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ABSTRACT 

In this paper, Let R is a ring, G be a finite group of ring automorphisms of R. R*G denote the skew group ring of R un-
der G. We investigate the right p.q.-Baer property of skew group rings under finite group action, Assume that R is a 
semiprime ring with a finite group G of X-outer ring automorphisms of R, then 1) R*G is p.q.-Baer if and only if R is 
G-p.q.-Baer; 2) if R is p.q.-Baer, then R*G is p.q.-Baer. 
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1. Introduction 

Throughout this paper all rings are associative with iden-
tity unless otherwise stated. Let R is a ring, for a non-
empty subset X of a ring R,  (resp.,  Rr X  Rl X ) 
denote a right (resp.,left) annihilator of X  in R. A ring R 
is called right principally quasi-Baer (simply, right p.q.- 
Baer) if the right annihilator of every principal right ideal 
of R is generated, as a right ideal by an idempotent of R 
in [1]. A left principally quasi-Baer (simply, left p.q.- 
Baer) ring is defined similarly. Right p.q.-Baer rings 
have been initially studied in [1]. For more details on 
(right) p.q.-Baer rings, see [1-6]. A ring R is called 
quasi-Baer if the right annihilator of every right ideal is 
generated, as a right ideal by an idempotent of R in [7] 
(see also [8]. A ring R is called biregular, if for each 
x R ,  for some central idempotent RxR eR e R . 
We note that the class of right p.q.-Baer rings is a gener-
alization of classes of quasi-Baer rings and biregular 
rings.  denote a fixed maximal right ring of quo-
tients of R. Recall from [9] an idempotent e of a ring R is 
called left (resp., right) semicentral if  (resp., 

) for all . Equivalently, an idempotent e 
is left (resp., right) semicentral if and only if  (resp., 

) is a two-sided ideal of R.  (resp., 

 Q R

ae eae

eR
ea eae

Re

a R

 lS R  rS R ) 
denote the set of all left (resp., right) semicentral idem-
potents. An idempotent e of a ring R is called semicentral 

reduced if    0,lS eRe e . According to [2] a ring R is 
called semicentral reduced if , i.e., 1 is a 
semicentral reduced idempotent of R. 

   0,1lS R 

If R is a semiprime ring and I is a two-sided ideal of R, 
then    R Rl Ir I . For a right R-module M and a sub-
module N of M, we use ess

R R  and N M den
R RN M  

to denote that NR is essential in MR and NR is dense in MR, 
respectively. 

Let R is a ring,  Aut R

R G

 denote a group of ring auto-
morphisms of R, G be a subgroup of . Aut R

g G Rg


The skew group ring R*G is defined to be 

  

,a b R

  

with addition given component wise and multiplication 
given as follows: if   and ,g h G , then  

  ab bh a

0

1g gh Rgh


 b . 

We begin with the following example. 

2. Preliminary 

Example 2.1 There exist a ring R and a finite group G of 
ring automorphisms of R such that R is right p.q.-Baer 
but R*G is not right p.q.-Baer. 

Let 
F F

R
F

 
  
 

 with a field F of characteristic 2,  

then R is right p.q.-Baer. Define  Autg R  by 
1

1 1 1 1

0 0 1 0 0

a b a b
g

c c

 
1

      
 


      
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
        

. 
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Since characteristic of F is 2, Then . 2 1g 
Now we show that R*G is not right p.q.-Baer. Con-

sider the right ideal  1 g R G   of R*G generated by 
1 g . By computation, we have 

   1

,
0 0 0 0

R Gr g R G

x y x x y
g x y F

  

          
   





G

 

Suppose that 

     1R Gr g R G e R      

for some . Note that the idempotents of 
R*G are 0, 1. 

2e e R G  

1 0

0 0 0 0

a b
g

   
   

   
, 

0 0

0 1 0 0

a b
g

   
   

   
 

with . Since ,a b F    1R Ge r g R G   , the only  

possible choice for e is 0. Thus if R*G is right p.q.-Baer,  

then it follows that . This is a     1 0R Gr g R G   
contradiction. Therefore R*G is not right p.q.-Baer. Also 
we see that R*G is not left p.q.-Baer. 

Definition 2.2 Let R be a semiprime ring. For 
 Autg R , let 

   for each  g
g mx Q R xr rx r R     , 

where  is the Martindale right ring of quotients 
of R (see [10] for more on ). We say that 

 mQ R
 mQ R g  is 

X-outer if 0g  . A subgroup G of  is called 
X-outer on R if every 1

 Aut R
g G   is X-outer. Assume 

that R is a semiprime ring, then for Aut g R , let 

    for each  g
g x Q R xr rx r R     . 

For  Autg R , we claim that g g  . Obviously 

g g   . Conversely, if gx  then xR  Rx . There 
exists den

R RI R  such that xI  R . Therefore , RI R
  den

RR
RI R , and xRI RxI R . Thus  mx Q R ,  

hence gx  . Therefore g g  . So if G is X-outer on 
R, then G can be considered as a group of ring automor- 
phismms of  and G is X-outer on  Q R  Q R . For 
more details for X-outer ring automorphisms of a ring, 
etc., see [10, p. 396] and [11]. 

We say that a ring R has no nonzero -torsion (  is a 
positive integer) if  with  implies 

n
R

n
a0na  a 0 .  

Lemma 2.3 Let R be a semiprime ring and G a group 
of ring automorphisms of R. 

1) [11,12] If G is X-outer, then every nonzero two- 
sided ideal of R*G intersects R nontrivially. Hence R*G 
is semiprime. 

2) [11] If G is finite and R has no nonzero G -torsion, 
Then R*G is semiprime. 

For a ring R, we use  to denote the center of 
R. 

 Cen R

Lemma 2.4 For a semiprime ring R, let G be a group 
of X-outer ring automorphisms of R. 

Then    Cen Cen GR G R  . 
Proof. 
Let  1 2 21 Cn na a g a g Ren       with ia R , 

1 the identity of G, and ig G . 
The 

  1 2 2 1 2 21 1n n n na a g a g b b a a g a g          

for all b R . So 1 1a b ba ,  
for all b

2
2 2 , , ngg

n na b ba a b ba 
R . Since G is X-outer, it follows that 

2 0a na   . Hence 1 11a a R    . Also since 
b b   for all b R , we have that  1 Cena R .  

Note that for all g G ,  implies  
1g 1 1 1a g ga a g

1

1 1
ga a


 . So . Thus  1 Cena   G
R



G

  Cen Cen
G

R G R  . 

Conversely,  is clear.    Cen Cen
G

R R 

Therefore    Cen CenR G R  G . 
Lemma 2.5 [13,14] Let R be a ring and G a finite 

group of ring automorphisms of R. Then  Q R G  is 
the maximal right ring of quatients of R. 

Assume that a group G of ring automorphisms of a  

ring R is finite. Then for , let a R   g
g G

tr a a


  ,  

which is called the trace of a. Also for a right ideal I of R, 

the right ideal    g
g Gtr I a a I   of RG is called  

the trace of I. Say  1, , nG g g  . we put   1 nt g g  
R G  .  For  r R  and 1 1 2 2 n na g a g a g       

R G   with ia R , define 1 1
1

n ng gg g
n . 

Then R is a right R*G-module. Moreover, we see that 
r r a r a   

G R GR
R   is an  G,GR R  -bimodule. 
Lemma 2.6 Assume that R is a semiprime ring and  

  e B Q R
ess

. Let I be a two-sided ideal of R such that  

R RI eR  and  Rr I fR  with  f B R . Then 
1e f  . 

Proof. Since R is semiprime, 

    1ess
R R R R

I l r I f R   . 

Thus 

   1ess
R R

I f Q R  . 

As ess
R RI eR ,  ess

R R
I eQ R . We note that e and  

1 f  are in   B Q R . So we have that . 1e f 
Proposition 2.7 [1] Let R be a semiprime ring. Then 

the following are equivalent. 
1) R is right p.q.-Baer. 
2) Every principal two-sided ideal of R is right essen-

tial in a ring direct summand of R. 
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3) Every finitely generated two-sided ideal of R is 
right essential in a ring direct summand of R. 

4) Every principal two-sided ideal of R that is closed 
as a right ideal is a direct summand of R. 

5) For every principal two-sided ideal I of R,  Rr I  
is right essential in a direct summand of R. 

6) R is left p.q.-Baer. 
For a ring R with a group G of ring automorphisms of 

R, we say that a right ideal I of R is G-invariant if 
gI I  for every g G , where  g gI a a I  . As-

sume that R is a semiprime ring with a group G of ring 
automorphisms of R. We say that R is G-p.q.-Baer if the 
right annihilator of every finitely generated G-invariant 
two-sided ideal is generated by an idempotent, as a right 
ideal. By Proposition 2.7, if a ring R is semiprime p.q.- 
Baer with a group G of ring automorphisms of R, then R 
is G-p.q.-Baer. 

A ring R is called right Rickart if the right annihilator 
of each element is generated by an idempotent of R. A 
left Rickart ring is defined similarly. A ring R is called 
Rickart if R is both right and left Rickart. A ring R is said 
to be reduced if R has no nonzero nilpotent element. We 
note that reduced Rickart rings are p.q.-Baer rings. 

We put 

  
   there exists  with 

p

ess
R R

B Q R

e B Q R x R RxR eR   
 

Let  be the subring of  generated by  ˆ
pqBQ R

B Q R
 Q R

R and .  p

Lemma 2.8 [15] Assume that R is a semiprime ring. 
Then: 

1) The ring  is the smallest right ring of 
quotients of R which is p.q.-Baer. 

 ˆ
pqBQ R

2) R is p.q.-Baer if and only if .   pB Q R R
With these preparations, in spite of Example 2.1, we 

have the following result for p.q.-Baer property of R*G 
on a semiprime ring R for the case when G is finite and 
X-outer. 

3. Main Results 

Theorem 3.1 Let R be a semiprime ring with a finite 
group G of X-outer ring automorphisms of R. Then R*G 
is p.q.-Baer if and only if R is G-p.q.-Baer. 

Proof. Assume that R*G is p.q.-Baer. Say 

1 nI Ra R Ra R    

is a finitely generated G-invariant two-sided ideal of R 
with i . Then a R I G  is a two-sided ideal of R*G. 
Moreover, 

       1 ,nI G R G a R G R G a R G         

Note that R*G is semiprime by Lemma2.3, So Propo-

sition 2.7 yields that there exists  such 
that 

le S R G  

  ess R G R
I G e R G

G 
   . 

Since R*G is semiprime,  e B R G 
G

 by [9]. Hence  

by Lemma2.4, . First, we see that  Cene R
ess

R RI eR . For this, let 0  with rer eR  R . As 

   ess

R G
e R GI G

R G 
  , there exists R G    such 

that 0 er I G   . 
Say 1 1 n nb g b g     with  and ib R ig G  for 
1,i , .n   Then 

   1 1 n ner erb g erb g I G      . 

Hence 0 jerb I   for some , so j ess
R RI eR . As  

 G2 Cene e R  , I eRe , and so ess
eRe eReI eRe . 

Now we show that    1Rr I e R  . If 0e  , then  

 Rr I R . So we may assume that . Note that eRe  0e 
is semiprime and ess

eRe eReI eRe , and so   0eRer I  .  

Hence 

   0R ReR r I eRe r I    . 

As , I eR   1 Re R r I   . From the modular law, 

     1R Rr I e R eR r I     . 

But since   0ReR r I  , . There-
fore R is G-p.q.-Baer. 

   1Rr I e R 

Conversely, let R be G-p.q.-Baer. Take 

  pe B Q R G  . 

Then 

  Cen
G

e Q R     

by Lemma 2.4 since G is also X-outer on  as was 
noted. Also there exists 

 Q R
R G    such that 

     ess

R G R
R G R G e R G

 
   

G
 

because  Q R G  is the maximal right ring of quotients  

of R G  (Lemma 2.5) and . Say   pe B Q R G 

1 1 2 2 n na g a g a g      with  and ia R ig G  for  
1, 2, ,i n  . Then  e R G eR G    R and so ia e  

for each 1, 2, ,i n  . Consider 
1,

g
i

i g G

n

K Ra R
 

  . Then  

K is a finitely generated G-invariant two-sided ideal of  

R. Further, K eR  because . By    Cen
G

e Q R   
essthe preceding argument, we see that R RK eR . From  

the assumption, there exists    lf S R B R  such that  

 Rr K fR . Thus 1e f R  
G

 by Lemma 2.6. There-  

fore e R R   , so . From    p R G R G  B Q
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