ

≥
= ∑ . Frequent use of (2.2)-(2.9) is made without further mention. For sim- 

plicity the abbreviation ( ) ( ) ( ), ,: a b cr n r n=  is used. Summation always includes all natural numbers 0n ≥ . 

Form (1,1,2). With ( ) ( ) ( ) ( ) ( )3 22 22 2 44q q q q q qϕ ϕ ϕ ϕ ψ= +  one sees that (2.10) follows from 

( ) ( ) ( )
32 2 2

3 2n nq r n q r n qϕ = =∑ ∑ , ( ) ( ) ( ) ( )
22 4 2 1 2 1

3
14 4 2 2 1
3

n nq q q r n q r n qϕ ψ + += + = +∑ ∑ . 

Form (1,1,4). One has 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( )

2 224 4 2 4

2 2 24 4 2 8 4 8

3 2 24 4 8 2 4 8

4

                    4 4

                    4 4 ,

q q q q q q

q q q q q q q

q q q q q q q

ϕ ϕ ϕ ϕ ψ

ϕ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ

= +

= + +

= + +

 

and (2.11) is shown through the uniquely defined identifications 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

34 4 4
3

24 8 4 1 4 1
3

22 4 8 4 2 4 2
3

4 ,

24 4 1 4 1 ,
3
14 4 2 4 2 .
3

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

+ +

+ +

= =

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

 

Form (1,1,8). A calculation shows that 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 228 8 2 4

2 2 28 4 2 8 4

2 2 28 8 4 16 2 8 16 4

3 2 2 28 8 4 2 8 16 4 8 16

4

                    4 4

                    4 4 4

                    4 4 4 ,

q q q q q q

q q q q q q

q q q q q q q q q

q q q q q q q q q q

ϕ ϕ ϕ ϕ ψ

ϕ ϕ ψ ψ

ϕ ϕ ψ ϕ ψ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ

= +

= + +

= + + +

= + + +
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which implies (2.12) through the identifications 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

38 8 8
3

28 4 4 1 4 1
3

22 8 16 8 2 8 2
3

24 8 16 8 4 8 4
3

8 ,

14 8 2 4 1 ,
3

24 4 1 8 2 ,
3
14 4 2 8 4 .
3

n n

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

ϕ ψ

+ +

+ +

+ +

= =

= + = +

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

Form (1,2,2). Similarly to the above one obtains 

( ) ( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

2 2 22 4 8 4 2 8

3 2 2 34 4 8 2 4 8 3 8

2 4

                    2 4 8 ,

q q q q q q q q

q q q q q q q q q

ϕ ϕ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ψ

= + +

= + + +
 

from which one gets (2.13) as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

34 4 4
3

24 8 4 1 4 1
3

22 4 8 4 2 4 2
3

33 8 8 3 8 3
3

4 ,

12 4 1 4 1 ,
3
14 4 2 4 2 ,
3

8 8 3 8 3 .

n n

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

ψ

+ +

+ +

+ +

= =

= + = +

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

Form (1,2,4). With successive calculation one obtains 

( ) ( ) ( )
( ) ( ){ } ( ) ( )
( ) ( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 4

4 8 2 4

2 2 22 8 4 16 2 4

2 2 28 2 16 8 4 16 2 4

3 2 2 2 38 2 4 2 8 16 4 8 16 6 16

2

4 2

2 4 2

2 2 4 8 ,

q q q

q q q q q

q q q q q q q

q q q q q q q q q

q q q q q q q q q q q q

ϕ ϕ ϕ

ϕ ψ ϕ ϕ

ϕ ϕ ψ ϕ ψ

ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ ψ

= +

= + +

= + + +

= + + + +

 

and (2.14) follows from the identifications 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

38 8 8
3

22 4 2 1 2 1
3

22 8 16 8 2 8 2
3

24 8 16 8 4 8 4
3

36 16 16 6 16 6
3

8 ,

12 4 2 2 1 ,
6

12 4 1 8 2 ,
3
14 4 2 8 4 ,
3

8 8 3 16 6 .

n n

n n

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

ϕ ψ

ψ

+ +

+ +

+ +

+ +

= =

= + = +

= + = +

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

Form (1,2,8). In the same manner, one gets 
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( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

8 2

8 8 2 16 4 8

28 4 8 2 8 16 4 8

2 2 2 2 316 8 32 16 4 32 8 8 2 4 8 3 8

3 2 3 2 2 216 8 8 3 8 2 4 8 4 16 32 8 16 32

  2 2

  2 2 2

  4 2 2 2 4

  2 4 2 2 4

      8

q q q

q q q q q q q

q q q q q q q q q q

q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q

ϕ ϕ ϕ

ϕ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ

ϕ ψ ϕ ψ ϕ ψ ϕ ψ ψ

ϕ ϕ ψ ψ ϕ ψ ϕ ψ ϕ ψ

= + +

= + + +

= + + + + +

= + + + + +

+ ( )212 32 ,qψ

 

which implies (2.15) as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

316 16 16
3

28 8 8 1 8 1
3

0 0

33 8 8 3 8 3
3

22 4 8 4 2 4 2
3

24 16 32 16 4 16 4
3

28 16 32

16 ,

12 8 1 8 1 ,
3

14 8 3 8 3 ,
2

12 4 2 4 2 ,
6

12 4 1 16 4 ,
3
14
3

n n

n n

n n

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q q r

ϕ

ϕ ψ

ψ

ϕ ψ

ϕ ψ

ϕ ψ

+ +

≥ ≥

+ +

+ +

+ +

= =

= + = +

= + = +

= + = +

= + = +

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

( ) ( )

( ) ( ) ( )

16 8 16 8
3

312 32 32 12 32 12
3

4 2 16 8 ,

8 8 3 32 12 .

n n

n n

n q r n q

q q r n q r n qψ

+ +

+ +

+ = +

= + = +

∑ ∑

∑ ∑

 

Form (1,4,4). One has ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )2 2 3 24 4 8 4 4 4 82 2q q q q q q q q q qϕ ϕ ϕ ψ ϕ ϕ ϕ ψ= + = + , and one ob-

tains (2.16) from the identities 

( ) ( ) ( )

( ) ( ) ( ) ( )

34 4 4
3

24 8 4 1 4 1
3

4 ,

12 4 1 4 1 .
3

n n

n n

q r n q r n q

q q q r n q r n q

ϕ

ϕ ψ + +

= =

= + = +

∑ ∑

∑ ∑
 

Form (1,4,8). Through calculation one gets 

( ) ( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

24 8 4 4 8 8

2 2 28 4 16 8 8 4

3 2 28 4 8 16 8 4

2

                            4 2

                            4 2 ,

q q q q q q q q

q q q q q q q

q q q q q q q

ϕ ϕ ϕ ϕ ϕ ψ ϕ

ϕ ψ ϕ ϕ ψ

ϕ ϕ ψ ϕ ψ

= +

= + +

= + +

 

and (2.17) follows from 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

38 8 8
3

24 8 16 8 4 8 4
3

28 4 4 1 4 1
3

8 ,

14 4 2 8 4 ,
3

14 8 2 4 1 .
3

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

+ +

+ +

= =

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

 

Form (1,8,8). A successive calculation shows that 
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( ) ( )
( ) ( ){ } ( )
( ) ( ){ } ( ) ( ) ( )
( ) ( ){ } ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

28

24 8 8

2 216 4 32 8 8 8

2 2 216 4 32 16 8 32 8 8

3 2 2 2 316 8 8 4 16 32 8 16 32 12 32

2

2 2

2 4 2

2 2 4 8 ,

q q

q q q q

q q q q q q q

q q q q q q q q q

q q q q q q q q q q q q

ϕ ϕ

ϕ ψ ϕ

ϕ ψ ϕ ϕ ψ

ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ ψ

= +

= + +

= + + +

= + + + +

 

from which one gets (2.18) through identification of 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

316 16 16
3

28 8 8 1 8 1
3

0 0

24 16 32 16 4 16 4
3

28 16 32 16 8 16 8
3

312 32 32 12 32 12
3

16 ,

12 8 1 8 1 ,
3

12 4 1 16 4 ,
3
14 4 2 16 8 ,
3

8 8 3 32 12 .

n n

n n

n n

n n

n n

n n

q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q q r n q r n q

q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

ϕ ψ

ψ

+ +

≥ ≥

+ +

+ +

+ +

= =

= + = +

= + = +

= + = +

= + = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

The proof of Theorem 2.1 is complete. ◊ 

3. Tunnel’s Congruent Number Criterion 
As seen in Section 1, Tunnel’s theorem depends upon the determination of the counting functions in Equation 
(1.1). While ( ) ( )1,2,8r n  and ( ) ( )1,4,8r n  have been determined in Section 2, it remains to find expressions for 
( ) ( )1,2,32r n  and ( ) ( )1,4,32r n  that enables the computation of (1.1). We begin with the simpler case. 

3.1. Even Square-Free Congruent Numbers 
The following auxiliary result in the style of Bell is required. 

Lemma 3.1. Let ( )a n , respectively ( )b n , be the coefficient of nq  in the q -expansion of ( ) ( )282 q qϕ ψ ,  
respectively ( ) ( )24 q qϕ ψ . Then, the counting function ( ) ( ) ( )1,4,32:r n r n=  is determined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

3 3

32 , 4 1 , 4 2 4 3 16 2 0,
1 116 4 8 2 , 32 8 , 32 16 4 2 .
3 3

r n r n r n a n r n r n r n

r n r n r n b n r n r n

= + = + = + = + =

+ = + + = + = +
             (3.1) 

Proof. We proceed similarly to the proof of Theorem 2.1. One has 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

32 4

32 4 4 8

2 232 8 4 16 32 4 8

2 2 2 232 16 8 32 4 32 16 32 4

2 2 2 2 232 32 16 64 8 32 32 4 32 16 32 4

3 2 232 32 4 4 32 16

  2

  4 2

  4 4 2

  4 4 4 2

  2 4 4

q q q

q q q q q

q q q q q q q q

q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q

ϕ ϕ ϕ

ϕ ϕ ϕ ψ

ϕ ϕ ψ ϕ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ

= +

= + +

= + + +

= + + + +

= + + + ( ) ( ) ( ) ( )2 28 32 32 16 32 644 ,q q q q qϕ ψ ϕ ψ+

 

from which one obtains (3.1) through the uniquely defined identifications 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

332 32 32
3

232 4 4 1 4 1

24 32 16 16 4 16 4
3

28 32 32 32 8 32 8

216 32 64 32 16 32 16
3

32 ,

2 4 1 ,

14 8 2 16 4 ,
3

4 32 8 ,

14 4 2 32 16 .
3

n n

n n

n n

n n

n n

q r n q r n q

q q a n q r n q

q q q r n q r n q

q q q b n q r n q

q q q r n q r n q

ϕ

ϕ ψ

ϕ ψ

ϕ ψ

ϕ ψ

+ +

+ +

+ +

+ +

= =

= = +

= + = +

= = +

= + = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

  ◊ 

We are ready for the following result. 
Theorem 3.1. (Even square-free congruent numbers) Suppose the weak BSD conjecture holds and let n = 2m 

be a square-free number. Two cases can occur. 
Case 1: If ( )3 mod 4m ≡ , then 2n m=  is congruent. 
Case 2: ( )1 mod 4 .m ≡  
The number 2n m=  is congruent if, and only if, one has ( ) ( ) ( ) ( )1,4,8 1,4,322r m r m= ⋅ , where this equation is 

determined by the formulas 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 82 2
2 2 2 21,4,8 1,4,321 1

1 116 , 64
2 2

n n
k kr m r n r n k r m r n r n k
   
   
= =

= + − = + −∑ ∑ .        (3.2) 

Proof. Case 1 is easy. If m = 4j + 3 then by (2.17) and (3.1) one has ( ) ( ) ( ) ( )1,4,8 1,4,324 3 4 3 0r j r j+ = + =  and 
the result follows by (1.1) and the weak BSD conjecture. Consider now Case 2 and suppose that 4 1m j= + . 
Using (2.17) and (2.8) one sees that 

( ) ( ) ( ) ( ) ( ) ( )( )222 2
3 21,4,80 0 0 0

1 14 1 8 2 2 4
6 2

j j k
j j kr j q r j q q q q t qϕ ψ
≥ ≥ ≥ ≥

 + = + = = + 
 

∑ ∑ ∑ ∑ 



 , 

where ( )2t   is the number of representations of   as a sum of two triangular numbers. The right-hand side is 
a convolution sum with coefficients 

( ) ( ) ( ) ( )2 2
2 21,4,8 14 1 2 4 2j

kr j t j t j k
 
 
=

+ = + ⋅ −∑ . 

Using that ( ) ( )2 24 8 2t j r j= +  and rearranging one obtains the first formula in (3.2). The used identity be-
tween squares and triangles is part of more general similar relationships due to Bateman and Knopp [15] (see 
also Barrucand, Cooper and Hirschhorn [16] and Cooper and Hirschhorn [17]). For the second formula one 
proceeds similarly. With Lemma 3.1 one has 

( ) ( ) ( ) ( ) ( )( )228 8
21,4,320 0 0

14 1 2 4
2

j k
j k tr j q q q q t qϕ ψ
≥ ≥ ≥

 + = = + 
 

∑ ∑ ∑ 

 , which implies 

( ) ( ) ( ) ( )8 2
2 21,4,32 14 1 2 4 8j

kr j t j t j k
 
 
=

+ = + ⋅ −∑  and the second formula in (3.2). ◊ 

Remark 3.1. The first formula in (3.2) implies some identities between squares (respectively triangles) and 
certain partial sums of Jacobi symbols. Indeed, alternatively to the above one has with Cooper and Hirschhorn 
[3], Theorem 3, Equation (1.28), the formulas 

( ) ( ) ( )

( ) ( ) ( )

4
31,4,8 1 3 1

4
31,4,8 1 3 1

18 1 16 2 4 ,
6 8 1 8 1

18 5 16 10 4 .
6 8 5 8 5

k k
k

k k
k

r k r k
k k

r k r k
k k

= = +

= = +

    + = + = ⋅ −    + +    
    + = + = ⋅ −    + +    

∑ ∑

∑ ∑

 

 

 

 

 

3.2. Odd Square-Free Congruent Numbers 
Again, one needs an auxiliary result. 

Lemma 3.2. Let ( )c n , respectively ( )d n , be the coefficient of nq  in the q -expansion of  
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( ) ( ){ } ( )
2 24 42 2q q q qϕ ψ ψ+ , respectively ( ) ( ) ( )4 24 q q qϕ ψ ψ . Then, the counting function  

( ) ( ) ( )1,2,32:r m r m=  for odd m is determined as follows: 

( ) ( ) ( ) ( ) ( ) ( )8 1 , 8 3 , 8 5 8 7 0r n c n r n d n r n r n+ = + = + = + = .               (3.3) 

Proof. As in the proof of Theorem 2.1 one has 

( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

32 2

32 8 2 16 4 8

32 8 4 2 32 4 16 32 8 8 3 32 8 16

  2 2

  2 2 4 .

q q q

q q q q q q q

q q q q q q q q q q q q q q q

ϕ ϕ ϕ

ϕ ϕ ψ ϕ ψ

ϕ ϕ ϕ ϕ ϕ ψ ϕ ϕ ψ ϕ ψ ψ

= + +

= + + +

 

The first product with 4q  replaced by q  is the generating function of the Bell form (1,2,8) in Theorem 2.1 
and contributes to the counting function for numbers divisible by 4. Similarly, the second product contributes to 
the counting function for numbers divisible by 2. The only contributions to ( )r m  for odd m stem from the 
third and fourth product. For these one has 

( ) ( ) ( ) ( ) ( ) ( ){ } ( )
( ) ( ){ } ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

32 8 8 32 32 8 64 8

2 232 8 32 8 8 1 8 1

3 32 8 16 8 3 8 3

2 2 2

                                    2 2 8 1 ,

4 8 3 .

n n

n n

q q q q q q q q q q

q q q q q c n q r n q

q q q q c n q r n q

ϕ ϕ ψ ϕ ϕ ψ ψ

ϕ ψ ψ

ϕ ψ ψ

+ +

+ +

= +

= + = = +

= = +

∑ ∑

∑ ∑

 

Since there is no contribution to the counting function for odd numbers congruent to 5 and 7 mod 8, the 
Lemma is shown. ◊ 

Theorem 3.2. (Odd square-free congruent numbers). Suppose the weak BSD conjecture holds and let m be an 
odd square-free number. Three cases can occur. 

Case 1: If ( )3 mod 8m ≡ , then m is not congruent (independently of the weak BSD conjecture). 
Case 2: If ( )5,7 mod 8m ≡ , then m is congruent. 
Case 3: ( )1 mod 8 .m ≡  
The number 8 1m n= +  is congruent if, and only if, one has ( ) ( ) ( ) ( )1,2,8 1,2,322r m r m= ⋅ , where this equation 

is determined by the formulas 

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )( )

( )

21,2,8 0 1 2

4 1 2 4 1 1 2
2 21,2,32 0 1 2 0 1 2

18 1 2 1 ,
2

1 18 1 2 1 2 1 .
4 2

k k n

n k k n k k
k k n k k n

r n r n k k

r n r n k k r n k k

≤ + ≤

− + − − +

≤ + ≤ ≤ + ≤

 + = ⋅ − + 
 
  + = ⋅ − + + − +  

  

∑

∑ ∑
        (3.4) 

Proof. We begin with Case 2. If ( )5,7 mod 8m ≡  then by (2.15) and (3.3) one has  
( ) ( ) ( ) ( )1,2,8 1,2,32 0r m r m= =  and the result follows by (1.1) and the weak BSD conjecture. Consider now Case 3 

and suppose that 8 1m n= + . Using (2.15) and (2.7) one sees that 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 1 2
3 21,2,80 0 0 0

18 1 8 1 2 2
3

k kn n
n n kr n q r n q q q q r qϕ ψ +
≥ ≥ ≥ ≥

+ = + = =∑ ∑ ∑ ∑ 



 , 

which implies the first formula in (3.4). According to Lemma 3.2 one can write  

( ) ( ) ( ) ( ) ( ) ( )1 2
1,2,32 8 1 8 1 8 1r n r n r n+ = + + + , where ( ) ( )1 8 1r n +  and ( ) ( )2 8 1r n +  are the coefficients of nq  in 

the q -expansions of ( ) ( )
242 q qϕ ψ  and ( ) ( )

244 q q qψ ψ  respectively. Therefore, one has 

( ) ( ) ( ) ( ) ( )( ) ( )( )21 1 24 4
20 0 08 1 2 2 k kn

n kr n q q q q r qϕ ψ +
≥ ≥ ≥

+ = =∑ ∑ ∑ 



 , 

which yields the first sum in the second formula of (3.4). Similarly, one has 

( ) ( ) ( ) ( ) ( )( ) ( )( )22 1 1 24 4
20 0 08 1 4 4 k kn

n kr n q q q q q t qψ ψ + +
≥ ≥ ≥

+ = =∑ ∑ ∑ 



 . 
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Making use of the fact that ( ) ( )2 24 8 2t j r j= +  (see the proof of Theorem 3.1) one obtains the second sum 
in (3.4). It remains to show Case 1. Using (2.15) one has 

( ) ( ) ( )31,2,80 0

18 3 8 3
2

n n
n nr n q r n q
≥ ≥

+ = +∑ ∑ . 

On the other hand from Lemma 3.2 one knows that 

( ) ( ) ( ) ( ) ( )4 2
1,2,320 2 8 3 8n

n r n q q q qϕ ψ ψ
≥

⋅ + =∑ . 

Clearly, the theta function product ( ) ( ) ( )4 2q q qϕ ψ ψ  is the generating function for the number ( )r n  of 
representations of n  in the form 

24 2 y zx t t n+ + = , 

where ( )1 1
2yt y y= + , ( )1 1

2zt z z= +  with , 0y z ≥ , are triangular numbers. Now, one has the following  

one-to-one correspondence between solutions of 2 2 2 8 3X Y Z n+ + = +  and 24 2 y zx t t n+ + = . If  
2 2 2 8 3X Y Z n+ + = + , then without loss of generality , , 1X Y Z ≥  and ( ), , 1, 3, 5, 7 mod 8X Y Z ≡ . Through 

permutations one can arrange that ( )mod 8X Y≡ ±  and X Y> . One sees that 

( ) ( ) ( )1 1 1, 2 , 1
8 4 2

x X Y y X Y z Z= = ± − = − , 

are non-negative integers that satisfy the equations 

( ) ( ) ( )2 2 2 2 2 22 4 2 2 1 2 1 8 3x y z X Y Z n+ + + + = + + = + , 

hence 24 2 y zx t t n+ + = . Taking into account permutations and sign changes one must have  

( ) ( )3
1 8 3
24

r n r n= + . Through application of Tunnel’s theorem one sees that 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 31,2,8 1,2,32
1 18 3 2 8 3 8 3 8 8 3
2 6

r n r n r n r n r n+ − ⋅ + = + − ⋅ = + , 

which is strictly positive by the Gauss-Legendre theorem on the sum of three squares. Case 1 follows and the 
proof is complete. ◊ 

Remark 3.2. Similarly to Remark 3.1, the first formula in (3.4) implies the following identity (see Cooper 
and Hirschhorn [3], Theorem 3, Equation (1.28)) 

( ) ( ) ( ) ( )4
31,2,8 1

18 1 8 1 4 1
3 8 1

jn
j

jr n r n
n=

 + = + = ⋅ −  + 
∑ . 

4. Notes on Congruent Numbers 
To conclude the present work, some comments on the obtained results might be of interest for future research in 
this area. In the era before Tunnel [7], some important results were already known. For example, Genocchi 
proved in 1855 and 1874 that a prime ( )3 mod 8p ≡  and 2p with a prime ( )5 mod 8p ≡  were not congru-  
ent (see Dickson [2], pp. 465, 467). Later on, Nagell [18] gave a very elementary proof of the fact that a prime 

( )3 mod 8p ≡  was not congruent. Bastien [19] proved that 2p with a prime ( )9 mod 16p ≡  is not congruent. 
Heegner [20] and Birch [21] proved that 2p with a prime ( )3 mod 4p ≡  was congruent. Stephens [22] proved 
that a prime ( )5, 7 mod 8p ≡  was congruent. The conjecture that ( )5, 6, 7 mod 8n ≡  is congruent is due to 
Alter, Kurtz and Kubota [23] and has been shown by Stephens [22] to be a corollary of the Selmer parity con-
jecture. After Tunnel [7], all of the known results are more or less straightforward consequences of his famous 
congruent number criterion conditional on the truth of the weak BSD conjecture whenever required. For exam-
ple, using elementary congruence properties Conrad [24], Example 20, shows that ( ) ( ) ( ) ( )1,2,8 1,2,32 0r n r n= =  if 

( )5, 7 mod 8n ≡  and that ( ) ( ) ( ) ( )1,4,8 1,4,322 2 0r n r n= =  if ( )6 mod 8n ≡ . Our equally simple derivation of 
this statement has the advantage to follow directly from general counting formulas for the relevant ternary qua-
dratic forms. Though Ono [25], p. 163, mentioned that a square-free number ( )3 mod 8n ≡  was not congruent, 
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we were not able to spot a reference with a proof of this result. Our unconditional result generalizes the corres-
ponding one by Genocchi and Nagell for a prime ( )3 mod 8p ≡  (see also Ono [25], Theorem 4.7, p. 162). In 
fact, the only non-trivial remaining situations are Case 2 in Theorem 3.1 and Case 3 in Theorem 3.2, which are 
settled conditionally on the weak BSD conjecture on the basis of equations (3.2) and (3.4). 
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