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ABSTRACT

An hierarchical circularly iterative method is introduced for solving a system of variational circularly inequalities with
set of fixed points of strongly quasi-nonexpansive mapping problems in this paper. Under some suitable conditions,
strong convergence results for the hierarchical circularly iterative sequence are proved in the setting of Hilbert spaces.

Our scheme can be regarded as a more general variant of the algorithm proposed by Maingé.
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1. Introduction

For a given nonlinear operator 7:H — H , the follow-
ing classical variational inequality problem is formulated
as finding a point p*e D such that

<Tp*,x—p*>20, xeD.

Variational inequalities were initially studied by
Stampacchia [1] and ever since have been widely studied,
since they cover as diverse disciplines as partial differen-
tial equations, optimal control, optimization, mathe-
matical programming, mechanics, and finance. On the
other hand, a number of mathematical programs and it-
erative algorithms have been developed to resolve com-
plex real world problems.

The concept of variational inequalities plays an im-
portant role in structural analysis, mechanics and eco-
nomics. Recently, the hierarchical variational inequalities
and hierarchical iterative sequence problems have at-
tached many authors’ attention (see [2-11]).

2. Preliminaries and Lemma

It is well-known that, for any xe H , there exists a
unique nearest pointin C, denoted by £, (x), such that

P (x) = infyeH "x—y”, VxeH.

Such a mapping P. from H onto C is called the
metric projection.
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Lemma 21 (see [12]) The metric projection
P, H — C has the following basic properties:
1) P. isfirmly nonexpansive, i.e.,

(P (x)=Fe(¥).x=)
> B (x)- B (3) (Ve y e H),
and so P, is nonexpansive.
2) <x—PCx,y—PCx>S 0,forall xeH and yeC.
Definition 2.2

1) A mapping 7:H — H is said to be « -inverse-
strongly monotone if there exists « >0 such that

(Tx—Ty,x—y)Z0:||Tx—Ty||,Vx,y eH.

2) A mapping T:H > H
schitzian if

is said to be « -Lip-

||Tx—Ty||S a”x—y", Vx,yeH.

3) A mapping T:H—>H
nonexpansive if Fix(7)=® and

is said to be quasi-

||Tx—p||£||x—p||,Ver, peFix(T).

4) A mapping T:H — H is said to be strongly
quasi-nonexpansive if T is quasi-nonexpansive and
x,—Tx, >0, whenever {x } isabounded sequence in
Hand |x, - p|-|Tx, - p| >0 forsome pe Fix(T).

5) (see [13]) A mapping T:H — H is said to be
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o -demicontractive if Fix(7)=® and

<x—Tx,x—p>2 _a)"x—Tx"Z , Vx € Hp eFix(T).

Obviously, the above inequality is equivalent to
7=l <[~ pI| + o~ 1,

and it is clear from the preceding definitions that every
quasi-nonexpansive mapping is 0-demicontractive.

Lemma 2.3 (see [14]) For x,ye H and a)e[O,l],
we have the following statements:

a) |(x )<l
b) e+ <[l +2(y.y+):
c) "(1— w)x+ a)y"2

=(t-o)l + oyl -o-o)x-»"
For prove our result, we give the following lemma.
Lemma 2.4 ([11]) Let {an} be a sequence of real
numbers such that there exists a subsequence {n,} of
{n} such that a, <a,. for all ieN. Then there
exists a nondecreasing {m.} < N , such that m; — o

and the following properties are satisfied for all
(sufficiently large) numbers sequence k < N :

a, <a and o, <«

my+1 my +1°

Infact, m, =max|j<k:a <aq,
Lemma 2.5 ([11]) Assume that (
nonnegative real numbers such that

n+1 (1 }/n)an +yn5n !
where {y,} is a sequence in (0,1) and {6,} is a

is a sequence of

sequence such that (@) lim _,_y =0, Zj:l;/n =0, (b)
limsup, .0, <0.Then lim_,_ o =0.

n—»00" n

Lemma 2.6 ([11]) Let {a,} <[0,),

{a,}=[01].{5,} =
and 2 €[0,1], such that
e {a,} isabounded sequence;
w<(l-a,) a,+2a,2\a,Ja,, +ab, , for all

n~n
neN;
e whenever {a

(—o0,+00)

® a

} is a subsequence of {a,} satisfy-
a, )0, it follows that

Mk

ing liminf,__ (a, ;-
limsup, b, <0;

o lim_ =0, > a =x.
Then lim a =0.

In [11], the existence and uniqueness of solutions of
some related hierarchical optimization problems had
been discussed.

Inspired by these results in the literature, a circularly
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iterative method in this paper is introduced for solving a
system of variational inequalities with fixed-point set
constraints. Under suitable conditions, strong conver-
gence results are proved in the setting of Hilbert spaces.
Our scheme can be regarded as a more general variant of
the algorithm proposed by Maingé. The results presented
in the paper improve and extend the corresponding re-
sults in [11] and other.

3. Main Results

First, we discuss the existence and uniqueness of solu-
tions of some related hierarchical optimization problems.
Theorem 3.1 Let S,:H — H be quasi-nonexpan-

sive mappings and f,:H —>H be contractions
(i =12, m) . Then there exists a unique element
p; € Fix(S,) such that the following inequalities,

<pi -/ (pi+l)’u pi> 20,

Vu, € Fix(8,),i=12,---,m-1, O

<pm _fm (pl)’um _pm>20’

Vu, € Fix(S,,).

Proof. The proof is a consequence of the well-known
Banach’s contraction principle but it is given here for the
sake of completeness. It is known that both sets
Fix(S,)(i=12,--,m) are closed and convex, and
hence the projections P, Fin(s )( =1 2m) are well de-
fined. It is clear that the mapplng

le (S1) fi Fix(Sy) f‘Z ’

is a contraction. Hence, there exists a unique element
p, € H such that

szS fm

m

pl - (PFix(Sl) f]: 'PFiX(Sz) fé “.PFix(Sm) 'f;11 )pl

Put Pn= Fu f;npl and

pi = m(s1)f11’i+1 (=12 m-1).

Then p, e P, , DsEP

Fix(S7) Fix(
Suppose that there is an element

pl.* eFix(Sl.)(izl,Z,u-,m),

Ss) and p, = PFI'X(Sl)flpz'

such that the following inequalities,
(P =fi(pra) = pi)=0,
Vu, € Fix(8,),i=12,---,m~1,
(po= 1 (1)t =13} 20,
Vu, € Fix(S,,).
Then p, =P /P and
p = Fix(sl)flp,-ﬂ( i=12,,m-1).
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Hence,
p; ( ix(S1) fgl szSz fZ ’ F1
This implies that p, = p, and hence
p2 :p;"”’pm :p:z'

This completes the proof. [
For mappings S, f, : H - H, suppose i=12,---,m,

we define the iterative sequences {xff)} by

o) )i

x((f) eH,
x = (1-a,) 50 +a, £ (S47),

) = (1-a,) S £ (5,09,

;(11 _pl“"'a

<(l-a,)

O]
xfl'j]?l) = (1_ an )SmflxlEM%l) + anf)‘nfl (Smxflm) ) '
A =(1-a,) 8,5 +a,f, (S0,
xsi-)l_pl S(1_6¥n) 1 Ell)_pl +an

A (Szx;(f) ) - D

fl(Sx ) fl(pZ
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where «, €[0,1] satisfy lim,, «, =0, z::oan =00,

Theorem 3.2 For every ie {1,2,~~,m}, let S;:H—>H
be strongly quasi-nonexpansive mappings such that
1-S, are demiclosed at zero and let f, be contrac-
tions with the coefficient a . Then the iterative se-

quences {x,(f)} by (2) strong converge to p,, respec-

tively, where p, is the unique element in Fix(S,)
verifying (1).

Recall that a mapping 7:H — H is demiclosed at
zero iff Tx=0 whenever x, —x and Tx, —»0.

We split the proof of Theorem 3.2 into the following
lemmas.

Lemma 3.3 The sequences {x,(f)} (i=1,2,---,

bounded.

Proof. Since S,:H — H be strongly quasi-nonex-
pansive mappings, f, be contractions with the coef-
ficient & . Then we have

m) are

)|+ a.| A (p.)-p

S(l 1)” (zl)_pl ()_pz +a, (pz pl"
<(1-a,) " - pf+a aH - po|+a,||f(p2)- 2o
Similarly, we also have
xz(ﬂ_pz S(1_0‘;1) (2)_172 —p3“+06 (p3 pz"
A = pa|<(-a,) 5" - ||+ a5 = pl+ e | s (20) = Pl
= pa| < (1-a,) 5" - p, —p1H+a o (21)= ol

It implies that

m

S| <l-0-@)a ]S} |
+a, ([4(p2) = 2l +]112 (s

)= ol + e [ foa () = o+ 1 15 (2) = )

gm%
i=1

By induction, we have

m

.| 15 (22)= 2|+ 1 (Ps) = o |+ + | frra (2

pH’"ﬁ (pz)_p1||+||fz (pa)_pz||+"'+||fm_1(pm)_

1-a

)= Puca|+] (Pl)—Pm"}

zau%km{iW—
i=1 i=1
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1-a

demmrm@

APM



618 H.B. LIU

for all neN. In particular, sequences {x,(,’)} are  bounded.

_ Lemma 3.4 For each n e N, the following inequality
bounded. Consequently, the sequences {Sl.xfj)} are also holds:

(-

[t p, [ <(-a,) (x4 =) 20,8 [ = p ¥ = s
+2a, <fm71 (pm ) = Puar xgiq;l) - pm—1> )

s = pal < @=a, [ = p| +2a,6|n = pi||xzs = pal| + 22, (£ ()= Pasiiis = p)-

h-pf <@

+ 20(”0?")65,2) - p2||||x’(‘1+)1 - P1|| +2a, <f1 (pz ) - Pl,xﬁ)l - p1> )

®)

Proof. Since

2
xﬁlfl -

<|@-a,)(sx pl) +2<a (5 (5:57) = ) 5 p1>
<(1-a,) |5 ) +2a, <f1(SZX,(,2))—f1(P2)axn1 p1>+2a VAVARYBARY
<(1-a,) |(sa —pl) +2a, | £1(82647 )= £ (2 )| |5 - s
~a, ) [ —pl) +20,8[$,27 = py| |2 -
+2a,(fi(p,) = poalh = 1)+ 20, ( £1(p) = prdil = py)
<(1-a, P [(x —pl) +20,8|x? - py| ¥ - pi|+ 20, ( £,(p2) - P12 - ).

Similarly, we also have

2~ oo <(-a, P+ . )| 20,80 - pul|s o]+ 21, (£ ()~ P02~ ).
‘xf,"ﬁfl) ~DPua 2 < (1_an )2 (xfzm_l) _mel) 2 + zan&“xr(l'n) = Pu XET{” ~DPua

+2a, <fm l(pm) Pua x(mf) P 1>
[ pm|| (1-a,) | —pm|| +2a a“x = pi|[xra = |+ 20, (A ()= o xia = Pa)-

By Lemma 3.3, we give following result,

3= p[ 42 = g+ [ = p, ” (1-a,) ((x(l)—pl)2+ (x,(,z)—pz)2+-' +(+ )—pm)z))
+20,6 |7 = o |2~ o]+ [ —pZHH = ol = - (4)

+2a, (<fl (pz)_pll x£z+)1 —p1> <fz (pa)_pz’ £,+)1 —p2> <fm (Pl)_pmlxyfl) _pm>)'

Lemma 3.5 If there exists a subsequence {nk} of {n} such that

Copyright © 2013 SciRes. APM
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-l )20

x;(1?+l — P ” -

liminf, (Z"Ll

then

k—o i=1

Proof. In fact, we first consider the following assertion;

()

Osliminf[Z‘

k—ow

+(1—ank)

= Ilmlnf Z(”Sx -p, ”

k—o

; f,f’)—pm +a

By Lemma 3.3, the sequences
{ 3 (0 + x,(l?—p“}(izl,Z,---,m)

are bounded. So we have
2
-

Iimkﬁw( Si ;(1;)
(i=1,2,---,m)
Since S, (i=1,2,3) are strongly quasi-nonexpansive,
lim, ., (S50 =x8))=0,(1=1,2,+-,m).
by the iteration scheme (1), we have

|Imkﬁm(x()—x()+l) 0,(i=12,,m).

It follows from the boundedness of x } that there
such that

@ —
xnk pi

l

s

exists a subsequence {xﬂ1 } {x()}
@) K

X, }A x and

1
tim( £ (p2)- poal) - )
i A
imsup( £, (p,)~ P, x,) —
k—o
:Ilrknjtjp<ﬁ(172) by X (k)+1 pl>

Since 7-S, is demiclosed at zero, it follows that
x € Fix(S,). Itfollowsfrom (1), we get

!Lr2<fl(p2) b1 X, ()—P1>
=(fi(p,)-Prx—p1)<0.
Consequently,
timsup, ../, (p,)~ pux -~ py) <0.

By using the same argument, we have

Copyright © 2013 SciRes.

m=1 X
Iimsup(z<f, (p,-ﬂ)—p,-,x,(,’khl - D

]<Iiminf

Sioa, ot

m (Slexzn))_pl -

—p H )< Ilmsupz

k—o =1

619

>+<fm ()= P X —pm>j <0. ()

2

+(Z “f 1% +l))_pi+l

xgy—p,.u }
!-n[ <0

lim SUp<fz (p3) Py X

k—o

(A)l p2><0

Iimsup<f3(p4) Py X, — P3> 0,

k—o

I“:LS:Ip<f;n (pl)_pm’xglnll _pm> S O
Therefore, we obtain the desired inequality (4).
Next, we prove Theorem 3.2. Denote

m
a,=>y

i=1

. 2
x;(;) 4

b= 2(<f1 (pZ)_plvxnlar)l_p1>
(£(p3) - poalh =, )+
<fm (pl)_p ;(1”11)

(
1)

+
+
Since

-

x)(11+)1 - Pl“ + “x,(f) —Ds “

x;(12) _pz“

= p, “

1 1
m ) 22 " ) 22
S(S-of [ Ebe-of .
i=1 i=1
We have the following statements from Lemma (3.3),

Lemma(3.4) and Lemma(3.5):
e {a,} isabounded sequence;

2
) a,+2a,A\a,Ja,, +ab,
nenN,;

o whenever {a, | is a subsequence of {a,}
satisfying I|m|nfk%( a—a, )>0, it follows that

|-z

- P
for all

* a,, < (1_ a,
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limsup, ,.b, <0.

Hence, it follows from Lemma 2.6 that a«, >0, It
implies that

2

lim,_,, >" (X~ p,|" =0.

This means that

lim (i):pl. (i:1,2,-~~,m).

n—x% X

The proof of Theorem 3.2 is completed. (1
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