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Abstract

In this paper, we introduce the weighted Bloch spaces S° (ER, (m, n)) on the first type of classical
bounded symmetric domains R, (m,n), and prove the equivalence of the norms ||f‘||Lp and
|| f ||2 pe(men)f2 * Furthermore, we study the compactness of composition operator C; from
B’ (iR. (m, n)) to p¢ (ER, (m, n)) , and obtain a sufficient and necessary condition for

C,:B°(R,(m,n))—> B*(R, (m,n)) tobe compact.
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1. Introduction

Let Q be a bounded homogeneous domain in C". The class of all holomorphic functions on Q will be
denoted by H(Q). For ¢ a holomorphic self-map of Q and feH(Q), the composition fog is
denoted by C,f,and C, is called the composition operator with symbol ¢ .

The composition operators as well as related operators known as the weighted composition operators between
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the weighted Bloch spaces were investigated in [1] [2] in the case of the unit disk, and in [3]-[7] for the case of
the unit ball. The study of the weighted composition operators from the Bloch space to the Hardy space H*
was carried out in [8] [9] for the unit ball. Characterizations of the boundedness and the compactness of the
composition operators and the weighted ones between the Bloch spaces were given in [10]-[12] for the polydisc
case, and in [13]-[18] for the case of the bounded symmetric domains. Furthermore, we will give some results
about the composition operators for the case of the weighted Bloch space on the bounded symmetric domains.

In 1930s all irreducible bounded symmetric domains were divided into six types by E. Cartan. The first four
types of irreducible domains are called the classical bounded symmetric domains, the other two types, called
exceptional domains, consist of one domain each (a 16 and 27 dimensional domain).

The first three types of classical bounded symmetric domains can be expressed as follows [19]:

R, (m,n)= {Z 1 Z is.an mxn complex matrix, |, —ZZ" > 0} ,
where m<n and I, isthe mxm identity matrix, Z" is the transpose of Z ;

R, (p)z{Z 1Z isapx p symmetric matrix, Z=Z",1, —ZZ_>O}
R (q):{z :Z is a qxq antisymmetric matrix, Z =-Z", I, +2Z > O}.

Let Az(a..) and B=(b ) . The Kronecker product AxB of A and B is defined asthe msxnt
1 Jmxn Kl Jsxt

matrix C :(cik”) such that the element at the ik -th row and jI -th column ¢, =a;b, [19]. Then the Berg-
man metric of %, (m,n) is as follows (see [19]):

H, (uu)=(m+n)u(1-2Z7) " x(1-Z"z) @, (L.1)

where U= (U, Uy, Uy, -+, Uy ) IS @ complex vector, T s the conjugate transpose of U, and

Z=(z;) e (mn).
Following Timoney’s approach (see [18]), a holomorphic function f is in the Bloch space ﬁ(iRl (m, n)) if
I, = sup )Qf (Z)<oo.

eRy(mn
Now we define a holomorphic function f to be in the p-Bloch space f° (iRl (m, n)) if
5T\P
11,0 :zeillj(pm,n)dﬁ(l —ZZT) Q (Z) <o, 1.2)
where
|Vf (Z)u|

Q, (Z):sup{m:u e(Cm“_{O}}:

of

1@ L@ L@ L@ L)

We can prove that (%, (m,n)) is a Banach space with norm ||f||1,p :|f (O)|+||f||ﬂp which is similar

with the case on (B“ )
Let ¢ = ((/ﬁlj )m ) be a holomorphic self-map of R, (m, n) . We are concerned here with the question of when

C,: B (R, (m,n))— A% (R, (m,n)) will be a compact operator.

Let diag(dl,-u,dn) denote a diagonal matrix with diagonal elements d,,---,d, . In this work,we shall de-
note by C a positive constant, not necessarily the same on each occurrence.

In Section 2, we prove the equivalence of the norms defined in this paper and in [20].

In Section 3, we state several auxiliary results most of which will be used in the proofs of the main results.

Finally, in Section 4, we establish the main result of the paper. We give a sufficient and necessary condition
for the composition operator C, from the p-Bloch space A° (%, (m,n)) to the g-Bloch space p° (‘Rl (m,n))
to be compact, where p>0 and q=>0. Specifically,we prove the following result:
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Theorem 1.1. Let ¢ be a holomorphic self-map of %, (m,n). Then C,: A" (R, (m,n))— B*(R, (m,n))
is compact if and only if, for every & >0, there existsa o >0 such that

det(1-2Z7)"  HIZ (34(Z)u,3¢(Z)u)
det(|—¢(z)MT) Hz" (u.u)

forall ueC™ —{0} whenever dist(4(Z),0%,)<5, Ze®R, (mn).
The compactness of the composition operators for the weighted Bloch space on the bounded symmetric
domains of R, (p), R, () issimilar with the case of %R, (m,n); we omit the details.

<e, (1.3)

2. The Equivalence of the Norms

Denote [20] [f[, ,, = sup det(1-2Z")" |Vt (Z)] and |t],  =|f (0)+]f, o -

ZeR, (m,n)
Lemma 2.1. (Bloomfield-Watson) [21] Let A= (aij ) >0 bean mxm Hermitian matrix. Then

det(B"AB) < detA 2.1)
where B isany mxn matrix and satisfies BB' =1
Theorem 2.1. ||f||l and |f|, pi(minyo 8T€ Quivalent

Proof. The metric matrix of R, ( ) is

m+n)(|m—ZZ )’ (| -7'z)".

Forany Ze®R,(m,n), let ¢, eAut( .N)) with ¢, (Z)=0. Then

T(Z, Z) ((e2)(z ))T ( 0)(J¢;)(2) ) (m+”)((3¢z)(z))Tm
Denote ¢," =y, then y, (0)=Z (J(pz)

T(2.2)-——{30,)(2) 1( 30.)( ) —— ()OI )(0)'
Thus

VE(ZTH(2.2)(VF (2)) = —=VT(2) (30, )(O)(F (2) (3w, )(0)) =——|¥(f ow, ) 0"

Hence

[V(Fop2)(0)

det(1-2Z")"Q,.,, (0) = det(I —ZZ_T)psup{W: ueC™-{0}, |u| :1}

:\/%det(l—zz_T)psup{W(fowz)(o)u|:u€cmn_{o}’ |u|=1}
st 22y [T 22w @) |
Furthermore,
Il =, 3p, 0812 @
"z )det(l_ZZ_T)D{WT’I(Z,Z)(W (z))T}M2
Since
VE(Z)TH(Z2,2)(VF (2))" <[V (2) detT*(Z.2)

=(m+n)’1|Vf (z) det(1-2Z")"".
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Thus

m (2.2)

1
1l sl

For

|Vf (Z)u|

y2 -

det(1-2Z")" Q, () =det(1-2Z") sup W

eC™—{0}, |ul=1

> det(1-2Z7)" {detT *(2,2)}"” |1 (2)

1 .
=mdet(l—ZZT)p 2 |Vt (z)),

then we have

m (2.3)

1
[0 2 Il
Combining (2.2) and (2.3),

m+n

1
[t = =11l 5"
m+n

Next,
¥, =If @1 <[F O[], 275 =[], poncn
and
[, p,men =[O+ 1 £l %5 < Smen ([ @)+ ], ) =vm-+n] ],
Therefore, the proof is completed. o

3. Some Lemmas

Here we state several auxiliary results most of which will be used in the proof of the main result.
Lemma 3.1. [18] Let D < C" be a bounded homogeneous domain. Then there exists a constant C,
depending only on D, such that

Hy) (34(2)u,34(2)u) <CH, (u,u) (3.1)
for each z e D whenever ¢ holomorphically maps D into itself. Here H, (u,u) denotes the Bergman metric
0
on D, J¢(z)= [%] denotes the Jacobian matrix of ¢.
Z 1<1,k<N

Lemma 3.2. Let ¢ be a holomorphic self-map of %, (m,n) and K a compact subset of %, (m,n).Then
there exists a constant C >0 such that

det(1-2Z")  HI2 (34(2)u.34(Z)u)
det(l—¢(Z)¢(Z)T)p HZ* (uu)

forall ueC™ —{0} whenever ¢(Z)eK.
Proof. For §e(0,1), let Ej ={W R, (m,n):dist(W,oR,)>s}.
For any compact K =R, (m,n), there exists a constant & (0,1) suchthat K c Eg . Then there exists

M €(0,1) such that det(l —¢(Z)@T)> M, whenever ¢(Z)eK .

<C (3.2)
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Thus
det(1-2Z")’
h-z) 1 63
—T\P
det(1-4(2)4(2) |
Combining Lemma 3.1 with (3.3) shows that (3.2) holds. o

Lemma 3.3. (Hadamard) [21] Let A= (aij ) >0 bean nxn Hermitian matrix. Then

detA<] Ja; (3.4)
i1

and equality holds if and only if A is a diagonal matrix.
Lemma3.4. Let Z=(z,) €%, (mn).Then

det(1,, —zz‘T)sf[(l—|z“|2). (3.5)

i=1

_ n
Proof. Forany Z e®, (m,n), we have 1 —-ZZ" =[5st _Zzsjfth >0.
1<s,t<m

i=1

Thus we have 0<1—Zn:|zij|2 <1, i=12,---,m
j=1

It follows from Lemma 3.3 that det( I, - ZZ_T) < ﬁ(l—i]zij |2] < ﬁ(1—|2n |2 ) =
i=1 j=1 i=1

Lemma 3.5. Let R, (m,n) be a classical bounded symmetric domain, and T(z,z) denote its metric matrix.
Then a holomorphic function f on %, (m,n) isin B°(R,(m,n)) ifand only if

_ —T)¥2
sup det(1-2Z")" {Vf (2)T™*(z,z)vi (z)T} <o, (3.6)

ZeR (m,n)

If (3.6) holds, then
_ ——T)¥2
|f],» < sup det(l —zzT)p {Vf (z)T(z,Z)vf (Z)T} : (3.7)
A ZeR, (m,n)

Proof. We can get the conclusion by the process of the proof on Theorem 2.1. a

Lemma 3.6. [18] Let
P=U (diag(4, 4, 4, ),0)V e R,

Q=Udiag[ t 1 JUT,
N R N R KN B

R=\7Tdiag[ !

1 1
’ TR 111'”11 V!
e e

and V,, areunitary matricesand 0< A, <:--<4, <4 <l

where U, .
Denote @, (2)=Q(P-2)(1,-P"Z) R, Ze®, (mn). Then

1) ®,(Z)eAut(R, (m,n));

2 (0,)" =y;

(3) ®,(0)=P and @, (P)=0;;

(4) d®,(Z)|, ,=-QdZR and dd,(Z), =-Q7dZR™ for Z R, (m,n);

Z=0
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(6) ,(2)=Q*(1,-ZP") (P-Z)R for ZeR, (mn);
(6) (lm—zﬁT)Q(|m—@P(z)mp(z)T)éT(lm—Pz‘T)=|m—zZT for Z e®, (m,n).

Lemma 3.7. C,: 4" (%R, (m,n))— (%R, (m,n)) is compact if and only if ||C¢ fk”ﬂq —0 as k—>ow for

any bounded sequence {f} in ° (SR, (m, n)) that converges to 0 uniformly on compact subsets of %, (m,n).
Proof. The proof is trial by using the normal methods. o
4. Proof of Theorem 1.1

Proof. Let {f,} be a bounded sequence in A°(%®,(m,n)) with [f,], <C, and f, -0 uniformly on
compact subsets of R, (m,n
Suppose (1.3) holds. Then for any ¢ >0, there existsa ¢ >0, such that

det(1-2Z7)"  HIZ (34(2)udg(Z)u)
2 <=
det(l Z)4(z T)p HZ* (uu) c
forall ueC™ —{0} whenever dlst(¢ R, (Mn))<d and ZeR, (mn).

By the chain rule, we have V(f,0¢)(Z)=V/(f )( $(2))34(2).
If ueC™—-{0} and J¢(Z)u=0, then we get V(f og)(Z)u=0.If ueC™—{0} and J¢(Z)u=0,

4.1)

then
V(fog)(Z)u  V(£)(4(2))38(Z)u Hi% (I4(Z)u34(Z)u) w2
HY? (uu)  H% (I4(2)u,dg(Z)u) HY? (u,u) ' '
It follows from (4.1) and (4.2) that
det(1-2Z7)' Qc,y, (Z)=sup{det(l —zZT)qw, ueC™ {0}, J4(Z)u ¢0}
det(1-2Z")  HY2 (34(Z)u,3¢(Z)u
<[ £, su ( ) — oo AP (o0) ), ueC™ {0} 4.3)
det(l—¢(Z)¢(Z) ) e (U
<cé:g, (4.4)

whenever dist(¢(Z),0%, (m,n))<5 and Z e R, (m,n).
On the other hand, there exists a constant m >0 such that

inf{H\%z(u,u):|u|:1, dist (W, 0%, (m,n))z&}:m.
Soif dist(W,o%, (m,n))> 35, then
o [VF (W) Conrye VR (W)
A - SR )

We assume that {fk} converges to 0 uniformly on compact subsets of R, (m, ) By Weierstrass Theorem,
it is easy to see that {Vf,} converges to 0 uniformly on compact subsets of %, (m,n). Thus, for given &>0,
there exists k large enough such that

det(l —¢(Z)WZ)T)p|V(fk)(¢(Z))J¢(Z)”| ¢ 45
H}G) (36(Z)u,3¢(Z)u) © -

 [VE (W) .

det(l —WVVT) o

<det(1-WwW")
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for any ueC™—{0}, J¢(Z)u=0 whenever dist(¢#(Z),0%,(m,n))=5 and Z eR,(m,n). Then by in-
equalities (4.3) and (4.5) and Lemma 3.2, it follows that, for k large enough,

AR (4.6)

whenever dist(¢(Z),0%, (m,n))>5 and Z e R, (m,n).

Combining (4.4) and (4.6) shows that ||C¢ f, ”/;q <¢ as k large enough. So
C,:B°(%, (m.n))—> (R, (m,n)) is compact.

For the converse, arguing by contradiction, suppose C,: 8 (R, (m,n))— A%(®, (m,n)) is compact and
the condition (1.3) fails. Then there existan &, >0, a sequence {Zj} in R, (m,n) with

¢$(Zj)—>8‘R,(m,n) as j—oo and asequence {uj} in C™ -{0}, such that
det(I—Z"Z_jT)G| H,,])/(Zzi)(‘w(z_j)“j"w(z_j)uj)

o|et(|—¢(z‘i)@Tjp HYE (')

> g, 4.7)

forall j=1,2,---.
Now we will construct a sequence of functions { fj} satisfying the following three conditions :

) { fj} is a bounded sequence in ° (R, (m,n));
)} { fj} tends to 0 uniformly on any compact subset of %, (m,n);
(1 ||c¢fj||ﬂq +0as | > .

The existence of this sequence will contradict the compactness of C, .

We will construct the sequence of functions { fj} according to the following four parts: A - D.

Part A: Suppose that ¢(Z‘): rE, j=12,-
where E, isthe mxn matrix whose element at the kth row and Ith column is 1 and the other elements
are 0. Since ¢ maps R, (m,n) intoitself, 0<r, <1 and r, —>1las j— co.

Denote Jg(Z')u’ by W' =(wy, -, Wy, Wy, Wl o, Wl -, wh, ) Using formula (1.1), we have

H¢(Zj)(W",W"):(m+n)w"diag((l—rj2)7l,1,...,1)><diag(<1—rf)fl,1,...,1)WT
=(m+n) |le1|2 -t Zn:|wj|2+zm:|wj|2 + ) |Wj|2
(1_rj2)2 1—rj2 =2 . k=2 « 2<k<m,2<I<n “ey
Denote
e o S TId N
J (1_rjz)2, J :I-_rj2 1=2 ! k=2 « , ! 2<k<m,2<1<n e
then
H¢(Zj)(wi,wi)=(m+n)(Aj+Bj+cj). (4.8)

We construct the sequence of functions { f j} according to the following three different cases.
Case 1. If for some j,

max(B;,C;)< A, (4.9)

then set

f (z):% - , (4.10)
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where a is any positive number.
Case 2. If for some j,

max (A;,C;)<B, (4.11)
then set
fj (Z) = (Zeigﬂ 7, + Z:e’"?kj1 zklj 1 T ! PYT) 4.12)
i—2 k=2 (1-z,) (1—e7a(17r")211)
where ¢ =argw , if for some |, wj, =0 or forsome k, wj, =0, replace the corresponding term &% 7,
by 0 (the same below).
Case 3. If for some j,
max (A;,B;)<C; (4.13)
then set
g 1 1
fj(z):[ >, e Hk'zkll b b (4.14)
2<k<m,2<l<n (1— le) (1_ e’a(l’ri)zll)

Next, we will prove that the sequences of functions {f i (Z)} defined by (4.10), (4.12) and (4.14) all satisfy
the conditions (1), (11) and (111).

To begin with, we will prove the sequence of functions {fj (Z)} defined by (4.10) satisfies the three con-
ditions. We can get that

det(1-2Z")’ {ij (2)T(2,2)V, (z)T}]/2

1 e—a(l—rj) ‘

o +1
(1_ Z ) P (1_ e‘a(l‘rj ) Z, ) P

<m+n)”det<lzf>”{(1i|zl.|2)(1iimlﬂ}ﬁ\

2

_ p
S(m+n) v (1—|211|2) (1—|211|Z)W
B
329*2(m+n)7m.

It follows from Lemma 3.5 that || f; "ﬁp <C2r*? (m+ n)']/2 )

This proves that the sequence of functions { f; (Z)} defined by (4.10) satisfies condition ().

Let E be any compact subset of %, (m,n). Thenthereexistsa pe(0,1) such that
|z,| < p (4.15)
forany Z=(z,) . <€E.By(4.10), we have

Since
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1 _ e—a(l— r )

p
z .
“J -1 converges to 0 uniformly on E. Therefore,
-y

But 1-e ") 50 as j—>o0. Thus, [

fj _converges to O uniformlyon E as j— «. Thus, the sequence of functions {fj (Z)} defined by (4.10)
satisfies the condition (I1).
Now (4.8) and (4.9) mean that

H¢(Zj) (Wj,Wj ) =(m,n)(A; +B;+C;)<3(m,n)A,. (4.16)

Combining (4.7) and (4.16), we have

v fj)(¢(Zj))J¢(Zj)uj‘

—.T\d
v
||C¢fj||ﬁq2det(l_zjle) HYZ (u,ul)

of; .
71("1' Ell)lel

f)(r, ] _r2)’
> &, (1—rj2)p ‘VF('V;)(H Ijzll):N ‘Z %o (1 T ) azllj —
rjE1 (W W ) \/3(m+n) |W11|/( T )
>__% 1_(1_5‘)%1 e ")

Fom| e

Since

(l_rj)P+1e—a(1—rj) :1_( 1 ]Pﬂio

lim|{1-
m a+l

joo (1_efa(l—rj)rj )p+1

This proves that |C,f;|l | -0 as j— oo, which means that the sequence of functions {fj (Z)} defined
by (4.10) satisfies condition (I11).
We can prove that the sequence of functions {fj (Z)} defined by (4.12) or (4.14) satisfies the conditions (1)
- (111) by using the analogous method as above.
Part B: Now we assume that
$(2')=rVE +17E,, j=12,-

Itis clear that 1> rj(l) > rj(z) >0 and for ¢$(Zj)—> oR, (m,n) we can assume that rj(l) —1 and rj(z) -4

as j—oo,where A, <1.
If 4, =1, we can use the same methods as in Part A to construct a sequence of functions {fj (Z)} satisfy-

ing conditions (1)-(111).
Using formula (1.1), we have

o _ -1 -1 = 1 _
H¢(ZJ)(WJ,WJ)=(m+n)WJdiag((l—rj(l)) ,(1_rj(2)2) ,1,-'-,1jxdiag[(1—rj(l)) ,(1_',1_(2)) ’1’“"1)WJT

12

.12 i
e

2 2
|W1]1| |W112| +|W211| 1 o2 2
j j
+ ; Z|W1|| +Z|Wk1|
ro ) 1=3 k=3

2 2 2 + 2 +
(1_rj(1>2) (1—rj(1) )(1—rj(2>) (1_rj<2>2) (1—J

1t (Izn;|wzjl|2+i|wka|zJ+ > |ij,|2.

(1— rj(z)2 ) 3<k<m,3<l<n

=(m+n)

Denote
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3<k<m 3<i<n

LT S T2 &2
02 v TRt Do IS S SR v 1
(1—!’]- ) 1=3 k=3 (1—I’ ) 1=3 k=3

Then,
Hqﬁ(zj)(w“,wj):(m+n)(Aj +B;+C;+D; +E; +F))
We construct the sequence of functions { fj} according to the following six different cases.
Case 1. If for some j,
max(B;,C;,D;,E;,F;)< A
then set

Case 2. If for some j,

then set

1 1

[0 2) (0 2a) Hl”J[l”ﬂ |

fj(Z)=( "9122 +e 221)

Case 3. If for some j,
max(A;,B;,D;,E;,F;)<C;

I R Rl L |
then set

Case 4. If for some j,

then set

Case 5. If for some j,

then set

(4.17)

(4.18)

4.19)

(4.20)

(4.21)



J.B.Suetal

f;(2)

(Ze'ig?j' Z, + Ze‘igka Zkzj ! ! . (4.22)
1=3 VA \

k=3
Case 6. If for some j,

then set

_ial 1 1
fj(z)z( T e gk"zk.j 2o — | (4.23)
3<k<m,3<l<n (l le) {1_ea(1rj )Z J
11

By using the same methods as in Part A, we can prove the sequences of functions {fi (Z)} defined by
(4.18)-(4.23) satisfying conditions (1) - (111).

Now, as an example,we will prove that the sequence of functions {fj (Z)} defined by (4.19) satisfying the
conditions (1) - (I11).

Forany Ze®,(m,n), we have

2}1/2

< [p+%)(eig1J2 z, +e’i9§1221) 31 -
(1-2,)""2(1-2,, )"

|z, <1-|z,[", |zl <1-|z", i=12. (4.24)
Thus
of
CRS =T

1<k<m,1<I<n

N
TN
=
|
(‘D‘
2
e
T
1
e
N
N
iy
=
~—
o
+
N
VR
[E=N
|
m\
o
=
1
=
N
N
N
v
=l
i

1 _igd —iod 1 e
+(p+5j(e'“zlz+e '21221) - T -

1 1

[(1-2,)(1-2,)]"" - { (1_ e‘a(l‘r§1)lelJ [1_ e_a(l_r'@]zzz ]:l b2

+|2

1 2 2 4
<\ p+3 (|222]+|2]) — T — |t — —
(1_|211|) 2 (1_|222|) 2 (1_|Zu|) 2 (1_|222 ) 2 (1_|211|) 2 (1_|222 ) 2
1 1 1 4
: 4\/5( p +EJ p+1 p+l - p+l p+1 - p-+—1 p+1 '
(1_|le ) (1_|Zzz )2 (1_|le ) 2 (1_|Zzz|) (1_|211|) 2 (1_|222 )z
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By Lemma 2.1, we have

det(I—ZZ_T)p{ij(Z)Tl( Z)vf (2

i

)
z)}

<det(1-2Z")"|Vf,(2) |{detT’1(Z
1 2 m+n
sﬁ(l )" (1 )2 (4.25)
wa(p+3) w2(p+3) .
X + +

il
)"

1 L1 . WL
(1_|211|)p l(1‘|222 )p 2 (l_|zll|)p 2(1‘|222|)p ' (1‘|Z:u|)p 2 (1|2,

22 p+m+n+2 \/_
2 +=
~ Jm+n ( (p J j
It follows from Lemma 3.5 and (4.25) that ||f || < C . This proves that the sequence of functions { f; (Z)}

defined by (4.19) satisfy the condition (1).
Let E be any compact subset of %, (m,n). Since there exists a p (0,1) such that 1-|z;[>1-p>0,

i=12 Thus
o110 a1l Pz
, (1 e (- jzllJ(l—e (- jzzzj
f(Z)< -1
R s L N [
Since
- 1—r(') i
}181 (ZJ jZ" _1 _Il ZiiZ |1_e—a(1—r]()) Sli(l_e—a(l—r]()) , i=1,2.
4 T -pP
e @) TPV
(l r(l)) (1—6 a(l j ]211 1-e a(l j )Zzzj
So 1-e "/ 50 as j—o. Thus =2)(1-2) -1 converges to 0 uni-
T Tt

formly on E. Therefore,the sequence of | f; convergesto 0 uniformly on E as j— co. Thus, the sequence
of functions { f; (Z)} defined by (4.19) satisfies the condition (11).

For case 2,
H¢(Z,)(wJ w')<6(m+n)B;. (4.26)
Combining (4.7) and (4.26), we have
v(f)(e(z'))34(2] ,-‘ 2 o V() (rPE, +rPE J"
e, onf-2r27 (‘)(ffzd? ¢§ e C 5;-)>W
zi ! rj(l)E11+rJ(2)E22 '
p+1/2
R T

Since
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p+1/2

e (1_rj(1))(1_rj(2)) L L 2p+1 0
!IJ;TJ) —a(l—ril)j —a[l—rgz)) a+1l l
[1—9 : rj(l)j(l—e : rj(z)]

This proves that |C,f;|l | -0 as j— oo, which means that the sequence of functions {fj (Z)} defined
by (4.19) satisfies condltlorf(lll)
If A, <1, then by Lemma 3.6, there exist @ o

and @, in R, (m,n) suchthat

2
{ )Ezz 7B

E11+r

CD() E, +r? ) 0 and <1) (rj(l)Ell):O (i=12,).

E11+r )Ezz (

1
(i)
" En) Pew ey then ¥ e Aut(%®, (m,n)) and

) (¢(Z j )) D(rYE, + r(z)Ezz)z r )Eu =r,E,, where 1, =r".
(

Denote g; =f;o¥ D where the sequence of functions {fj} is the sequence obtained in Part A. We have

If we denote ‘P()( )= (

r

'_'¢(zj)(""j""’j )= Hyog(2) (J‘{'(j) (#(z7))w!, 3¢ (g(27))w! ) =He, (VV.V'), (4.27)
where w' =J¢(Z’)u’ and Vj=J‘P(j)<¢(zj))wi.Now(4.27) implies that

V(82w _[v(1,)(rE)v]

H«;lﬁ/(zzj)(wj’wj) ) H:rl/én(vj’vj)
and
e V(9))(9(27)39(2 )0’
||C¢gj||ﬂq2det(l—ZZT)q‘ ’ (000 ‘
_ e V(g.)(¢(z‘))w‘
(- e
o2\
() - fl>2)p‘v(fi>(riEll)Vj\
go(l r; I H:fén(VjIV])
It is clear that ||m(1 r()) 1—/102 # 0, and combining the discussion in Part A,we can get that
joo

|C¢gj|| . »0 as j— oo;that means the sequence of functions {gj} satisfies condition (I11).
We ;firove that the sequence of functions {gj} is a bounded sequence in ﬁp( (m, n))
Since W' (Z)e Aut(R, (m,n)),

det(1-2Z7)"Q, (z)=det(1-2Z7)"Q, (¥ (2)).
So ||gj||ﬂp :||fj||ﬁp is bounded.

Next we prove that {gj} converges to 0 uniformly on any compact subset E of R, (m,n). Let
pll) (2)= (‘I‘fl(j) (Z)) , then by the definition of ¥ and Lemma 3.6, we can get a calculation directly

1<l<m,i<k<n

that
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i 7,2
v (Z2)=z, +r?) 278
1-r?z,,

Itis clear that W!!(Z) converges uniformly to ‘I’M(Z):zllJr/lolzli in R}, (m,n).
%22

Since 4, <1 and A4E, +4,E, € R, (m,n), there similarly exist W(Z) in Aut(%, (m,n)) such that
W (4B +4Ey ) = 4E,; . and the first component of W(Z) is W,,(Z). It is clear that W, (Z) is holo-

morphicon R, (m,n). Let M, =szuE|‘Pll(Z)| =W, (Z,) for Z,eE.For ¥(Z)e Aut(R,(m,n)), we know

M, =¥,,(Z,)<1. We may choose M, >0 suchthat M, <M, <1.Thus, for j large enough,
“Pﬂ) (ZO)‘ <M, and from this it follows that

1-[¥i) (2)) >1-M, >0

by the definition of {fj (Z)} . 9;(2)=f oyl (Z) converges to 0 uniformly on E .
Hence {gj (Z)} satisfies conditions (I)--(111), and this contradicts the compactness of C, .
Part C: Assume that

¢(Zj)= rj(k)Ekk' j=12,-

k=1

W(P;e)re 1> rj(l) Z.rj(z) > rj(m) >0. For ¢(Zj)—>6€R, (m,n) we may assume that rj(l) -1, rj(z) > A,

r —> A, a j—oo,where 4 <1, k=2,3,---;m.

Just as in Part B, we can use the same methods to prove the conclusion. And for 4, =1, k=2,3,---,m, we
may only show the sequence of functions { f; (Z)} which satisfy the conditions (1) - (I11) here.
Using formula (1.1), we have

H g (W w!) = (m+ n)widiag((l_ o )’l ,(1_,1_(2) )*l ,m,(l_rj(m) )1]

=] =] =] —7
xdiag((l—rj(l)z) ’(1_rj(2)2) ,_,.,(1_rj(m)2) ’LN,leJ

2 12 12 Zn: |Wj |2
o, W e e A
=(m+n) > ) +

2 2 2
k:l(l—rj(k)z) 1ék<lsm(1—rj(k) )(1—rj(') ) i 1-r

Denote
i i|? i?
Agk)_ |Wkk|2 > k=1-m, B\ = |Wl((:<|)z+|WIk|(|)2 , 1<k<l<m,
= =
> [wif
C(k) _ l=mu —, k Zl, .m
1-r
then,
i) = S (k) IR N (3
H i (W’W )—(m+n) DA+ D BT+ CH (4.28)
lﬁ(Z) k=1 1<k<l<m k=1

We construct the sequence of functions { fj} according to the following three different cases.
Case 1. If for some j,

max (AP, B(Y,C{) < A, ik =1m, 1<s<t<m,
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then set

t9(z)=1 - , k=L-,m. (4.29)
p

Case 2. If for some j,

max(AEi),B(.s‘),C(.i))sB(."'), i=1---,m, 1l<s<t<m, 1<k<l<m,

then set

1 1

[(a-2)0-2)]" Hl_ ), ](1_ ), HWZ L a0)

fj(kl) (2)= (eimkjl Zy + e Zy )

Case 3. If for some j,

max(AEi),BE“),CE”)SC("), i,k=1---,m 1<s<t<m,

then set

fj(k)(Z):[Zn:emkj'Zk.j 5 ( ) , k=1---m. (4.31)

Using the same methods as in Part A and Part B, we can prove the sequences of functions {fj (Z)} defined
by (4.29)-(4.31) satisfying conditions (1) - (111).

Part D: In the general situation. For ¢ Zj)eiﬁ’, (m,n), there exist an mxm unitary matrix P, and an
Nxn unitary matrix Q; such that

P (¢(ZJ))QJ. :kZ;rj( E,.

We may assume that P, >P and Q; >Q as j-—o. Let P, :(p'j(') and P=(pk'); P, > P means
that pi' - p“ as j—oo forany 1<k, I<m.Let ¥!'(Z)=PZQ; and ¥(Z)=PzQ for
Ze‘)%l(m,n).Ofcourse,Pis an mMxm unitary matrix, Q isan Nnxn unitary matrix, and {‘P(”(Z)} con-
verges uniformly to ¥ (Z) on %R, (m,n).

Let g,(Z)=f (‘{’j (Z)) j=1,2,--- where the sequence of {fj} are the functions obtained in Part C.

From the same discussion as that in Part B, we know that {gj (Z)} satisfies conditions (1) and (I11). For the
compact subset E = %R, (m,n), W(E) isalso a compact subset of R, (m,n), so we can choose an open sub-

set D, of %, (m,n) suchthat ¥(E)c D, c D, %, (m,n). Since {\P(j)(z)} converges uniformly to
¥(Z) on ®,(m,n), it follows that ¥'(E)c D, as j— . Since {fj(Z)} tends to 0 uniformly on D, ,

we know {gj(Z)} tends to 0 uniformly on E . Thus, {gj} satisfies condition (11). o
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