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ABSTRACT 

It has been shown by Sierpinski that a compact, Hausdorff, connected topological space (otherwise known as a contin- 
uum) cannot be decomposed into either a finite number of two or more disjoint, nonempty, closed sets or a countably 
infinite family of such sets. In particular, for a closed interval of the real line endowed with the usual topology, we see 
that we cannot partition it into a countably infinite number of disjoint, nonempty closed sets. On the positive side, 
however, one can certainly express such an interval as a union of c disjoint closed sets, where c is the cardinality of the 
real line. For example, a closed interval is surely the union of its points, each set consisting of a single point being 
closed. Surprisingly enough, except for a set of Lebesgue measure 0, these closed sets can be chosen to be perfect sets, 
i.e., closed sets every point of which is an accumulation point. They even turn out to be nowhere dense (containing no 
intervals). Such nowhere dense, perfect sets are sometimes called Cantor sets. 
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1. Introduction 

In a paper published in 1918 (see [1]), Sierpinski showed 
that a compact, Hausdorff, connected topological space 
cannot be partitioned into either a finite number of two or 
more pairwise disjoint closed sets or a countably infinite 
number of such sets. It follows then that any bounded 
closed interval of the real line, in particular, [0,1], cannot 
be so decomposed. A fortiori neither can the open inter- 
val (0,1) be a union of such sets even though (0,1) is ex- 
pressible as a countable union of overlapping closed sets. 
In contrast [0,1] can certainly be expressed as the union 
of its points, each of which is closed in the usual topol- 
ogy (see [2]). Furthermore, there is an exercise given by I. 
P. Natanson (see [3]) to show that [0,1] can be partition- 
ed into c pairwise disjoint perfect sets. We shall show 
that, except for a set of Lebesgue measure 0, [0,1] is, in 
fact, decomposable into c pairwise disjoint perfect sets. 
These sets also turn out to be nowhere dense. As a corol- 
lary to this major result, we can show that there exists a 
countable union of pairwise disjoint nowhere dense per- 
fect sets which is dense in [0,1] even though this union 
cannot be the interval [0,1] itself.  

2. Results 

Let us first repeat the Sierpinski result (see [1]) in the 
form of interest here, namely: 

Theorem 1. The closed interval [0,1] (in the usual to- 
pology) cannot be partitioned into either a finite (two or 
more) or a countably infinite number of pairwise disjoint 
closed sets. 

Proof. Sierpinski shows that the result is correct for 
any compact connected Hausdorff space. Since the usual 
topology is a metric topology and the closed interval [0,1] 
is connected and, by the Heine-Borel Theorem (see [4]), 
is compact, our case is simply a special instance of Sier- 
pinski’s general theorem. Thus, our theorem is valid. 

Corollary. The open interval (0,1) cannot be partition- 
ed into a countable number of pairwise disjoint closed 
sets. 

Proof. If there were such a partition, one could adjoin 
to it the two-point set {0,1} and thus partition the closed 
interval [0,1] into a countable number of disjoint closed 
sets. That would contradict the result of Theorem 1. So 
the corollary follows. 

Of course one can express [0,1] as a countable union 

Copyright © 2013 SciRes.                                                                                 APM 



E. A. COHEN 406 

of overlapping closed sets, e.g.,  
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Let us next prove our major result, which parallels a 
problem given by I. P. Natanson (see [3]). 

Theorem 2. The closed interval [0,1] can be decom- 
posed into c nowhere dense perfect sets, all of which, ex- 
cept for a countable number, are pairwise disjoint.  

Proof. Let x0 be a real number in the closed interval 
[0,1], and consider its dyadic representation 
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(so that ik = 0 or 1 for every k). Now for any real number 
y likewise in [0,1] with 
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which is thus represented by interlacing two dyadic ex- 
pansions.  

So any x0 with a given dyadic expansion can be con- 
strued as a generator of a set {x0(y)}. We shall examine 
the nature of these sets with the understanding that x0 as 
given by Equation (2) may take on two binary represen- 
tations if it has a terminating dyadic expansion. In that 
case it will be necessary to use both expansions in the 
process of forming Equation (4). Unfortunately this dual 
representation will lead to some difficulties with regard 
to disjointness of the sets which we generate, but they 
will not be critical to the success of our analysis.  

We first show that any given set {x0(y)} is closed. To 
see this suppose that x0 = 0, the zero generator. We want 
to show that any z not belonging to the set X0 = {x0(y)} 
cannot be an accumulation point of the set. First let us 
observe that the largest element of the set X0 is 
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an interlacing of x0 = 0 with y0 = 1. Thus, if z > 1/3, its 
distance from the set is z – 1/3 > 0. So, since 0 belongs to 
the set (an interlacing of 0 with itself), one need only 
concern himself with those z which happen to lie in the 
open interval (0,1/3). Since z does not lie in the set of 
interest, clearly at least one of the digits of the generator 
for z is not 0. Realizing now that i1(z) = 0, since z < 1/3, 
there must exist an n1 such that in(z) = 0 for 1≤ n < n1 ,but 

1
 There are now two cases to be considered: (1) 

in(z) = 1, n ≥ n1 and (2) there exists an n2 > n1 such that 
 Let us consider Case 1. If it so happens that 

jn(z) = 1 for n ≥ n1, then z will belong to X0, since z 
would have a dyadic expansion equivalent to that of a 
real number with a terminating expansion in which 

1 1n    and both in and jn = 0 for n ≥ n1. Observe that 
such a phenomenon can occur despite the fact that the 
generator of z is different from that of x0. However, also 
note that such a phenomenon as this just implies that the 
point actually belongs to the set, and we are interested at 
this point in a z which is not in the set. So, in Case 1, 
when z does not belong to X0, there must exist an m1 ≥ n1 
such that 

1
0.mj   Thus we have the following situa- 

tion: 
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where in = jn = 0 when 1 ≤ n < n1, in = jn = 1 when n1 ≤ n 
< m1, 1 1 1m m n  Next, if 0x X  and 
x < z, then the largest such x is (L for last and B for be- 
fore)  

0.000 001010101 ,LBx   
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with the first 1 in slot  Now, from Equation (6), 
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where p ≥ 0 and, from Equation (7), 
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Then, from Equations (8) and (9), we have 
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We also note that 
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Now, when x > z, the smallest x in X0 (F for first and A 
for after) is  

   
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with a 1 in position   So, using Equations (8), (11), 
and (12), one has 
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Now, using Equations (10) and (13), it obtains that the 
distance between z and X0 is greater than or equal to 

121 2 m

  1

, which is the minimum of the lower bounds pro- 
vided by Expressions (10) and (13). Therefore, in Case 
(1), z is not a limit point of X0. 

Let us next consider Case (2). Here 
1ni z   and 

there exists n2 > n1 such that 
2n  Let us assume 

that n1 and n2 are the first indices for which this is valid. 
So z now has the form 
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Here xLB is the same as before, as given by Equations 
(7) and (9), and, from Equation (14), we have 
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so that, using Equations (9) and (15), 
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where q ≥ 0. In a similar manner, using Equations (12) 
and (15), we have 

1 12 1 2

1 1

2 2
FA n n

z x s s    
1 12 2

1 1
,

2 2n n
    (17) 

where s ≥ 0. It follows that z is at a distance of at least  
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 from X0, and again z cannot be a limit point of  

the set. Thus X0 is closed when x0 = 0. Now observe that 
every set {x0(y)} is just a translation of the set generated 
by 0. In fact, given a generator 

                (18) 

that set is simply translated by the real number 

                (19) 

It follows that all of our sets are closed, and, further- 
more, that their union will be [0,1]. The latter claim 
stems from the fact that every real number in the closed 
interval must have a generator and from the fact that any 
real number can be obtained by interlacing some genera- 
tor with another binary expansion. 

Next we show that each set {x0(y)}, whose elements 
are given by Equation (4), is a perfect set, i.e., all points 
are points of accumulation. This is easy to see, for let us 
consider a particular point x0(y0). If we change the value 
of jn and keep all of the other entries the same, we obtain 
another point of the same set whose distance from x0(y0) 
is 1/22n. The result then follows, since n may be taken 
arbitrarily large. Of course, the same result could have 
been procured by proving it for the 0 generator case and 
then appealing to translation invariance, as we did for 
showing that all of our generated sets are closed. 

To see that each set is actually nowhere dense, we 
need only show that property for the set generated by 0 
and then appeal to translation invariance. When x0 = 0, so 
that ir = 0 for every r, consider any point x1 belonging to 
X0 and another point x2 of that set arbitrarily close to x1. 
We may suppose that the two points first differ for some 
jn, which is 0 for x1 and 1 for x2. Then, if one modifies x1 

by changing any ir for r > n from 0 to 1, he obtains a 
point x3 of the complement of X0 lying between x1 and x2 . 
It follows that X0 is nowhere dense and, by translation 
invariance, that all of our sets are nowhere dense. So our 
sets are actually Cantor sets, or Cantor-like sets, as some 
might say.  

We next note that our defining process itself shows 
that, in general, any two sets, say {x0(y)} and {x1(y)}, 
will be disjoint, since they are constructed using different 
generators. Also, clearly each set contains c points, since 
it is built by interleaving all real numbers in [0,1] with a 
given generator. Furthermore, there will be c sets, since 
there are c generators. 

However, there are a certain number of situations in 
which our sets need not be disjoint, and these cases arise 
only because rational numbers with terminating expan- 
sions have two dyadic representations. Let us observe the 
nature of these Cantor sets. Let us consider, for example, 
the generators 
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where 0x , 1 ≤ i < ∞, has i zeroes before an infinite ter- 
minal string of 1’s and 0

 x  is a finite expansion (the 0 
expansion included). Then the following situations occur:  

    0
0 y     and  1

0 y    0
i overlap, and x x x y

   

 over-  

 0 y     0
i for 1 ≤ i < ∞. However, x x y  will  laps 

be disjoint from any set whose generator is not expressi- 
ble as a terminating dyadic expansion. The collection of 
all such sets is clearly a countable one, and all remaining 
sets, c in number, are pairwise disjoint. Therefore, except 
for a countable family of Cantor sets, each clearly of the 
same Lebesgue measure (since they are just translates of 
one another), the remaining Cantor sets (constituting a 
disjoint family of c sets) form a decomposition of [0,1]. 
This proves the theorem. 

It is interesting that almost all of the Cantor sets de- 
vised here consist only of irrational numbers as would, of 
course, naturally follow if there are going to be c of them. 
One will observe that, if the generator is irrational, then 
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any number produced through interlacing will again be 
irrational. In fact rational numbers are only produced 
when a rational generator is interlaced with another ra- 
tional number. 

One also has the following corollary (see [5]): 
Corollary 1. There is a subset X of [0,1] which is a 

union of a countable number of nowhere dense perfect 
sets and which is dense in [0,1]. 

Proof. Let X be the union of all Cantor sets whose 
generators are of the form given in Equations (20). Sup- 
pose that z is any real number which is not an element of 
X. Let us form its dyadic representation, which, of course, 
is unique, since it does not belong to X. Consider a fun- 
damental neighborhood, or ball, about z. Then it is clear 
that some truncation of its expansion will reside both 
within the ball and within the set X. Since X is a count- 
able union of nowhere dense, perfect sets, this proves the 
corollary. 

With just a little extra effort, one can even assert that 
such sets can be chosen to be pairwise disjoint. In order 
to achieve that, we can use the sets whose generators are 
rational but not realizable as terminating expansions. The 
union of all such sets (countable in number) is also dense 
in [0,1] as the reader will easily see. In addition one has 
the following result: 

Corollary 2. All of our Cantor sets are of Lebesgue 
measure 0. Therefore, X, of Corollary 1, is also of meas- 
ure zero. 

Proof. Our set X and the remaining Cantor sets de- 
vised in the proof of Theorem 2 constitute c pairwise 
disjoint sets whose union is the closed interval [0,1]. 
Now we can show that at least one of these sets must be 
of zero Lebesgue measure. Suppose that this is not the 
case. Let An be the collection of those sets whose meas- 
ures exceed or equal 1/n. Since all sets are disjoint from 
one another, clearly there are no more than n of them in 
An. Of course, there are a countable number of such sets, 
each of which can contain no more than a finite number 
of sets of the collection. However, then we would have a 
countable collection of such sets covering [0,1], and we 
know that we have c of these sets whose union is [0,1]. 
Therefore, there must exist a set of measure zero among 
them. If this set happens to be X, then any subset of it 
also has measure 0, and, in particular, this is true of any 
one of the Cantor sets. Since all of the Cantor sets are 
translates of one another, we would conclude that all of 
them have zero measure, On the other hand, if one of the 
other sets has measure zero, then again all Cantor sets are 
translates of it, and all our sets are of zero measure. This 
establishes the corollary. 

Corollary 3. Any nowhere dense perfect set C can it- 
self be decomposed into c pairwise disjoint nowhere dense 
perfect sets.  

Proof. Since the set C is assumed to be a Cantor set, 

we can use a well-known result originally due to L. E. J. 
Brouwer, namely, that all Cantor sets are homeomorphic 
to one another. This means that we can invoke the clas- 
sical Cantor ternary set (see [3]) as a prototype. Since 
only 0’s and 2’s are necessary to describe that set, this 
means that there is a unique encoding of each point of 
our given Cantor set C. It follows that our generator 
scheme can now be utilized (using 0’s and 2’s rather than 
0’s and 1’s) to obtain c pairwise disjoint nowhere dense 
perfect subsets of C. In other words, we can obtain first 
of all a partition of the classical Cantor set into c pairwise 
disjoint Cantor subsets each of measure 0, and their im- 
ages under a homeomorphism will also be Cantor sets 
disjoint from one another. Therefore, we have a partition 
of our original Cantor set C into c pairwise disjoint Can- 
tor subsets. However, under a homeomorphism, measure 
need not be preserved, so that these subsets need not all 
be of measure 0. 

3. Conclusion 

We have established two important facts concerning the 
decomposition of a closed interval of the real line into 
disjoint closed sets: 1) Such a partition cannot be ob- 
tained using either a finite (more than 1) or a countably 
infinite number of closed sets, and, a fortiori, neither can 
an open interval be so decomposed. The latter fact does 
not seem to be generally emphasized in the literature. On 
the other hand, it is easy to show that an open interval is 
an Fσ set (a countable union of closed sets) if we drop the 
requirement that the sets be pairwise disjoint; 2) In con- 
trast a partition into c pairwise disjoint closed sets (with c 
the power of the continuum) is always possible and, in 
fact, except for a set of Lebesgue measure 0, that can be 
accomplished with perfect sets (closed sets without iso- 
lated points). It turns out that, in the theory that we have 
developed here, the sets involved are also nowhere dense, 
i.e., have a vacuous interior. Perfect, nowhere dense sets 
are sometimes called Cantor sets. 
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