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ABSTRACT 

By using the complete discrimination system for the polynomial method, the classification of single traveling wave so-
lutions to the generalized Kadomtsev-Petviashvili equation without dissipation terms in  is obtained. 2p 
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Kadomtsev-Petviashvili Equation without Dissipation Terms 

1. Introduction 

In mathematics and physics, the Kadomtsev-Petviashvili 
(KP) equation is a partial differential equation to describe 
nonlinear wave motion. It can be used to model water 
waves of long wavelength with weakly nonlinear restoring 
forces and frequency dispersion [1]. A number of modified 
forms of the KP equation have been studied [2-6]. In 
[1,7], the generalized Kadomtsev-Petviashvili equation 
without dissipation terms was given by  

 2 23p p
t x x xxx yyu du u bu u u k u

x


    


0,    (1) 

where , ,d b   are constants, 0  , . Some of 
modified form of the KP equation can be written in the 
form of Equation (1). 

0p 

Many reliable methods are used in the literature to 
examine the completely integrable nonlinear evolution 
equations. The Hirota bilinear method, the Bäcklund 
transformation method, the inverse scattering method, 
the Painlevé analysis, the simplified Hirotas method 
established by Hereman et al. [8], and others were 
effectively used in [1-13]. Liu proposed a complete 
discrimination system for polynomial method [10-13]. 
That is, by using of elementary integral method and com- 
plete discrimination system for polynomial, the single 
wave solutions can be classified for some nonlinear 

differential equations which can be directly reduced to 
integral forms. 

In this paper, we consider the following generalized 
Kadomtsev-Petviashvili equation without dissipation 
terms in 2p  : 

 2 4 23t x x xxx yyu du u bu u u k u
x


0,    


    (2) 

where , ,d b   are constants, 0  . By using Liu’s 
complete discrimination system for polynomial method, 
the classification of single traveling wave solutions to 
Equation (2) is obtained. 

2. Classification of Solutions to Equation (2) 

Take wave transformation  

   , ,u x y t u   and lx my t     

into Equation (1), the following nonlinear ordinary 
difference equation is given: 

 2 4 3 2 23 0l u dlu u blu u l u k m u       ,        (3) 

Integrating Equation (3) once with respect to  , and 
setting the integral constant to zero yields:  

 2 4 3 2 23 0l u dlu u blu u l u k m u      .        (4) 

Integrating Equation (4) twice yields  
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where  are arbitrary constants. 01

Case 2.1. , we substitute the transforma- 
tion  

,aa

1 0 0a a 

   
1

2u v   

into Equation (5) yields  
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where 
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Let  

 2 22
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and   is the discriminant of the polynomial  F v . 
According to the classification of the roots of  F v , 
there are three cases to be discussed. 

Case 2.1.1. 0  , when 0
b


 , 

from Equation (6), we have  
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Case 2.1.2. 0  , when  
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b


 , 

from Equation (6), we have  
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When  

0
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 , 

from Equation (6), we have 
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where  

25 30d l

b
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25 30d l

b
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Case 2.1.3. . From Equation (6), we have  0 
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Case 2.2. . Substituting the transforma- 
tion  

1 00, 0a a 

   
1

2u w   

into Equation (5) yields  
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b w

l wF w
 


    




   (16) 

where  
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15 3 15
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     (17) 

If  

0
b


 , 

we take  

1 ; if 0
b


 , 

we take 1  . The complete discrimination system for 
the third order polynomial  F w  is given as follows:  
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According to the classification of the roots of  F w , 
there are four cases to be discussed. 

Case 2.2.1. . Then  10, 0D  

     2
F w w w    , 

where ,   are real constants,   , and 0.   If 
1 , when    and w  , or when 0   and 
0w  , from Equation (16), we have  
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when   , and , or 0w  w   , we have  
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when 0   , we have  
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If ,when 1     and w  , or when 0   and 0w  , from Equation (16), we have  

  
   

2
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15
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,
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when   , and , or 0w  0  , and w  , we have  

Open Access                                                                                            APM 



X. H. DU, H. XIN 4 

  
   

2

02
2 ln

15

w wb

wl

   
    


,

          


               (23) 

when 0   , we have  
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Case 2.2.2. . Then  10, 0D  
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where   is a real constant. If , when 1 w  , and 
, or 0w  w  , and , we have  0w 

 

2

22 2
0

15
,

15

l
w

b l

  
   

 
  

     (25) 

If , when 1  w  , and , or 0w  w  , and 
, we have  0w 

 

2

22 2
0

15
,

15

l
w

b l

  
   

 
 

      (26) 

Case 2.2.3. 10, 0D   . Then 
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where , ,    are different real constants. If 1 , 
when , or 0w  w  , we have  
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If , when 1  0 w   , and w   , we have  
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where  
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Case 2.2.4.   0, 

     2 2F w w w        , 

where , ,    are all real constants, and 0, 0   , 

and 0  . we have  
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Case 2.3. 1 00, 0a a  . The Equation (5) becomes  
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The complete discrimination system for the fifth order 
polynomial  F u  is given as follows:  

3
2 3, 40 12D q D rq q    ,

3

 

4 2 2 2
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According to the classification of the roots of  F u , 
there are seven cases to be discussed. 

Case 2.3.1. 5 4 3 20, 0, 0, 0D D D E    , then  

       2 2
,F u u u u       

, ,   and   are real numbers, 0.      From 
Equation (32), we have  
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Case 2.3.2.  
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Case 2.3.3.  
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Case 2.3.4.  
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Respectively, from Equation (32), we have  
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where the signs of 1  and 2  must satisfy  
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where we renew to queue the orders of 1 2 3, ,   , and 
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The signs are the same as the ones in Equation (45), 

furthermore,  
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Now we renew to queue the orders of   and 0, and 
denote 1 2  , we have  
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where the positive sign and negative sign for  must 
satisfy  

1m

1 0
bm


 , 

other signs are the same with the former. 
From the description above, using elementary integral 

method and complete discrimination system for polyno- 
mial, we have obtained the solutions of Equations (6), 
(16) and (32) that can be expressed by elementary func- 
tions and elliptic functions. What’s more, some solutions 
are explicit, but some solutions are implicit functions. So 
we can write concretely the exact traveling wave solu- 
tions of Equation (5) in some special cases. They are 
omitted for simplicity. 

3. Conclusion 

Using the complete discrimination system for polynomial 
method, we have obtained the classification of single 
traveling wave solutions to the generalized Kadomtsev- 
Petviashvili equation without dissipation terms in 2p  . 
With the same method, some of other evolution equa- 
tions can be dealt with. 
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