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ABSTRACT

In this paper, we determine the second Hochschild cohomology group for a class of self-injective algebras of tame rep-
resentation type namely, which are standard one-parametric but not weakly symmetric. These were classified up to de-
rived equivalence by Bocian, Holm and Skowronski in [1]. We connect this to the deformation of these algebras.
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1. Introduction

This paper determines the second Hochschild cohomol-
ogy group for all standard one-parametric but not weakly
symmetric self-injective algebras of tame representation
type. Bocian, Holm and Skowronski give, in [1], a classi-
fication of these algebras by quiver and relations up to
derived equivalence. The algebras in [1] are divided into
two types, namely the algebra A=A(p,q,k,s2)
where p,q,s,k are integers such that p, q>0, k>2,
1<s<k-1, ged(sk)=1, ged(s+2,k)=1 and Ae
K \{0} and the algebra A=T" (n) where n>1. Thus
the second Hochschild cohomology group will be known
for all the classes of the algebras given in [1]. We remark
that an algebra of the type A(p,q,k,s,4) is never iso-
morphic to an algebra of the type T (n) as their stable
Auslander-Reiten quivers are not isomorphic. We refer
the reader to [1] which gives precise conditions for two
algebras of the same type A(p,g.k,s,4) or I (n) to
be isomorphic.

We start, in Section 2, by introducing the algebras A,
for both types, by quiver and relations. Section 3 of this
paper describes the projective resolution of [2] which we
use to find HH? (A) In the third section, we determine
HH?(A) for the algebra A=A(p,0,k,s1), consid-
ering separately the cases 1<s<k-2 and s=k-I.
The main result in this section is Theorem 4.9, which
shows that HH?(A) has dimension 1 for 1<s<k-1.
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This group measures the infinitesimal deformations of
the algebra A ; that is, if HH?(A)=0 then A has no
non-trivial deformations, which is not the case here. We
include, in Section 4, Theorem 4.10 where we find a
non-trivial deformation A, of A associated to our non-
zero element 7 in HH?(A). This illustrates the connec-
tion between the second Hochschild cohomology group
and deformation theory. In the final section, we deter-
mine HH?(A) for A=TI"(n). The main result in Sec-
tion 5 is Theorem 5.4 which shows that dimHH?(A)=2.
The results we found in this paper are in contrast to the
majority of self-injective algebras of finite representation
type (see [3]). Since Hochschild cohomology is invariant
under derived equivalence, the second Hochschild co-
homology group is now known for the standard one-pa-
rametric but not weakly symmetric self-injective algebras
of tame representation type which are derived equivalent
to the algebra of the type A(p,q,k,s,4) or T"(n).

2. The One-Parametric Self-Injective
Algebras

In this chapter we describe the algebras of [1]. We start
with the algebra A =A(p,q,k,s,4). Let K be an alge-
braically closed field and let p,q,s k be integers such
thatp, q>0, k>2, 1<s<k-1, ged(sk)=1,
ged(s+2,k)=1 and 2eK\{0}. From [I, Section 5],
A(Pp,q.k,s,4) has quiver Q(p,q.k,s):
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where, for any ie{l,2,-
the path

j %00 (i,l) ()] (i,2) %(i.2) [r]
%(i.g-1) \(i,q) “(i,q) si—1,

and i—1—-———>i+s denotes the path

Bo .1 B1 .o B2

E si+s

Then A =KQ(p,q.k,s)/1(p,q.k,s,1) where
I (p,a,k,s,4) is the ideal generated by the relations

° ﬂ ﬂSH ,for i=1,2,---,k,

1

% 0 i-10) > for i=1,2,---,k,

Wiy g BB 'ﬂipa(s+i,0)a(s+i,1)'”a(swti,t')’

for t' :0,1,---,q, i=1,2,---.k,

* ﬂijﬂij” .”ﬁipa(SJri,O)a(SJri,l) “.as+| .q) ﬁsﬂ Oﬂsﬂ
Bys for [=0Leep, i=1,20k,
¢ XXy |qﬂ ,B]' 'ﬂip ﬂl+1 IBHI
ﬂ(H_])Pa(s+i+1‘0)a(s+i+l‘l)"'a(s+i+l,q)’ for i=2 s -,k,and
0%y 1qﬂ10ﬁ1 : ﬁlp_ﬂ’ﬂzﬂﬂzl"'
0 (520X sian) " Y siag» Where A€ K\{0].

Next we describe the algebra A =T"(n) For n>1,
I'"(n) is given in [1, Section 6] by the quiver Q(n):
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5 2 n+1
B1 ay
P
1
71
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n—3 n n+ 2
Bn-3 Bn-1
n—2——sn-—1
n—2

Then A =KQ(n)/I(n)
generated by the relations:

= (BB B) =17
2) By =0, By =0,
ap =0, 1p =0,
o, =0, y,7,=0,
3) for all je{2,--~,n},
BB BB BB By =0

Note that we write our paths from left to right.

In order to compute HH?(A), the next section gives
the necessary background required to find the first terms
of the projective resolution of A as a A,A -bimodule.
Section 4 and Section 5 uses this part of a minimal pro-
jective bimodule resolution for our algebras to determine
the second Hochschild cohomology group and provides
the main results of this paper.

where 1(n) is the ideal

1) e,

3. Projective Resolutions

To find the second Hochschild cohomology group
HH? (A), we could use the bar resolution given in [4].
This bar resolution is not a minimal projective resolution
of A as A,A -bimodule. In practice, it is easier to
compute the Hochschild cohomology group if we use a
minimal projective resolution. So here we use the projec-
tive resolution of [2]. More generally, let A =KQ/I be
a finite dimensional algebra, where K is an algebraically
closed field, @ is a quiver, and | is an admissible ideal
of KQ. Fix a minimal set f?> of generators for the
ideal 1. Let xe f®. Then x= ZJ LGy A
that is, X is a linear combination of paths & ---a,---a,
for j=1,---,r and Cj € K and there are unique verti-
ces v and W such that each path a;---a, - J starts at
v and ends at w for all j. We write o Xl): v and
t(x):w. Similarly o(a) is the origin of the arrow a
and t(a) isthe end of &

In [2, Theorem 2.9], it is shown that there is a minimal
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projective resolution of A as a A, A -bimodule which
begins:

3 s 2 & 1 A (1] g
> 0Q -0 ->Q -Q 5>A-0,
where the projective A,A -bimodules Q°,Q',Q*
given by
= @ AV®VA,

V,vertex

Q= @ Aoa)®

a,arrow

Q> = @ Ao(X)® t(x)A,
xef?
and the maps g,A, A and A are A,A -bimodule
homomorphisms, defined as follows. The map
9:Q° — A is the multiplication map so is given by
VOVI> V. Themap A:Q' —Q’ isgivenby

o(a)® t(a) - o(a)®o(a)a-at(a)® t(a)

for each arrow a. With the notation for xe f?
above, the map A :Q’ — Q' is given by

(@ ) > X0, (8 ey D)

where & - 8); ® ;- ) € Ao( J)® t( J)A
In order to descrlbe the prOJectlve bimodule Q’ and

the map A, inthe A, A -bimodule resolution of A in
[2], we need to introduce some notation from [5]. Recall
that an element ye KQ is uniform if there are vertices
v,w such that y=vy=yw. We write o(y): v and
t(y): w. In [5], Green, Solberg and Zacharia show that
there are sets f" in KQ, for n>3, consisting of uni-
form elements ye f" such that

y=erfn’l XrX :Zzefn’Z ZSZ

for unique elements r,,S, € KQ such that s, €. These
sets have special properties related to a minimal projec-
tive A-resolution of A/t, where t is the Jacobson
radical of A. Specifically the n-th projective in the
minimal projective A-resolution of A/t is
@ f”t(y)A

In particular, to determine the set f*, we follow ex-
plicitly the construction given in [5, §1]. Let f' denote
the set of arrows of Q . Consider the intersection

(@, f7KQ)N(@®; 1
some $® f3*KQ) We then discard all elements of the
form f° that are in @, f | ; the remaining ones form

precisely the set f°.
Thus, for ye f° we have that

ye(@ifiZKQ)ﬂ(@jfjll

=>f’p=>qf’r with p,q.,r eKQ, such that
p.q are in the ideal generated by the arrows of KQ,

t(a)A, and

given

). Set this intersection equal to

) . So we may write
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and p, unique. Then [2] gives that
Q’ :@yengQ(y)®Q(y)A and, for ye f’ in the
notation above, the component of A3(o(y)® t(y)) in the
summand Ao(f?)®t(f’)A of Q is
ofy)®p —q @,

Applying Hom(—,A) to this part of a minimal pro-
jective bimodule resolution of A gives us the complex

O—)Hom(QO,A)iHom(Ql,A)g

Hom(Qz,A)iHom(Q3,A)

where d, is the map induced from A for i=1,2,3.
Then HH?(A)=Kerd,/Imd, .

Throughout, all tensor products are tensor products
over K, and we write ® for ®, . When considering
an element of the projective A, A -bimodule
Q' =@ arrow Ao(@)® t(@)A it is important to keep track
of the individual summands of Q'. So to avoid confu-
sion we usually denote an element in the summand
Ao(a)®t(a)A by A®, A" using the subscript “a” to
remind us in which summand this element lies. Similarly,
an element A ® A" lies in the summand
Ao(f 2)@ t(f 2JA" of Q® and an element 2@, A" lies
in the summand Ao(f ‘)@ t(f A of Q. We keep this
notation for the rest of the paper.

4. HH?(A) for A=A(p.q.k,s,2)

We have given A=A(Pp,q.k,s,4) by quiver and rela-
tions in Section 2. However, these relations are not
minimal. So next we will find a minimal set of relations
f? for this algebra.

Let
f1,21 = 0% 1qﬂ10i81 v ﬂ
_ﬂﬂzoﬂzl ) ﬂzp (120X (sr2) " Ksr2,a)°
fli:ai)all . |qﬁﬁl 'Bip
- ﬁm ﬂm ‘ﬁ(i+1)pa(s+i+1,o)a(s+i+1,1) " sring)
forie{2,---,kj,
=B, ﬂs+|+1 forie{l,....k},
ffi = % 10) forie {1,...,k},
4| i IB ﬂwl ’ 'ﬂipa(s+i,0)a(s+i,l)
a(5+i’q)ﬂ(s+i)oﬂ(s+i)l '“ﬂ(s+i)j
where | e{l,..., p—1} andie{l,....k},
fs%i,t' = & )i v+ ﬂ ﬂl

ﬂ P (s+i 0 s+|,1) o 'a(s+i,t’)

where t'e{l,...,q-1} andie{l,....k}.
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The remaining relations given in Section 2 are all
linear combinations of the above relations. For example,
the rc?latlon ,Bio/?il---/%pa(sﬂ’o)a(sm)~--a(s+iﬁq)ﬂ(s+i)0 can
be written as

Xi 0)Ki11) " K- lqﬂ- Oﬂ
ﬂ(i—l)p 1 f2| 1 f12| 1 (S+i)0.

So this relation is in | and is notin 2.
Proposition 4.1 For A=A(p,q.k,s.1) and with
the above notation, the minimal set of relationsis

f? { f12| ’ f22| ) f32| ) f42| i fizlt }

In contrast to the majority of self-injective algebras of
finite representation type, we will show that the algebra
A(p.a.k,s,4) has non-zero second Hochschild coho-
mology group (see [3, Theorem 6.5]). Recall that
HH?(A)=Kerd, /Imd, , where

d,: Hom(QZ,A) - Hom(Q3,A)

isinducedby A:Q —» Q.
First we will find Imd, . Since

d,: Hom(Ql,A) - Hom(Qz,A) ,

(e @, e

=f (q ®a(1’0) e(l,l))a(u) ...a(l’q)ﬂlo BBy +a(1’0)f (e(u) ®

let f eHom(Q',A)
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so that d,f = fA,. We consider

the cases 1<s<k-2 and s=k-1 separately.

Let 1<s<k-

2 and

f(q ®ﬂ(i+1)0 e|+1 ) Cl ﬂ|+1

f (e(i*'l)j ®ﬂ(i+1)l (i+1 J"'j C2|+1 Jﬁ|+1

for je{

e P

1}

f (e(iﬂ)p ®'B(| )P s+|+1) CZ|+1 pﬁl_*1

f (q ) e(i,l)) =Gi%i0)

f (e(i,t') ®a(

fort'e {l

o5

i) e(i,t’+1) ) =Civ i)
- 1} and

where all coefficients ¢,c,;,,; for je{l,--,p-1},

Coi1,p2 G Cap
find fA,.

First we have,

ay 12) ) %1,

for t’e{ .

6\‘{(1,q)ﬁlo ﬂll o

P

B

1}, ¢, , € K. Now we

T a0 Xy Yo (% q) Q)ﬂlo BBy &0 % "'a(l,q)f (eK ®ﬂlo & )ﬁll B

+0:(1’0)a(1,1) "'a(1,q)ﬁlo f (e11 ®ﬂ11 elz )ﬂlz "',Blp +---+a(1’0)0{(11

1q ﬂlﬂﬂll o ﬁlp 1 (elp ®ﬁ1

es+1 )

_l[f (el B, & )ﬂf  Bo Cernn)Hsian) " Fsag) TPy (ez1 O, & )ﬂZZ P K520 H(se20) T H(sr2)

+- +ﬂ20 ,le . :B2p 1 (ezp ®/? es+2) (s+2,0)a(s+2,1) : s+2q ﬁzo ﬂzl : ﬂ2p f ( S+2 ”(s+2‘0) qs+2,l))a(5+2,l) "’O!(Sﬁ)q)

+,320 ﬂzl Py Xsin) (e(s+21 Asen) qu,z))a(su,z) g T

+ﬂznﬁ21 Py Xsi2,0)X(se21) T K s, (e(5+2q (s+2,0) &n )J

= (%,1 FC TG O TG G, ) X1.0)%0) ”'a(1,q)ﬂlo

ﬂﬂ ...ﬂlp
-4 (cl,l +Cpy +ot C2,2,p TCsp TCgpny T F C4,s+2,q )ﬂzo ﬂzl o ﬁzp
X(s12,0)¥(s+2.1) " X(sv2.0)

:(C3,1+C4,11+ +C41q+cl,k+C2,l‘1+.”+C2‘lp Cll 221

“Cup 7GsG '”_C4,s+2,q)a(1,0)a(11 ’ lqﬂIOﬂl'”

Similarly for ie {2,--‘, k} ,

Copyright © 2013 SciRes.
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fA (Q ® Csi ) (C3,i FC Gy G TG G G G T T G

C35+|+1 4s+|+11 ”'_C4,s+i+1,q)a(i,0)a|1 h |qﬁ ﬂl ﬂip'

For the remaining terms, fA, (o(x)@X t(x)): 0 where
fzzl,ffl,fflj,fji,t,} forall iell, k!, Pl &p ©p & )= Coivoh 0
]e o, p—1} and t'e{l,---,q-1}.
Let f (Q ®a(iw0) e(i,l)) =G )
G =G +C, t-+C o +CG ;i +C;, + f( ® ) c
i) Do Qi) )= v iy
+Cip G — G T G i) Dy G W)
C2»s+|+1 4s+|+11 '"_C4,s+i+1,q for t E{l,”',q—l} and
for i=1,---.,k and f(e(i,q)®a(i,q)ﬂ ) Chia@iq) T hi% ol B
P =0 FgPo B By where for all ie{l,---,k} the coefficients ¢;,c,;,,
for i=1,"',k. for je{l,..., p_1}$cz,i+l,p C3,i"c4,i,t’ for
Thus for ie{l,---,k} and 1<s<k-2,fA is given  t'€{l,.0-1},C;;4 d; arein K.
by Then we can find fA, for ie{l,---,k} in the same
way as the previous case to see that it is given by
fAz (& ®f2i es+|) Cn’pi’
’ (q ®f2 e, ) C.p, where G, p, as above,
fAZ (eip ®fz| (s+i+1)1)=0’
(%8, 9)=0
A, (e(i,q) ®f32.i G- ) =0,
fAz(e('q ® 3 S ) Ay 100 B0 By - Bp G105
fﬁi(ej ®, ( )M) 0 where je{l,---, p—1} and h
i Qi (s+i (

, fA, J®f4IJ » J+1) 0 where je{l,---, p—1} and
fA, (e(i,t’) ®f52“, e(s+i,t'+l)j =0 where t'e {1"“’q_1}’

where ¢,,--,c. e K with £,c.=0.So fAZ(‘?uw@f;u, eﬂ—m’n)):(’Wheret'e{l"”ﬂ—l}a
dimImd, =k-1.
For s=k—1, we let where C,...,G,d, ,....d, e K with ¢ ¢ =0. Note
that there is no dependency between the d,;. So
f(q ®, €. j C, ﬁm dimImd, .=.2k—1. .
() Proposition 42 If 1<s<k-2, we have dimImd, =
k—1. If s=k-1,wehave dimImd, =2k-1.
f(e(m)j ®, €. J+1j szjﬁm Next we find Hom(Qz,A) and again consider the
('fl) two cases separately. Let 1<s<k-2 and
for je{l,---, p-1}, heHom(Q*,A). Then h is defined by
o(12)@ t(2 ) diay o @uqBoB B, for i efl2, k)
else — 0,

where d, e K.
Therefore dimHom(Qz,A) =k. Hence, dimKerd, <k.
For s=k-1 and i e{l,2,~-,k}, h is given by

0(f1§)®t(fll)'_>da|0 ﬁ ,81 ﬂip +di’a(i,O)a(i,l)"'a(i,q)»
0<f3?i )® t(fﬂ )H di”a(i,q)ﬁioﬂil . 'ﬂip (=W
else > 0,

Copyright © 2013 SciRes. APM
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where d,,d,,d, are in K for ie{l, kj.
dimHom(Q",A) = 3k.

Proposition 4.31f 1<s<k-2,we have
dimHom(Q*,A)=k. If s=k-1,

dimHom(Qz,A) =3k.

Thus

(f11)®t(11) g ®e, 1 P Q0@

463

Corollary 44 1f 1<s<k-2, we have dimKerd, <k.
If s=k-1, dimKerd, <3k.

In order to find Kerds and hence determine HH 2(A) we
start by giving a non-zero element in HH 2(A) for all s.

Proposition 45 Define h e Hom(Q*,A) by
BBy

ﬂlp = P

else — 0.

Then h isin Kerd,.
Proof. We note that p, #0 so h isanon-zero map.
To show that h e Kerd, we show that h A =0. First,
observe that ,01 =0 and po =0. Hence
ot =0. Similarly we )have tp, =0.

Recall that Q° =] ] ef;Ao( )®t(y)A where

y=>f CP = D q,f/r, and pu,qu are in the ideal
generated by the arrows. For ye f? the component of

Al(y)®H(y) in Aolfy)ot(f7)n s

Z(O(y)®fuz pu _qu ®fuz ruj‘
Then

hA (o(y)®t(y))

ZZu(h(O(y)@?f& pu)—quhl(o(ff)cafuz (1

Thus

oo, ) |

As p, isin the arrow ideal of KQ, pp, € pit=0.
So we have h(o(y)® p,)=0. Similarly

hl(qu ®,1,)=0 as qof, etpf, =0. Therefore

hA(y)®t(y)=0 forall yef® so hA =0. Thus
h e Kerd, as required.

Theorem 46 For A=A(p,a,ksA) where p,q
are positive integers, k>2, 1<s<k-1 with
gcdgs+2,k)=1:gcd(s,k) and AeK\{0}, we have
HH? (A)#0.

Proof. Consider the element h +Imd, of HH?(A)

s+1,0)

if l‘u2 ffl
otherwise.

PPy
0

=1 e

1001y B0 By By X0 @iy

fiy = fﬁ“(k,o)“(k,l) + BBy P

0%y
fZ%i:fliﬂiOﬂil_a( 0¥ ﬂﬂln.ﬁpl 2|ﬂ1—

@y ﬂ—

f231 = fl,zlﬂloﬁll ~ 0K

.|:3

3t

BB,

Copyright © 2013 SciRes.

"Xy g-1) f3?1a(k,1) =

.

= fS?i,t’a(i—l,tUrl) =iy fien € 8i1)KQ8&_ 1,2y Where Pe{l,-

where h is given as in Proposition 4.5 by

(f11)®t(|1) e®e,, = p,

else — 0.
Suppose for contradiction that h €Imd,. Then
hl(el® s+1)_ fAZ(el®es+l) So /01 Cl'pl al’ldSO
¢ =1.Also h(g®e sﬂ)— fA (6 ®e,;) where
i 6{2 ,k}. Then 0= Cpl, where | e{Z ,k}. But

this contradicts having X! ¢, =0. Therefore h ¢ Imd,,
that is, h +Imd, #0+Imd,. So h +Imd, is a non-
zero elementin HH? (A).o

Note that we can also define maps h :Q> — A by

(f1|)®t(f1|)'_>a(|0) ﬂ ﬂl' 'ﬁip

else — 0.

=P

for i=2,---,k. However, h,h,,---,h  all represent the
same element h +Imd, of HH?(A).

As we have found a non-zero element in HH?(A)
we know that dimHH? (A) >1. In the case
1<s<k-2 we have the following result, the proof of
which is immediate from Proposition 4.2, Corollary 4.4
and Theorem 4.6.

Proposition 4.7 For A=A(p,q.k,s 1)
1<s<k-2,wehave dimKerd, =k and
dimHH? (A) =1.

For the case s=k-1, we need more details to find
Kerd, . Following [5] we may choose the set f* to
consist of the following elements:

{f3 2,12 fm}

where

Liv "2, "3t

where

iq-1) fS%ia(i—l,l) = i) ISP KQg; ) wherei e {2, -, k},

X1,0) fi €8 KQe(k,z)’

f4|+11 cgKQe, wherei € {2, k},

= lﬁzof“leelKQez,

.k} and t'e{l,---,q-2},
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f33,i,q71 = fS?i,q—la(i—l,q) ~ i g fS?ia(i—l,l) Ti-1,0) ﬂ Oﬁ ﬂ 1P =700 X2.q) f1,21 € qi,q—l)KQQ—z
wherei e{1,3,---,k,}

f3 2,g-1 =4 fs 2,0-1%1.q) ~ F(2.0-1) f3 2% Hg) ﬂloﬂll a ,3 = "%0.0-)%2.q) f1,21 € e(z,q—l)KQQU

fxuq f; i) (i—l,q)ﬂ(i_l)oﬂ(i_l)l "':B(i_l)pa(ifz,o)_a( i.q) f12| 1%(i-2,0) BB 'ﬂipa(i—l,o)a(i—l,l).“a(i—l,q—l)f;i—l
e e(i,q)KQe(i-z,l) where i e {1,3, e, k},

f33,2,q fs 2% X g) ,B ﬁl a k0) ~ Xa.q) f1 1¥k.0) X2.q) ﬂzoﬂzl a 1.0%11) " Fag) f;l € e(z,q)Kqu,l)’

fo = fai lﬁ (i) =B f42,i,j+1 €€, KQe(i_])(m) wherei € {1,---,k} and ] e{l, e, p-2),

fip = ffi’p_lﬂ(i_l)p =B £28, Bl @y g = B B fi ce,,KQg. , wherei e{l,3,---,k},

forp = Faap Bo =B f) e B 0@y Ag = B, plﬂzpflz1 ce KOs,

f p= fz|ﬂ1 B 0%y X ﬂ(i-n“ +B, flﬁ_lﬂ(i_l)0 :ﬂipa(i—l,o)a(i-l,l)'"a(i-1,q)ﬂ(i_1)0ﬂ(i_l)l "'ﬂ(i,l)(FH) 2
€e KQe Ly wherele{13 k},

forp= ffiﬁil B @y lq/; ﬁp O “3 0@y U BB+ By £2 ce,KQe,.

Thus the projective bimodule Q° is Dyers Ao(y)® t(y)A

k q-2
= @i:ll:(Aq ®f13_i e(i—l,Z)A) (—B(Aq ®f§i eizA) t=1 (Ae(i,t’) ®f3%i", e(i—l,t’+2)A)
p-2
®(Ae(i,q—l) ®f33,i,q71 Q—ZA)®(Ae(i,q) ®f33,i,q e(i—2,1)A)@ (Ae ®f4| i e(i,l)(HZ)A)

@(Aei(p,l) ®f43_i‘p71 eHA)eB(Aeip ®f£i,p e(H)lA)]

Now we determine Kerd, in the case s=k-1. Let heXKerd,, so heHom(Qz,A) and d;h=0. Recall that
for ie{l,---,k}, h isgivenby

o(flzi )® t(flzi )'_) d'aio i) i,q)ﬁioﬁil "'ﬁip"‘ di’a(i,())a(i,l)”'a(i,q)’
(f3|)®t(f3|)'_)d O ﬁ ﬂl ﬂipa(i—l,o)

else — 0,
where d,,d..d. arein K.

Then for ie{l,---,k}, we have hA (q ®, e(i_l,z))

= h(q ®ffi Q—l)a(i—l,o)a( ﬂm Oﬂm . ﬂl+1)pa(i,0)a(i,1)"'a(i,q—l)h(e( )® & 11)) a(i,o)h(e(i,l) ®fsz“ Qi—l,Z))
:d-a. Vi), ﬁoﬁl~ B o %(i1.0)%i1) +d. %0011y Ui ) ¥i-1.0)Xi-1.1)
| ﬁ ﬂ vt By 0% LB B B i)

|+10

=0

In a similar way we can show that hA (el ® ;s & 2)) =0.
11 ’

For ie{2,---,k}, wehave hﬁg(q ® . eiz)
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:h(e®f2_ e_l)ﬂioﬁi]—a BBy B

= 4.0 %) i BBy ‘/”ipﬁio/’ilmi’“(no)
=dia ) .qﬂ By
As heKerd, wehave d, =0 for ie{2, - k}.
Similarly it can be shown that
hA_s(el ®f2§1 eIZ):dl’a(l Xy Xag) ﬂlﬂﬂl
sothat d, =0.

We also have hAj(o(ffi,t,)@f;i‘t’ t(fm)) 0 for

o2 )@t(f2 ) dixg o

else — 0,

where d;,d. for ie{l,---,k} arein K. It is clear that
there is no dependency between d.,d., and therefore
dimKerd, =2k.

Proposition 4.8 For A =A(p,q,k,s,4) and s=k-1,
we have dimKerd, = 2k.

Using Propositions 4.2, 4.7, 4.8 and Theorem 4.6 we
get the main result of this section.

Theorem 49 For A=A(p,q,k,s,4) wherep,q,s k
are integers such that p, q>0, k>2, 1<s<k-1,
ged(sk)=1, ged(s+2,k)=1 and AeK\{0}, we
have dimHH?(A)=1.

We conclude this section by giving a deformation of
A which arises from the non-zero element h +Imd,
in HH?(A).

Let 7 =h +Imd, . Recall that

el e Ay witht # 1
1

(1,1) 2!
) | |/121
(1,2) 22
(1,q) or
“(L,q) | |52p
s+1 s+2
Byo | | 1,0
1! (1,1)
ol o
12 (1,2)
Bip—1 ‘ i”(l.(rl)
1» (1,9

Copyright © 2013 SciRes.

0 BBy
(f2)®t(f3,)|—>d 0 ﬂ ﬂl- 'ﬁipa(m,o) for i 6{1,2,--',

465

(e ®, e )8+

(i+1)

ﬂh(e(iﬂ)' ®f42_i+1.| e'z)

%y %afo

ie{l,--,k} and t'e{l,---,q}. Finally, putting
hA3( (f43| J) y t(fji!j)):o

does not give any new information for ie{l,---
je{l,.p}.
Thus h is given by

5k}’

ﬂip forie{l,Z,--',k},
Kk},
P =)@y Oy g Bo By By - We introduce a new

parameter t and deﬁne the algebra A, to be the
algebra KQ/ [, where | is the ideal generated by the
following elements:

) fi-tp,f? where je {22

2) for all iefl,--k}, f2, f32,, f42I 5o s
el p-1}, teflq-1,

3) pa forall arrows awith (p,)=o0(a),

4) ap, forall arrows awith t(a)=o(p, )

We now need to show that dimA, =dimA to verify
that A, is indeed a deformation of A . First of all, it is
clear that dime;A, =dime;A for all t and for all vertices
& with e #g. Now we consider A and A, with
t=1, and A, with t=1. These projective modules
are described as follows:

sivs Where

€1A,I witht =1
1

(1,1) 2!
) | | Ba1
(1,2) 22
(L, q) 2r
X(1.9) | ‘52!)
s+1 s+2
Bio [ | a(1,0)
1! (1,1
1| [ @@
12 (1,2)
Bip—1 ‘ .‘"(qun
1» \ (LQ)
AP |
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In each case we see that
dimgA =dimgA, =2p+2q+4

for all t. Hence dimA, =dimA . Moreover, when t=1
the algebras A and A, are not isomorphic since, in
this case, A, is not self-injective. Thus we have found
a non-trivial deformation of A.

Theorem 410 With A,7, and A,
then Aﬂ is a non-trivial deformation of A . Moreover,
the algebras A and A, are socle equivalent.

5. HH?*(A) for A=T (n)

We have given the algebra A=I"(n) by quiver and
relations in Section 2. Note that these relations are not
minimal. So we will find a minimal set of relations f?2
for this algebra.

Let

2
f1,22 =, _(ﬂ1ﬂ2 ﬁn)
f221 =B, =87,
f2?3 =a,p, f2%4 =75,

2

p— 2 p—
f2,5 =a,q, f2,6 =027

f321 :ﬂjﬂjﬂ'”ﬂnﬂl'”ﬂnﬁl'"ﬂjqﬂjs
for je{2, -,n—l}.

2 _
fi=aa, -7,

can be writ-

.. . 2
The remaining relation f, ( BBy ﬁ”)
-5, ffz . So this relation is in | and is not in

tenas f)a,
f2 '
Proposition 5.1 For A=I"(n) and with the above
notation, the minimal set of relations is

2_ 2 2 2 2 2 2 2 2 2
f {f113f12’f217f22’f23’f247f25’f26’f,j

-,n—l}.

Recall that the projective Q* =@, Ao(y)®t(y)A
Thus we have

Q' =(Ag ®eA)®(Ag ®eA)O(Ag @8, A)
®(Ae,,, ®6A)®(Ag,, ®6A)
o@" " (Ae,®e6,,A).
(We note that the projective Q’ is also described in
[4] although Happel gives no description of the maps in
the A, A -projective resolution of A.) Following [2],

and with the notatlon introduced in Section 3, we may

choose the set f to consist of the following elements:
TRITR S0 AU AR AT SINE A A4S

1,4> "n+l> 'n+22 "n-1> 'm

for j =2,

with me{2,---,n-2} where

Copyright © 2013 SciRes.

as defined above,

11 = f; 1/81 o f 23 N f2?4 egKQe,
fl?Z = fl,zzﬂugz = fz?sz -5 ffz egKQe,
f1?3 = fl,zzal o f 25 =8B BB B fz%l
€ elKQemU
f1?4 = fl,zzyl - f1,2171 nt 26 =BBy BB B fz?z
€ e1 KQQ%Z’
fn3+1 =f; 25% — 2,3ﬂ2 BB By =a, f1,22 €§,,KQs,
n+2 2, 4ﬂ2 BB B — fz?(,?’z =02 f1,21 7> f1,22
€ en+2KQel7
f3 = f32n B =B fz?laz oy f1,22 e, KOs,
fn31 = f;mﬂmﬂ =P f3?m+1 €6,KQe,,,
for me{2,---,n-2}.

We know that HH?(A) =Kerd, /Imd, . First we will
find Imd,.Let fe Hom(Ql,A) and so write

f(e®, &u)=ca. f(8.®,8)=ca,
fe.®, &)=

f (& ®p i) =dBe+ B BB+ BB
for ke{l,---,n},

f(el ®, en+2)=c371:

where ¢,C,,C;,C,,d,,d; eK for ke{l,---,n}.
Now we find fA =d,f . We have

fﬁy(q ®, q)= fe®, 6. )a+af(e.,®, 8)
-1(6®, 8.,)n-7f(e.®,8)
=qa,a, +Cona, — Gy Y, — G 7,
=(c+c,—c—c,)aa,.

Also

f/%(q D, q)= fe®, 6. )n+af(e,®,8)
-f(e®, )84

BBy =B BT (6@ &) B By =froe

B (6®48)8 =B BB BT (62, 8)

=ca,a, +Ca0, —df BB B —...—d B

BB Bo=d i BB By =GB B B

=(c +¢)aa, —(2d, +...+2d,) (B, B.)
=(g+c,—2d,—...-2d,)a,.

We can show by direct calculation that
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A (o(f7)@t(f?))=0 forall 7= f2 2.
Thus fA, is given by

fA, (Q ®f]gl el)z(cl +GC -G _04)0‘10‘2 =Caa,,

fA, (q ® el):(c1 +¢,—2d, —...-2d,)a,
=C'aa,.

So dimlmd, =2.

Proposition 5.2 For A =I"(n), we have
dimImd, =2.

Now we determine Kerd,. Let heKerd,, so he
Hom(QZ,A) and d;h=0. Then h:Q> - A is given
by

hle ., el):Clel +Coa, + GBS, Prs

(2o
i

h o(ff, )®f§| t(ffl )) =0, for | e {l,--4},

®f|2 el): C,& +Cs 0, +C 5 By - By

2

h(qﬁn ®f2%5 Gl ) =G&.
h(q”z ®f2{6 G2 ) =G§,,, and

Wolt:)e,, 62))=d p, + 1,800 BB
for j e{2,--,n-1}

for some ¢,--,G,d;,df eK for je{2,--,n-1}.
Then

h(e®, e

-nfse, & )a-an(s.e, o)
+y1h(%+z ®, %)

=(ce +Caa, +C BB, B,) A =0+0
=GB+ L, BB

As heKerd, wehave ¢ =0 and c, =0.

m(g®, ol

=Ww%&ﬂ@&—%d%ﬂQ&%ﬁ%
+ﬁlh(eZ ®f£2 es)

=(c,8 +Caa, +C BBy ) BB, —0

+ ﬁl (dzﬂz + d;ﬂz : "ﬂnﬂlﬁz)
=(¢,+0) BB, +(Cs+ 1) BB+ B

Copyright © 2013 SciRes.

As heKerd; we have ¢,+d, =0 and c,+d;=0.
So d,=-¢, and d, =-c,.
Next,
hAi(el®fl?j3 le)
= h(q ®ffz el)al _alh(eml ®,22_5 en+1)

+ BBy By "'ﬂn—lh(en ®fZZJ en+1)
=(c,8 +Caa, +C BBy - B,) o —C +0
=(c,-¢)a,.

So we have ¢, —C, =0 and hence C, =c,.
W%a®@%ﬂ)
= h(el ®fl%2 el)}/l _h(q ®fl?l 31)71 _71h(Q1+2 ®,2%6 en+2)
B P Frih(6,© . )
=(C4q+Csa1az+ceﬂ1ﬂ2"'ﬂn)71
_(Clel+Cza10‘2+C3ﬁ1ﬂ2"'ﬂn)7’1_cx71+0
=(C4_C1_C8)71'
Therefore ¢, =c, as ¢ =0.
hA (6., ®, )
= h(Q'H-] ®f2%5 31+1)a2 _h(en+1 ®f233 ez)ﬂz

pfFr-ah(e®,. o)
=Ca,-0-a, (C4e1 +Cona, + G ﬂn)
=(c,—-¢,)a,.

Thus again we have ¢, =c,.
hA(e..®, )
:h(en+2®f2%4 ez)ﬂz"'ﬁnﬂl"'ﬂn

_h(Q’HZ ®f22,5 en+2)7z _72h(q ®fl?l el)

+7/2h(el®fl?2 Q)
=0-¢y, -7, (qel+czala2+c3ﬁlﬂ2---ﬂn)

+7, (C4e1 +Ca,a, + B, ﬂn)
=(-&-c+¢) 7.

As ¢ =0 above, we have ¢;=cC, as we already
know.
Also
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hA (e, ®, &
= h(en—l ®f3z.nil en)ﬁn _ﬂn—lh(en ®fZZJ € )az
+ﬂn—1ﬂnh(el ®f1?2 Q)
= (dn—lﬂn—l + dr:—lﬁn—lﬂnﬂl . ':Bn—l )ﬂn
+ BB (C4e1 +Csa,a, +Co 5 ﬁn)
= dn—lﬂn—lﬂn + dr,m—lﬂn—lﬂnﬂl . 'ﬂn—lﬂn
+ C4ﬂn—1ﬂn + C6ﬂn—1ﬂnﬁ1ﬂ2 . 'ﬂn
:(dn—l +C4)ﬁn—lﬂn
+(drt|—l +C6)ﬂn—]ﬂnﬂl '“ﬁn—lﬁn'

Sowe have d,_, =—c, and d; , =—C,.
Finally, for 2<m<n-2, we have

hA (6,®,, &)
= h(em ®f3zm €l )ﬂm+1 _ﬂmh(a'm-l ®f3%m+l sz)
= (A + ABBnss BB+ ) P

_ﬂm (dm+lﬂrml + dnlml m+1/~-mi2 "'ﬂnﬂ1 "'ﬂmﬂ )

= (dm _dm+1)ﬂmﬂm+l
+(dr'n _drVnJrI)ﬂmﬂmH ' ”ﬁnﬂl ”'ﬂmﬂml'

Therefore we have d,=d,,, and d,=d;,, . Hence
d,=-c, and d,=-c, for me{2,--,n-1} as we
have above d, =d _,=-c, and d,=d]  =-c,.

Thus h is given by

h(e1 ®f1?1 g ) =caa,,
h(q ®f1?2 q)z C,6 +Co, +C B Sy B
h(o( £2 )®f22.| o(12 )) =0, for | e {14}
(5, 6000

h(sz ®f2%6 €2 ) =C,6,,, and

h(“(ffj o 2, f(f ))
==CB = CoB By Bl By
for j e {2,"',n_1}

for some c,,C,,C;,C, € K.

Proposition 5.3 For A =TI"(n), we have
dimKerd, = 4.

Therefore

dimHH* (A) = dimKerd, —dimImd, =4-2=2

Copyright © 2013 SciRes.

and a basis is given by the maps 7, and 7, where 7,
is given by

& ®ffz &8,
€t ®f2275 €1 = Gt
€2 @2 G2 > G
o(ffj )®f32,,- t(ffj)|—> -p;, for je {2,--,n-1},

else—> 0,
71, is given by
& ®f122 € Hﬂlﬂz"'ﬂns
O(ffj)@f}gj t(f;j)H_ﬁj/”jﬂ‘”ﬁnﬂr”ﬂp
for je{Z,'--,n—l},
else — 0.

From Proposition 5.2 and Proposition 5.3 we get the
main result of this section.

Theorem 5.4 For A=T"(n) with N>1 we have
dimHH? (A) =2.

To connect this with deformations we use a similar
discussion as Section 4. We introduce the parameter t
and define the algebra A, to be the algebra KQ/ L,
where |~ is the ideal generated by the following
elements:

N £

2) 1585 B

K) I A A (RN KU S Ao

4) ffl, fzz’z, fZ}, ff4, fZS, f2?6, for j e {2,-~,n—1}.

We can show that dimA, #dimA . Hence this alge-
bra has no non-trivial deformation.

From Theorem 4.9 and Theorem 5.4 we have now
found HH?(A) for all standard one-parametric but not
weakly symmetric self-injective algebras of tame repre-
sentation type.
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