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ABSTRACT 

An hierarchical circularly iterative method is introduced for solving a system of variational circularly inequalities with 
set of fixed points of strongly quasi-nonexpansive mapping problems in this paper. Under some suitable conditions, 
strong convergence results for the hierarchical circularly iterative sequence are proved in the setting of Hilbert spaces. 
Our scheme can be regarded as a more general variant of the algorithm proposed by Maingé. 
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1. Introduction 

For a given nonlinear operator , the follow- 
ing classical variational inequality problem is formulated 
as finding a point  such that 

:T H H

*p D
*, * 0, .Tp x p x D    

Variational inequalities were initially studied by 
Stampacchia [1] and ever since have been widely studied, 
since they cover as diverse disciplines as partial differen-
tial equations, optimal control, optimization, mathe- 
matical programming, mechanics, and finance. On the 
other hand, a number of mathematical programs and it- 
erative algorithms have been developed to resolve com- 
plex real world problems. 

The concept of variational inequalities plays an im- 
portant role in structural analysis, mechanics and eco- 
nomics. Recently, the hierarchical variational inequalities 
and hierarchical iterative sequence problems have at- 
tached many authors’ attention (see [2-11]). 

2. Preliminaries and Lemma 

It is well-known that, for any x H , there exists a 
unique nearest point in , denoted by , such that  C  CP x

  inf ,C y HP x x y x H    . 

Such a mapping  from CP H  onto C  is called the 
metric projection. 

Lemma 2.1 (see [12]) The metric projection 
 has the following basic properties: :CP H C

P1)  is firmly nonexpansive, i.e.,  C

   

     2

,

, ,

C C

C C

P x P y x y

P x P y x y H

 

   
 

and so  is nonexpansive. CP
2) , 0C Cx P x y P x   , for all  and Hx Cy . 
Definition 2.2 
1) A mapping  is said to be :T H H  -inverse- 

strongly monotone if there exists 0   such that  

, ,Tx Ty x y Tx Ty x y H ,      . 

2) A mapping  is said to be :T H H  -Lip- 
schitzian if  

, ,Tx Ty x y x y H     . 

3) A mapping  is said to be quasi- 
nonexpansive if 

HHT :
 TFix    and 

 , ,Tx p x p x H p Fix T      . 

4) A mapping  is said to be strongly 
quasi-nonexpansive if 

HHT :
T  is quasi-nonexpansive and 

0n nx Tx  , whenever  nx  is a bounded sequence in 
H and 0n nTx px p     for some  p Fix T . 

5) (see [13]) A mapping  is said to be HH :T
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 -demicontractive if  Fix T    and  

 1 2
, ,

2
Tx x p x Hp Fix T


     x Tx


x . 

Obviously, the above inequality is equivalent to  
2 2

Tx p x p x Tx     2
, 

and it is clear from the preceding definitions that every 
quasi-nonexpansive mapping is 0-demicontractive. 

Lemma 2.3 (see [14]) For  and Hyx ,  0,1 , 
we have the following statements: 

a) ,x y x y ; 

b) 
2

2 ,x y x y y x    ; 

 
   

2

2 2

) 1

1 1

c x y
2
.x y x

 

   

 

      y
 

For prove our result, we give the following lemma. 
Lemma 2.4 ([11]) Let  n  be a sequence of real 

numbers such that there exists a subsequence  in

m 

 of 
 such that  for all . Then there  n 1n

 m 
i i

exists a nondecreasing , such that   
n   i N

k N k

and the following properties are satisfied for all 
(sufficiently large) numbers sequence : Nk 

1 1and .kk k km m m       

In fact, .  1max :k jm j k     
 n

j

Lemma 2.5 ([11]) Assume that   is a sequence of 
nonnegative real numbers such that  

 1 1n n n n n        , 

where  n  is a sequence in   and 0,1 n  is a  

sequence such that (a) lim 0n n  , 
1 nn



  , (b)  

lim 0sup nn   . Then lim 0n n 
   0,a  

. 
Lemma 2.6 ([11]) Let ,  n

       0,1 , ,n nb      

and  0,1  , such that 
  na  is a bounded sequence; 

  2

1 11 2n n n n n n n nb , for all 

n N ; 

a a a a     

 whenever    is a subsequence of  na  satisfy- 
kna

fing , it follows that   1limin 0
k kk n na a   

lim 0sup
knk b  ; 

 lim 0n n 
limn na

, n
   . 

1n
Then . 


0

In [11], the existence and uniqueness of solutions of 
some related hierarchical optimization problems had 
been discussed. 

Inspired by these results in the literature, a circularly 

iterative method in this paper is introduced for solving a 
system of variational inequalities with fixed-point set 
constraints. Under suitable conditions, strong conver-
gence results are proved in the setting of Hilbert spaces. 
Our scheme can be regarded as a more general variant of 
the algorithm proposed by Maingé. The results presented 
in the paper improve and extend the corresponding re-
sults in [11] and other. 

3. Main Results 

First, we discuss the existence and uniqueness of solu-
tions of some related hierarchical optimization problems. 

Theorem 3.1 Let  be quasi-nonexpan- 
sive mappings and 

:iS H H
:if H  H  be contractions 

 1,2, ,i   m . Then there exists a unique element 
 i ip Fix S  such that the following inequalities, 

 
 
 
 

1

1

, 0,

, 1,2, , 1,

, 0

.

i i i i i

i i

m m m m

m m

p f p u p

u Fix S i m

p f p u p

u Fix S

   


,

  


  

 

 
        (1) 

Proof. The proof is a consequence of the well-known 
Banach’s contraction principle but it is given here for the 
sake of completeness. It is known that both sets 

   1,2, ,iFix S i m   are closed and convex, and 
hence the projections  iFix S  are well de- 
fined. It is clear that the mapping  

 1, 2, ,P i m  

f     1 21 2 m mFix S Fix S Fix SP f P f P     

is a contraction. Hence, there exists a unique element 

1p H  such that  

      1 21 1 2 m mFix S Fix S Fix Sp P f P f P f p     1 . 

Put   1mm mFix Sp P f p  and  

   
1 1 1 1,2, , 1i iFix Sp P f p i m   . 

Then  22 Fix Sp P ,  33 Fix Sp P  and .  11 1Fix Sp P f p 2

Suppose that there is an element  

   * 1,2, ,i ip Fix S i m   , 

such that the following inequalities, 

 
 
 
 

* * *
1

* * *
1

, 0,

, 1, 2, , 1,

, 0

.

i i i i i

i i

m m m m

m m

p f p u p

u Fix S i m

p f p u p

u Fix S


   



,

  


  

 

 

m

 

Then  and   
* *

1mm Fix Sp P f p
* *

   
1 1 1 1, 2, , 1i iFix Sp P f p i m   . 
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 1

m

Hence,  

      1 2

* *
1 1 2 m mFix S Fix S Fix Sp P f P f P f p    

*

. 
 

This implies that  and hence  1p p 1
* *

2 2 , , m mp p p p  . 

This completes the proof.  
For mappings , suppose , , :i iS f H H 1,2, ,i  

we define the iterative sequences   i
nx  by 

 

        
        

        
      

0

1 1 2
1 1 1 2

2 2 3
1 2 2 3

1 1
1 1 1

1( )
1 1

,

1

1

1 ,

1

i

n n n n n

n n n n n

m m
n n m n n m m

m m
n n m n n m n

x H

x S x f S x

x S x f S x

x S x f S

x S x f S x

 

 

 

 





 
  



 

   

   




  


  



,

,

,

m
nx

    (2) 

where 0,1n  m 0n n satisfy li  
0 nn



,  


. 

Theorem 3.2 For every 1,2, ,i m  :S H H, let i  
be strongly quasi-nonexpansive mappings such that 

iI S  are demiclosed at zero and let i  be contrac- 
tions with the coefficient 

f
̂ . Then the iterative se-  

  i
nx  by (2) strong converge to , respec-  quences ip

ip  itively, where  is the unique element in Fix S

:T H H
0Tx

 
verifying (1). 

Recall that a mapping  is demiclosed at 
zero iff   whenever nx x 0

   1, 2, ,i
n

 and Tx . n

We split the proof of Theorem 3.2 into the following 
lemmas. 

Lemma 3.3 The sequences  x i m 

:S H H

 are 

bounded. 
Proof. Since i  be strongly quasi-nonex- 

pansive mappings, if  be contractions with the coef- 
ficient ̂ . Then we have 

 
        

          

       

       

1 1 2
1 1 1 1 1 2 1

21
1 1 1 2 1 2 1

1 2 2 1 2

1 2
1 2 1 2 1

1

1

ˆ1

ˆ1 .

n n n n n

n n n n

n n n n

n n n n n

x p S x p f S x p

x 2

1 2

n

n 1

p f S x f p f p p

x p p f p p

x p x p f p p

 

  

  

   

      

      

     

      

S x 
 

 
Similarly, we also have 

 
         

         
         

2 2
1 2 2 3 2 3 2

1 1
1 1 1 1

1
1 1 1

ˆ1 ,

ˆ

ˆ1 .

n n n n n n

m m m
n m n n m n n m n m m

m m
n m n n m n n n m m

x p x p x p p p

x p x p x p f p

x p x p x p f p

  

   

   



 
   



       



       


      



3 f

11 ,mp 
 

p 

 
It implies that 

 

     

        
         

1
1 1

1 2 1 2 3 2 1 1 1

1 2 1 2 3 2 1 1 1

1

ˆ1 1

max , .
ˆ1

m m
i i

n i n n i
i i

n m m m m m

m
m m m m mi

n i
i

x p x p

f p p f p p f p p f p p

f p p f p p f p p f p p
x p

 






 

 

 



      

        

           
  

 







 

 
By induction, we have 

 

           1 2 1 2 3 2 1 1 1
1 0

1 1

max , ,
ˆ1

m m
m m m m mi i

n i i
i i

f p p f p p f p p f p p
x p x p
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for all . In particular, sequences Nn   i

nx  are 

bounded. Consequently, the sequences  are also    i
i nS x

bounded. 
Lemma 3.4 For each Nn , the following inequality 

holds: 

 

              

          

   

     

22 21 1 2 1
1 1 1 2 1 1 1 2 1 1 1

22 21 1 1
1 1 1 1 1

1
1 1 1 1

2 22 1
1 1 1 1

ˆ1 2 2 ,

ˆ1 2

2 , ,

ˆ1 2 2

n n n n n n n n

m m m m
n m n n m n n m n m

m
n m m m n m

m m m
n m n n m n n n m n m

1

1

,x p x p x p x p f p p x

x p x p x p x p

f p p x p

x p x p x p x p f p p

   

  



   

  

  
    


   

 

         

      

  

        



p

1, .m
n mx p










 

        (3) 

 
Proof. Since 

 

          
          

               

           

      

221 1 2
1 1 1 1 1 2 1

2
1 2 1

1 1 1 2 1 1 1

22 1 2 1
1 1 1 2 1 2 1 1 1 2 1 1 1

22 1 2 1
1 1 1 2 1 2 1 1

22 1 2
1 2 2

1

1 2 ,

1 2 , 2

1 2

ˆ1 2

n n n n n

n n n n n

n n n n n n n

n n n n n

n n n n

x p S x p f S x p

S x p f S x p x p

S x p f S x f p x p f p p x p

S x p f S x f p x p

x p S x p x

 

 

  

 

  





 



     

     

        

     

      

1,

       

            

1
1 1

1 1
1 2 1 1 1 1 2 1 1 1

22 1 2 1 1
1 2 1 1 1 2 1 1 1

2 , 2 ,

ˆ1 2 2 , .

n

n n n n

n n n n n n n

p

f p p x p f p p x p

x p x p x p f p p x p

 

   



 

 



     

        

 

 
Similarly, we also have 

 

              

          

   

     

22 22 2 3 2
1 2 2 3 1 2 2 3 2 1 2

22 21 1 1
1 1 1 1 1

1
1 1 1 1

2 22 1
1 1 1 1

ˆ1 2 2 ,

ˆ1 2

2 , ,

ˆ1 2 2

n n n n n n n n

m m m m
n m n n m n n m n m

m
n m m m n m

m m m
n m n n m n n n m n m

2

1

,x p x p x p x p f p p x

x p x p x p x p

f p p x p

x p x p x p x p f p p

   

  



   

  

  
    


   

 

         

      

  

        



p

1, .m
n mx p










 

 

 
By Lemma 3.3, we give following result, 

 

                
            
            

2 22 2 2 21 2 1 2
1 1 1 2 1 1 2

2 1 2 2 1
2 1 1 2 1 2 1 1

1 2
1 2 1 1 1 2 3 2 1 2 1 1

1 )

ˆ2

2 , , , .

m m
n n n m n n n m

m
n n n n n n n m

m
n n n m m n m

x p x p x p x p x p x p

x p x p x p x p x p x p

f p p x p f p p x p f p p x p



 



  

  

  

               
 

         

         

 





2

    (4) 

 
Lemma 3.5 If there exists a subsequence  of  kn  n  such that 
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   2 2

11 1
liminf 0

k k

m mi i
k in ni i

x p x p  
 

i   
    , 

 

then 
 

       
1

1 11 1
1

, , 0limsup
k k

m
i m

i i i i m m mn n
k i

f p p x p f p p x p


  
 

 
.      

 
                (5) 

 

Proof. In fact, we first consider the following assertion: 
 

          

        

   

1 22 2 2 1
1 1 1

1 1 1

22 2

1 1
1

2 2

1

0 liminf liminf 1

1

liminf limsup

k k k k k k

k k k k k

k k

m m m
i i i i

n i n i n i n i n i i n i
k ki i i

m
m m i

n m n m n m n n i
i

m
i i

i n i n i
k ki

x p x p S x p f S x p

S x p f S x p x p

S x p x p

 

 




     



 

             
       

      
 

  



  



 2 2

1

0.
k k

m
i i

i n i n i
i

S x p x p
 

     
 

 

 
By Lemma 3.3, the sequences  

      1 1, 2, ,
k k

i i
in nS x p x p i m      

are bounded. So we have  

   

 

2 2

lim 0,

1, 2, ,

k k

i i
k i n i n iS x p x p

i m


     
 

 
. 

Since  are strongly quasi-nonexpansive,   1, 2,3iS i 
 


    lim 0, 1,2, ,

k k

i i
k i n nS x x i m     . 

by the iteration scheme (1), we have  
      1lim 0, 1,2, ,

k k

i i
k n nx x i     m . 

It follows from the boundedness of   1

knx  that there  

exists a subsequence   1

kl
nx  of  1 knx  such that 

  1

kl
nx x  and 

   

   

   

1,p x1 2 1 1

1
1 2 1 1

1
1 2 1 11

lim

,limsup

, .limsup

kl

k

k

n
l

n
k

n
k

f p p

f p p x p

f p p x p








  

  

 

 

Since 1I S
 1

 is demiclosed at zero, it follows that 
x Fix S . It follows from (1), we get 

   

 

1
1 2 1 1

1 2 1 1

lim ,

, 0

kl
n

l

.

f p p x p

f p p x p


 

   
 

Consequently, 

   1
1 2 1 11, 0limsup

knk f p p x p    . 

By using the same argument, we have 

   

   

   

2
2 3 2 21

3
3 4 3 31

1 1

, 0limsup

, 0limsup

, 0limsup

k

k

k

n
k

n
k

m
m m mn

k

f p p x p

f p p x p

f p p x p










   



  





,

,

.  



 

Therefore, we obtain the desired inequality (4). 
Next, we prove Theorem 3.2. Denote 

  2

1

:
m

i
n n

i

a x p


  i  

   
   

    

1
1 2 1 1 1

2
2 3 2 1 2

1 1

: 2 ,

,

, .

n n

n

m
m m n m

b f p p x

f p p x p

f p p x p







  

   

  



p

 

Since 

       

   

   

2 1 3 2
2 1 1 3 1 2

1
1 1

1 1
2 22 2

1
1 1

,

n n n n

m
n n m

m m
i i

n i n i
i i

x p x p x p x p

x p x p

x p x p

 




 

     

  

         
   
 



 

We have the following statements from Lemma (3.3), 
Lemma(3.4) and Lemma(3.5): 
  na  is a bounded sequence; 

  2

1 11 2n n n n n n n nb , for all 

n N

a a a a     
 ; 

 whenever  kna  is a subsequence of  n  
satisfying 

a
 1k kk n na a   liminf 0 , it follows that 
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lim 0sup
knk

Hence, it follows from Lemma 2.6 that , It 
implies that  

b  . 
0na 

  2

1
lim 

lim

0
m i

n n ii
x p


  . 

This means that  

   1,2, ,i
n ix p i m   . 

The proof of Theorem 3.2 is completed.  
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