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Abstract

1 1 1 1
We shall show relation between two operator inequalities f (BZAB2 J >B™" and A2 g(AZBAZJ

for positive, invertible operators A and B, where f and g are non-negative continuous invertible

functions on (0,00) satisfying f(t)g(t)=t".
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1. Introduction

We denote by capital letter A, B et al. the bounded linear operators on a complex Hilbert space H. An operator T
on H is said to be positive, denoted by T>0 if (Tx, x) >0 forall xeH.
M. Ito and T. Yamazaki [1] obtained relations between two inequalities

r I \p+r i) P \p+r
B2APB?2 >B" and AP >| A2B"A2 , (1.1)
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and Yamazaki and Yanagida [2] obtained relation between two inequalities

D Pt LI VA pop )t
| +——B2APB2>B" and AP >A?B'A?2| —I+——A?B"A% | | (1.2)

p+r p+r p+r p+r

for (not necessarily invertible) positive operators A and B and for fixed p>0 and r >0. These results led M.
Ito [3] to obtain relation between two operator inequalities

1 1 1 1
f(BZABZJZB and Azg(AZBAzJ, (1.3)

for (not necessarily invertible) positive operators A and B, where f and g are non-negative continuous functions
on [0,0) satisfying f(t)g(t)=t.

Remarks (1.1): The two inequalities in (1.1) are closely related to Furuta inequalities [4].

The inequalities in (1.1) and (1.2) are equivalent, respectively, if A and B are invertibles; but they are not al-
ways equivalent. Their equivalence for invertible case was shown in [5].

Motivated by the result (1.3) of M. Ito [3], we obtain the results taking representing functions f and g as
non-negative continuous invertible functions on (0,0) satisfying f(t)g(t)=t".

2. Main Results

We denote by N (T) the kernel of an operator T.
Theorem 1: Let A and B be positive invertible operators, and let f and g be non-negative invertible continuous
functions on (0,0) satisfying f (t)g(t)=t". Then the following hold:

1 1 1 1 1 1
1) f [BZABZJZ B! ensures Al—g[AZBAZJZ AE A2-g(0)E, ,
A2BA2
1 11 1 1
2) B'> f(BzAsz ensures g[AZBAZJ—A1 >g(0)E, ,-A PELA 2.
A2BA2
11
Here EB,1 and E , , denote orthoprojectionsto N (B’l) and N {AZ BAZJ respectively.
A2BA?
The following Lemma is helpful in proving our results:
Lemma 2: If h(t) is a continuous function on (O,rz) and T is an invertible operator with |[T|<r, then
1 . 1 « 1
——h(TT)==h(TT")=.
()= )
Proof of Lemma: Since h(t) is a continuous function on [O,rz], it can be uniformly approximated by a
n
sequence of polynomials on [0, rz] . We may assume that h(t) itself is a polynomial h(T ) = zaktk . Then
k=0

h(TT)TT =Y (TT) T

k=0

-1

(T'T) Th(TT°)-T(T°T)”

Hence the result.

1
; O<t<ow

1 —
tfo(t) t[f(t)+e]’

Proof of Theorem 1: For >0, let f_(t)=f(t)+e and g_(t)=
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1 1
1) We suppose that f (Bz AB?2 J >B™. Then

11 1o
fe[BZABZJ:f{BzABZJ+e 1>B +el.

11

and T =B2A2 then

Let h (t)= fl

€

11 1
-1 -1
A —ge(AZBAzjzA e —
(AZBAZJL[AZBAZJ
— _1_ 1
T*TfE(T*T)
=A-1—1h€(TT*). !
T T
) 1 1 1
=AT- 11 1 o1y 11
BZA? fE(BZABZJ AZB?
1 I 1
> Al .
- 1 1 -1 1 1
1 1 B 1] 1
_A 2|:I_Bz BZ:|AZ
l+eB
a8
l+eB
1
_a2._ € 3
Bl+el

-1
We have It e(B’1+eI) =E_,.
e—>0 B
Further since g_(t) increasesas € decreases and

{g(t), when t =0

It t)=
9. (1 0. when t — oo,

e—>0

we have
11 11
It{A’l—gg(AZBAZJ}:A’l—{g(AZBAzj—g(w)E1 }
e—0 AEBAE
Then
11 11 1 Lot
A - g(AZBAZJ—g(OO)El =t A‘l—ge(AZBAZJ > ItoeAZ(B‘1+eI) A2
AZBA2 & €
i.e.
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1 1
2) We suppose that B™ > f(BZABZJ Cie. f(BZABZJS B!, then

1o 11
f{BZABZJ: f{BZABZJJre l<Bl+el.

1 1
and T =B2A2?, we have by Lemma 2

With h_(t)=

1
(1)

gE[A;BA;J—A‘l =g (TT)-A"

— 1 _ -1
T*TfE(T*T)
1 . B
= h(T°T)-A
=1hE(TT*)- LA
T T
1 A )
= l.he[BZABz] A"
B2A? A2B?
1 I 1 .
11 11y 1 1_Al
B2A2 fe(BZABZJ A2B?2
1 I 1 o

-1

=—eA’5(B*1+e|) A

N

Now as Itoe(B’1+e I):EB_1 and since
It ge(t):{g(t)’ when t =0
€0 0. when t — oo,

we have

A2BA2

Then
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1 1 1 1
g| A’BA? |-g(»)E, , -A"=1t<g | A’BA? |-A"
AEBAE e—>0
1 a4 L
>It-eA?(BM+el) A2
e—0
1

=-A2E_,A

L
2

1
2

[ !
:g[AZBAZJ—A‘lzg(w)EI ,-AZE_ A2

A2BA2

thus completing the proof of 2.
Corollary 3. Let A and B be positive invertible operators, and let f and g be non-negative continuous invertible

functions on (0,0) satisfying f(t)g(t)=t".
1 1
1) If g(®)=0 or N(AzBAZJ:{O},then f(

1 1

1 1
BZABZJZ B! ensures A'> g(AZBAZJ.

1 1 1 1
2)If N(B*)=N(A™), then Blzf[BZABzJ ensures g[AZBAzjzAl.

Proof 1) This result follows from 1) of Theorem 1 because each of the conditions ¢ (oo) =0 and

A2BA2

1 1
N[AZBAZJ:{O} implies g(w)E , , =0, so that

1 1 1 1

1 1
A‘l—g(AZBAZJZA 2E_A?-g(w)E, , =A2E_,A?20

A2BA2

1 1
=At> g(AZBAz].
1

2) This result follows from 2) of Theorem (1) because N (B’l) cN (A’l) = AfEEErl =0, so that

1 1
2 2

1 1
g(AZBAZJ—Alzg(oo)E . 1 —AZE LA

A2BA2

Hence the proof is complete.
Remark (3.1) 1) If f()>0, then automatically g(e)=0 since f(0)g (o)

1 0, so 1) of corollary
o8]

3 holds without any conditions.
2) The invertibility of positive operators A and B is necessary condition.

3) We have considered (0,oo) instead of [O,oo) because the requirement of the limit.

Itoge(t)zo when t =0 is not fulfilled, rather it is fulfilled when t — oo because ge(t)ztf Ok

We have the following results as a consequence of corollary 3.
Theorem 4: Let A and B be positive invertible operators. Then for each p>0 and r >0, the following

hold

p

_r _r ﬁ i) per
1)If | B 2A"B 2 >B" then A >| A2B"A2 .
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. i,
» P \per . . ot g
2)If AP >| AZB A2 and N(A')cN(B™) then |B2APB 2| >B'.

In Theorem 4 we consider that t° =1 for t>0 or =0 when t—c and we define T°=1-E, for
a positive invertible operator T.

Theorem 5: Let A and B be positive invertible operators. Then for each p>0 and r >0, the following
hold:

_p P P Py P LI -
1) If | -———B 2APB 2>B",then A" >A2B"A2 A2BTTAZ ——| | |
p+r p+r p+r p+r

P P
2)If AP>A?BTA? [

-1
- ASB“AS—LIJ and N(A™)cN(B™), then
p+|" p+r

P T giarB2xp.
p+r  p+r
Proof of Theorem 4: 1) First we consider the case when p>0 and r >0 .Replacing A with A? and B with

—r -p

B™" and putting f (t) =t"" and g (t) =t"" in1) of Corollary 3so that f (t)g(t)=t™, we have

_r I \per P P ﬁ
if [B 2APB 2] >B" then APZ[AZB’AZJ . (5.1)

If p=0 and r>0 (5.1) means that

(1-Ea)B™"(1-En)

-1
r r
if {B 2(1-E,)B 2} >B" then I-E,>1-E

(1-Ea)B™"(1-Ep)

r rt
ie., if {B‘r—B_ZEAB_Z} >B" then |-E,>I1-E

ie,if (I-E,) >1 then 1-E,>1-E

(1-EA)B™"(1-En)
ie,if (I-E,)<!I then I-E,21-E

(1-Ea)B™"(1-Ea)

r r
or in other words, B 2E,B 2 =0 ensures E >E,.

(1-Ea)B™"(1-Ea)

But, since B 2E,B 2=0 implies (I1-E,)B"(1-E,)=B", it follows an equivalent assertion

B 2E,B ?=0 ensures E_, >E,,ie, E_ =E_, >E, which is further equivalent to the trivial assertion
N(A)c N(B‘l) ensures N (A)c N(B'l).

2) Again first we consider the case p>0 and r>0. Replacing A with B™" and B with A’ and putting
P il
f(t)=t"" and g(t)=t"" in2)of Corollary 3.
Since N(A)=N(A*)cN(B")=N(B™"), we have

-p —_r
p+r p+r

2 P T
AP Z(AZB’AZJ ensures (B 2APB ZJ >B". (5.2

(1-Ea)B™"(1-Ea)

r rt
Ifp=0andr >0, (52) means that (1-E,)>1-E ensures {BZ(I —EA)BZ} >B" e,
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ensures B 2E,B 2 =0, (5.3)

which implies that (I-E,)B™(1-E,)=B".
Hence (5.3) means that EB,l = EB,
N(A)cN(B™).
Hence the result.
Proof of Theorem 5: We can prove by the similar way to Theorem 4 for p>0 and r >0, replacing A with

. 2E, ensures B2E,BZ=0, ie. N(A)cN(B™) ensures

-1
A" and B with B™" and putting f(t)=— P ' ¢ and g(t):t(—L —L) for 1) in 1) of Co-
p+r p+r p+r  p+r
-1
rollary 3 and replacing A with B™" and B with AP and putting f(t):t[—L —Lj and
p+r p+r
g(t)=- p__T t for 2) in 2) of Corollary 3.
p+r p+r

Corollary 4: Let A and B be positive invertible operators, and let f and g be non-negative continuous inverti-

1 1
ble functions on (0,%) satisfying f(t)g(t)=t".1f N [AZBAZJ ={0}, then

1 11
f(BZABZJz Bl=A'> g[AZBAZJ.

1 1

Proof: The proof (:>) follows directly by applying the condition N [AZ BAZJ = {0} , in 1) of Corollary 3 and

for the proof (<:) we have only to interchange the roles of A and B and those of f and g in 2) of Corollary 3,

since {0}=N(A*)=N(B™) if N[A;BAijz{o}.
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