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Abstract 
In this paper we revisit the addition of elliptic curves and give an algebraic 
proof to the associative law by use of MATHEMATICA. The existing proofs 
of the associative law are rather complicated and hard to understand for be-
ginners. An ‘‘elementary” proof to it based on algebra has not been given as 
far as we know. Undergraduates or non-experts can master the addition of el-
liptic curves through this paper. After mastering it they should challenge the 
elliptic curve cryptography. 
 
Keywords 
Elliptic Curve, Addition, Associative Law, MATHEMATICA, Elliptic Curve 
Cryptography 

 

1. Introduction 

Ciphering is essential for the security of internet. The RSA cryptography [1] [2] 
[3] is now commonly used. However, in the very near future the RSA 
cryptography will be replaced by the elliptic curve cryptography because of its 
efficiency; the RSA system is based on 2048 bits, while the elliptic system is based 
on 224 bits (2016, [4]). 

The target reader of this note is undergraduates or non-experts. Those who 
are interested in cryptography are strongly encouraged to master the theory of 
elliptic curve cryptography as soon as possible. For this purpose they must study 
an additional structure of elliptic curves. However, it is not so hard except for 
the associative law. 

As far as we know an algebraic proof to it has not yet been given1. Therefore, 
we give an ‘‘elementary” proof by use of MATHEMATICA for them. 

 

 

1We don’t admit usual geometric proofs in standard textbooks of elliptic curves. 
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2. Addition of Points of an Elliptic Curve 

Let us start by recalling the definition of an elliptic curve [5] [6] 
2 3y x ax b= + +                           (1) 

where a and b are some real constants. In the following we consider only real 
category. The discriminant of the cubic equation 

3 0x ax b+ + =  

is given by 
3 24 27D a b= − −                         (2) 

(see for example [5]) and we assume 0D <  in the following, so the point 
crossing the real axis is just one. 

For the graph of the elliptic curve (1) 

( ){ }2 2 3, |E x y y x ax b= ∈ = + +R                   (3) 

we want to introduce an addition, which is essential in the elliptic curve 
cryptography. For the purpose we must add the infinity point ( ),O = ∞ ∞  to 
(3). As a result, our space is not 2R  but a two dimensional sphere 2 2O =R S . 
Later it turns out that O is the identity element of the addition, see (10), (11). 
This justifies the notation O for the infinity point. 

Here we note 

( ) ( ), ,P x y E P x y E= ∈ ⇒ − = − ∈                  (4) 

where we have adopted the notation P−  for the mirror image of P  with 
respect to the real axis, see (11). 

Let us introduce the addition in E. For two points 1 2,P P E∈  we associate 
another point 3P E∈ . Consider the straight line passing through 1P  and 2P . 
We set R the crossing point of the line and the elliptic curve. 
A simple-minded candidate of the addition is 

1 2P P R⊕ =  

Unfortunately, this is not good because the associative law does not hold. 
Instead, we take the reflection point of R 

1 2 3.P P R P⊕ = − ≡                           (5) 

This is correct as shown in the paper. See the following Figure 1. 
Next, we want to express the addition above by use of the coordinate system. 

For the purpose we set 

( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , and , .P x y P x y P x y= = =  

Formula The addition formula 

( ) ( ) ( )1 1 2 2 3 3, , ,x y x y x y⊕ =  

is given by 

( )
2

2 1
3 1 2

2 1

,y yx x x
x x

 −
= − + − 
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Figure 1. Addition 1 2P P≠ . 

 

( )
3

2 1 2 1
3 1 2 1

2 1 2 1

2 .y y y yy x x y
x x x x

   − −
= − + + −   − −   

          (6) 

Proof To give an elementary proof for undergraduates or non-experts is 
educational. 

First of all we set the coordinate of the point ( ),r rR x y=  and look for rx  
and ry . The straight line passing through 1P  and 2P  is given by 

( )2 1
1 1

2 1

.y yy x x y
x x
−

= − +
−

 

By taking 1x x−  into consideration we have 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3

3
1 1 1 1

3 2 2 3
1 1 1 1 1 1 1 1

3 2 2 2
1 1 1 1 1 1 1

3 3

3 3 .

y x ax b

x x x a x x x b

x x x x x x x x a x x x ax b

x x x x x x x x a x x y

= + +

= − + + − + +

= − + − + − + − + + +

= − + − + − + − +

 

We substitute the straight line for the equation above 

( ) ( )

( ) ( ) ( ) ( )

2
2 22 1 2 1

1 1 1 1
2 1 2 1

3 2 2 2
1 1 1 1 1 1 1

2

3 3 .

y y y yx x x x y y
x x x x

x x x x x x x x a x x y

 − −
− + − + − − 

= − + − + − + − +

 

A short calculation gives 

( ) ( ) ( )
2

2 22 1 2 1
1 1 1 1 1 1

2 1 2 1

2 3 3y y y yx x y x x x x x x a
x x x x

 − −
− + = − + − + + − − 

 

and 

( ) ( )
2

2 22 1 2 1
1 1 1 1 1

2 1 2 1

3 3 2 0.y y y yx x x x x x y a
x x x x

  − − − − − − + − + =  − −   
 

This is a quadratic equation and it is easy to solve 
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22 2
22 1 2 1 2 1

1 1 1 1 1
2 1 2 1 2 1

1 3 3 4 3 2 .
2

y y y y y yx x x x x y a
x x x x x x

       − − −   − = − ± − − − +        − − −          

 

Here we set 

( )
22

22 1 2 1
1 1 1

2 1 2 1

# 3 4 3 2 .y y y yx x y a
x x x x

    − − = − − − +    − −     
 

By expanding and arranging ( )#  we have 

( )
4 2

22 1 2 1 2 1
1 1 1

2 1 2 1 2 1

# 6 8 3 4 .y y y y y yx y x a
x x x x x x

   − − −
= − + − −   − − −   

 

Some calculation (this is a key point) gives 

( ) ( )

( )

( ){ }

( ) ( ){ }

( )

4 2 2
2 12 1 2 1

1
2 1 2 1 2 1

2
2 1 22 1

1 1
2 1 2 1

4 2
2 1 2 1

1 2 1
2 1 2 1

2 1 2 1 1 2
1

2 1
4

2 1 2 1
2 1

2 1 2 1

# 6 4

4 8 3 4

6 4

2
4 3 4

2 2

y yy y y yx
x x x x x x

y y y y y x a
x x x x

y y y yx x x
x x x x

y y y y y
x a

x x

y y y yx x
x x x x

−   − −
= − −   − − −   

− −
+ + − −

− −

   − −
= − + −   − −   

− − +
+ − −

−

  − −
= − + − − 

2 2 2
22 1
1

2 1

4 3 4
y y x a
x x

 −
+ − −  − 

 

( ) ( )

( )

( ) ( )

4 2
2 2 22 1 2 1

2 1 2 2 1 1 1
2 1 2 1

4 2
2 22 1 2 1

2 1 2 2 1 1
2 1 2 1

4 2
22 1 2 1

2 1 2 1
2 1 2 1

2
2 1

2
2 1

2 2 4 3 4

2 2 4 4

2 2 2

2

y y y yx x x x x x a x a
x x x x

y y y yx x x x x x
x x x x

y y y yx x x x
x x x x

y y x x
x x

   − −
= − + + + + + − −   − −   
   − −

= − + + + +   − −   
   − −

= − + + +   − −   

 −
= − − − 

2

1

  
 
  

 

where in the process we have used the equation 

( ) ( )
( )( )

2 2 3 3
2 1 2 2 1 1

2 2
2 1 2 2 1 1 .

y y x ax b x ax b

x x x x x x a

− = + + − + +

= − + + +
 

Therefore 

( )

2 2
2 1 2 1

1 1 2 1
2 1 2 1

2 2
2 1 2 1

1 2 1 2
2 1 2 1

1 3 2
2

1 2 4 2 2
2

y y y yx x x x x
x x x x

y y y yx x x x
x x x x

    − − − = − + − −    − −     
    − − = − − = − +    − −     
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and we finally obtain 

( )
2

2 1
1 2

2 1

,r
y yx x x
x x

 −
= − + − 

 

which is symmetric in 1 and 2. Another solution is 2x x=  (check this). 
This gives 

( )

( )

( )

2 1
1 1

2 1

2

2 1 2 1
1 2 1

2 1 2 1

3

2 1 2 1
1 2 1

2 1 2 1

2

2 .

r r
y yy x x y
x x

y y y y x x y
x x x x

y y y y x x y
x x x x

−
= − +

−

  − − = − + +  − −   

   − −
= − + +   − −   

 

As a result we have 

( ) ( )3 3, ,r rx y x y= −  

and this gives the Formula (6). 
Comment From the geometric definition of the addition (5) it is easy to see 

the commutativity 

1 2 2 1.P P P P⊕ = ⊕  

However, it is not clear to see this from the Formula (6). Then, a small change 
of 3y  in (6) gives 

( )
3

2 1 2 1 2 1 1 2
3 1 2

2 1 2 1 2 1

,y y y y y x y xy x x
x x x x x x

   − − −
= − + + +   − − −   

       (7) 

which is anti-symmetric in 1 and 2. The commutativity is very clear. In our 
opinion this formula is best. 

Next, we must define the addition P P⊕  of the same point P. The definition 
is usually performed by differential. By noting 

2 1
12 1

2 1

lim y y y
x x→

− ′=
−

 

the differential of 2 3y x ax b= + +  at ( )1 1,x y  gives 
2

2 1
1 1 1 1

1

32 3 .
2
x ay y x a y

y
+′ ′= + ⇒ =  

If we set for ( ),P x y  

( ) ( ) ( )3 3 3or , , ,P P P x y x y x y⊕ = ⊕ =            (8) 

then we obtain 
22

3
3 2 ,

2
x ax x

y
 +

= − 
 

 

32 2

3
3 3 3

2 2
x a x ay x y

y y
   + +

= − + −   
   

                (9) 
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by applying the argument above to (6). See the following Figure 2. 
There are tasks left behind. Our tasks are to show 

P O O P P⊕ = ⊕ =        (10) 

and 

( ) ( ) .P P P P O⊕ − = − ⊕ =        (11) 

Exercise Consider a proof with the geometric method. 
Last, we must prove the associative law 

( ) ( )1 2 3 1 2 3 ,P P P P P P⊕ ⊕ = ⊕ ⊕        (12) 

which is very hard for undergraduates (hard even for experts). 
The geometric method usually goes like Figure 3 ( 1P P= , 2P Q=  and 

3P R=  in this figure) 
 

 
Figure 2. Addition P1 = P2 = P. 

 

 
Figure 3. Associativity ( ) ( )P Q R P Q R⊕ ⊕ = ⊕ ⊕ . 
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However, this is not a proof but a circumstantial evidence. Therefore, we give 
an algebraic proof by use of MATHEMATICA2. 

For the purpose let us calculate the difference 

( ) ( )1 2 3 1 2 3P P P P P P⊕ ⊕ − ⊕ ⊕                   (13) 

by MATHEMATICA. In the following program we set 

( ) ( ) ( )1 2 3 1 2 3 , .P P P P P P CC FF DD GG⊕ ⊕ − ⊕ ⊕ = − −          (14) 

and use the Formula (7) because of its high symmetry. Associativity holds when 
the right hand side vanishes. 

Beginning of MATHEMATICA 

Readers must input and execute the following program in standard form of 
MATHEMATICA. 

We set 

( )
2

2 1
1 2

2 1

;y ys x x
x x

 −
= − + − 

 

( )

1 2
3

1 22 1 2 1
1 2

2 1 2 1 2 1

Det
;

x x
y yy y y yt x x

x x x x x x

  
     − −   = − + + +   − − −   

 

and 

( )
2

3
3

3

;y tCC s x
x s

 −
= − + − 

 

( )

3
3

33 3
3

3 3 3

Det
;

s x
t yy t y tDD s x

x s x s x s

  
     − −   = − + + +   − − −   

 

and also set 

( )
2

3 2
2 3

3 2

;y yu x x
x x

 −
= − + − 

 

( )

2 3
3

2 33 2 3 2
2 3

3 2 3 2 3 2

Det
;

x x
y yy y y yv x x

x x x x x x

  
     − −   = − + + +   − − −   

 

and 

( )
2

1
1

1

;v yFF x u
u x

 −
= − + − 

 

( )

1
3

11 1
1

1 1 1

Det
.

x u
y vv y v yGG x u

u x u x u x

  
     − −   = − + + +   − − −   

 

 

 

2We expect that undergraduates in the world can use MATHEMATICA or MAPLE, etc. 
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Moreover, we set 

( ) ( ) ( )2 2
1 2 1 2 1 2 3 ;P y y x x x x x= − − − + +  

( ) ( ) ( )2 2
2 3 2 3 1 2 3 ;Q y y x x x x x= − − − + +  

( ) ( ) ( )
( )( )( )( )

2 2 2
2 3 1 3 1 2 1 2 3

1 2 2 3 3 1 1 2 3 .

R x x y x x y x x y

x x x x x x x x x

= − + − + −

+ − − − + +
 

Here, 2P  ( 2Q ) appears in the denominator of CC  ( FF ) and 3P  ( 3Q ) in 
the denominator of DD  (GG). The homogeneous polynomials P and Q are 
invariant under the permutation of 1,2,3 , whereas R changes sign. 

For 

( ) ( )2 2 3 3

; ;
P Q CC FF P Q DD GG

AA BB
R R

− −
= =  

execute the following 

[ ]Factor AA  

[ ]Factor BB  

Ending of MATHEMATICA 

It takes about several seconds for a standard present day PC before 
MATHEMATICA outputs two huge homogeneous polynomials in 1x , 2x , 3x , 

1y , 2y  and 3y  of integer coefficients. The “degrees” of AA  and BB  are 9 
and 31/2, respectively, when “degree” 1 is assigned to 1x , 2x , 3x  and 3/2 for 

1y , 2y  and 3y , see the curve Equation (1). In other words, AA  and BB  are 
universal polynomials of elliptic curves which are independent of the parameters 
a and b. More than 10 pages are required to write down the outputs. As we will 
see their explicit forms are irrelevant for the discussion of the associativity, we 
do not display them here. These polynomials have many interesting features. 
From the program we have 

2 2 3 3, .AA BBCC FF R DD GG R
P Q P Q

− = − =                 (15) 

It is very interesting and important that both have a common factor R. Note 
that we have not imposed the equations 

2 3
1 1 1
2 3
2 2 2
2 3
3 3 3

y x ax b
y x ax b
y x ax b

 = + +
 = + +
 = + +

                         (16) 

up to this point. 
Last, we show 

0R =                                 (17) 

under the condition (16), which finishes the proof of associativity (14). 
Here, let us give an educational proof for undergraduates. We treat the 

following determinant : 
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1 2 3
2 2 2
1 2 3

1 1 1
X x x x

y y y
=                        (18) 

Direct calculation gives 

( ) ( ) ( ){ }
2 2 2 2 2 2

2 3 3 1 1 2 2 1 1 3 3 2

2 2 2
2 3 1 3 1 2 1 2 3 .

X x y x y x y x y x y x y

x x y x x y x x y

= + + − − −

= − − + − + −
               (19) 

On the other hand, from (16) we have 

1 2 3
3 3 3
1 1 2 2 3 3

1 2 3
3 3 3
1 1 2 2 3 3

1 2 3
3 3 3
1 2 3

1 1 1

1 1 1

1 1 1

X x x x
x ax b x ax b x ax b

x x x
x ax x ax x ax

x x x
x x x

=
+ + + + + +

=
+ + +

=

 

by some fundamental operations. 
Moreover, we have 

( )( )

( )( )
( )( )

( )( )( )( )
( )( )( )( )

1 2 1 3 1
3 3 3 3 3
1 2 1 3 1

2 1 3 1 1
3 2 2 2 2
1 2 2 1 1 3 3 1 1

2 1 3 1 1
3 2 2
1 2 2 1 1 3 2 3 2 1

2 1 3 1 3 2 3 2 1

1 2 2 3 3 1 1 2 3

1 0 0

1 0 0
1 1

1 0 0
1 0

X x x x x x
x x x x x

x x x x x
x x x x x x x x x

x x x x x
x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

= − −
− −

= − −
+ + + +

= − −
+ + − + +

= − − − + +

= − − − + +

     (20) 

by some fundamental operations. As a result, we obtain 

( ) ( ) ( )
( )( )( )( )

2 2 2
2 3 1 3 1 2 1 2 3

1 2 2 3 3 1 1 2 3

0

R x x y x x y x x y

x x x x x x x x x
X X

= − + − + −

+ − − − + +

= − + =

 

by (19) and (20). 
As shown in the paper the elementary proof of the associative law of the 

points of an elliptic curve is not easy. However, it is not necessarily a bad thing 
for the encryption system. 

In this section we reproved the following 
Theorem The system { },E ⊕  becomes an additive (abelian) group. 

https://doi.org/10.4236/apm.2017.712040


K. Fujii, H. Oike 
 

 

DOI: 10.4236/apm.2017.712040 658 Advances in Pure Mathematics 
 

3. Concluding Remarks 

We conclude the paper by making some comments on the elliptic curve 
cryptography [7] [8]. 

Let p be a huge prime number and pF  be the finite field 

{ }0,1,2, , 1 ,p p= −F  

see for example [5]. 
Our target is an elliptic curve on pF  

( ) ( ){ }2 3, | mod .pE x y y x ax b p= = + +  

For this case pE  becomes a finite set. We assume that P  and pQ E∈  
satisfy the relation 

( )modQ n P p⊕=  

where 

( )-times .n P P P P n⊕ = ⊕ ⊕ ⊕  

Problem For given P and Q is it possible to find n in polynomial time? 
This is called the discrete logarithm problem and it is known as a very hard 

one to solve [9]. The security of the elliptic curve cryptography (which is worth 
studying for undergraduates or non-experts) is based on this hard problem. 
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Abstract 
Let F be a number field and p be a prime. In the successive approximation 
theorem, we prove that, for each integer 1n ≥ , finitely many candidates for 

the Galois group Gn
p F  of the nth stage ( )n

pF  of the p-class tower ( )
pF ∞  

over F are determined by abelian type invariants of p-class groups Cl p E  of 

unramified extensions E F  with degree 1[ : ] nE F p −= . Illustrated by the 
most extensive numerical results available currently, the transfer kernels 

( ),ker F ET  of the p-class extensions , : Cl ClF E p pT F E→  from F to 

unramified cyclic degree-p extensions E F  are shown to be capable of 
narrowing down the number of contestants significantly. By determining the 
isomorphism type of the maximal subgroups S G<  of all 3-groups G with 
coclass ( )cc 1G = , and establishing a general theorem on the connection 
between the p-class towers of a number field F and of an unramified abelian 
p-extension E F , we are able to provide a theoretical proof of the realization 

of certain 3-groups S with maximal class by 3-tower groups 3G E∞  of dihedral 
fields E with degree 6, which could not be realized up to now. 
 

Keywords 
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1. Introduction 

For a prime number p and an algebraic number field F, let ( )
pF ∞  be the p-class 

tower, more precisely the unramified Hilbert p-class field tower, that is the 
maximal unramified pro-p extension, of F. The individual stages ( )n

pF  and the 
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Galois groups ( )( )Gal n
pF F  of the tower 

( ) ( ) ( ) ( ) ( )0 1 2 n
p p p p pF F F F F F ∞= ≤ ≤ ≤ ≤ ≤ ≤   

are described by the derived quotients ( ) ( )( )/ G : Galn nn
p pF F F=G G

,
 with 

1n ≥ , of the p-class tower group ( )( ): G : Galp pF F F∞∞= =G . The purpose of this 
paper is to report on the most up-to-date theoretical view of p-class towers and 
the state of the art of actual numerical investigations. After a summary of 
algebraic and arithmetic foundations in §2, four crucial concepts will illuminate 
recent innovation and progress in a very ostensive way: 

• the Artin limit pattern ( ) ( )( ),F Fτ ∞ ∞  of the p-class tower ( )
pF ∞  in §3, 

• successive approximation and the current status of computational 
perspectives in §4, 

• maximal subgroups of 3-class tower groups with coclass one in §5, and 
• the realization of new 3-class tower groups over dihedral fields in §6. 

2. Algebraic and Arithmetic Foundations 
2.1. Abelian Type Invariants 

First, we recall the concepts of abelian type invariants and abelian quotient 
invariants in the context of finite p-groups and infinite pro-p groups, and we 
specify our conventions in their notation. 

Let 2p ≥  be a prime number. It is well known that a finite abelian group A 
with order A  a power of p possesses a unique representation 

( )1
ii

res
iA p=⊕                          (2.1) 

as a direct sum with integers 0s ≥ , 1ir ≥  for 1 i s≤ ≤ , and strictly decreasing 

1 1se e> > ≥ . 
Definition 2.1 The abelian type invariants of A  are given either in power 

form, 

( )
1

1 1

timestimes

ATI : , , , , , , ,
s

s s

rr

e ee eA p p p p
 
 =  
  



               (2.2) 

or in logarithmic form with formal exponents indicating iteration, 

( ) 1
1ATI : , , .srr

sA e e =                         (2.3) 

Let G be a pro-p group with commutator subgroup G′  and finite 
abelianization :abG G G′= . 

Definition 2.2 The abelian quotient invariants of G are the abelian type 
invariants of the biggest abelian quotient of G 

( ) ( )AQI : ATI .abG G=                     (2.4) 

2.1.1. Higher Abelian Quotient Invariants of a Pro-p Group 
Within the frame of group theory, abelian quotient invariants of higher order 
are defined recursively in the following manner. 
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Definition 2.3 The set of all maximal subgroups of G which contain the 
commutator subgroup, 

( ){ }1Lyr : | , : ,G S G G S G S p′= ≤ =                  (2.5) 

is called the first layer of subgroups of G. For any positive integer 1n ≥ , abelian 
quotient invariants of nth order of G are defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: AQI and : ; for 2.n n

S G
G G G G S nτ τ τ τ −

∈

 = = ≥ 
 

  (2.6) 

2.1.2. Higher Abelian Type Invariants of a Number Field 
Within the frame of algebraic number theory, abelian type invariants of higher 
order are defined recursively in the following way. 

Let F be an algebraic number field, denote by Cl pF  the p-class group of F, 
and by ( )1

pF  the first Hilbert p-class field of F, that is, the maximal abelian 
unramified p-extension of F. 

Definition 2.4 The set of all unramified cyclic extensions E F  of degree p 
which are contained in the p-class field, 

( ) [ ]{ }1
1Lyr : | , :pF E F E F E F p= > ≤ =                 (2.7) 

is called the first layer of extension fields of F. For any positive integer 1n ≥ , 
abelian type invariants of nth order of F are defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: ATI Cl and : ; for 2.n n

p E F
F F F F E nτ τ τ τ −

∈

 = = ≥ 
 

(2.8) 

2.2. Transfer Kernel Type 

Next, we explain the concept of transfer kernel type of finite p-groups and 
infinite pro-p groups. 

2.2.1. Transfer Kernel Type of a Pro-p Group 
Denote by 2p ≥  a prime number. Let G be a pro-p group with commutator 
subgroup G′  and finite abelianization abG G G′= . 

Definition 2.5 By the transfer kernel type of G , we understand the finite 
family of kernels, 

( ) ( )( )
1

, Lyr
: ker ,G S S G

G T
∈

=                  (2.9) 

where , :G ST G G S S′ ′→  denotes the transfer homomorphism from G to the 
normal subgroup S of finite index ( ):G S p= , as given in Formula (3.1). 

More specifically, suppose that ab
p pG C C×  is elementary abelian of rank 

two. Then 1Lyr G  has 1p +  elements 1 1, , pS S +
, the transfer kernel type of G 

is described briefly by a family of non-negative integers  

( ) ( ) [ ] 1

1 1
0, 1 p

i i p
G p +

≤ ≤ +
= ∈ +   such that 

( )
( )

,

,

0 if ker ,
:

if ker for some1 1,
i

i

G S

i

G S j

T G G

j T S G j p

 ′== 
′= ≤ ≤ +

        (2.10) 
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and the symmetric group 1pS +  of degree 1p +  acts on [ ] 10, 1 pp ++  via 
1

0:π π π−=     , for each 1pSπ +∈ , where the extension 0π  of π  to 
[ ]0, 1p +  fixes the zero. 

Definition 2.6 The orbit ( ) 1pSG +  is called the invariant type of G, but it is 
actually given by one of the orbit representatives ( )1 1i i p≤ ≤ +

 . Any two distinct 
orbit representatives ( ) 1

1 2, pSGλ λ +∈  are called equivalent, denoted by the 
symbol 1 2~λ λ . 

2.2.2. Transfer Kernel Type of a Number Field 
Let F be an algebraic number field, and denote by Cl pF  the p-class group of F. 
Definition 2.7 By the transfer kernel type of F, we understand the finite family 
of kernels, 

( ) ( )( )
1

, Lyr
: ker ,F E E F

F T
∈

=                 (2.11) 

where , : Cl ClF E p pT F E→  denotes the transfer of p-classes from F to the 
unramified cyclic extension E of degree [ : ]E F p= , which is also known as the 
p-class extension homomorphism. 

More specifically, suppose that Cl p p pF C C×
 is elementary abelian of rank 

two. Then 1Lyr F  has 1p +  elements 1 1, , pE E +
, the transfer kernel type of F 

is described briefly by a family of non-negative integers  
( ) ( ) [ ] 1

1 1
0, 1 p

i i p
F p +

≤ ≤ +
= ∈ +   such that 

( )
( ) ( )

,

,

0 if ker Cl ,
:

if ker Norm Cl for some 1 1,
i

i j

F E p

i

F E E F p j

T F

j T E j p

 == 
= ≤ ≤ +

  (2.12) 

and the symmetric group 1pS +  of degree 1p +  acts on [ ] 10, 1 pp ++  via 
1

0:π π π−=     , for each 1pSπ +∈ , where the extension 0π  of π  to 
[ ]0, 1p +  fixes the zero. 

Definition 2.8 The orbit ( ) 1pSF +  is called the invariant type of F, but it is  
actually given by one of the orbit representatives ( )1 1i i p≤ ≤ +

 . Any two distinct 

orbit representatives ( ) 1
1 2, pSFλ λ +∈  are called equivalent, denoted by the  

symbol 1 2~λ λ . 

3. The Artin Limit Pattern 

Let p be a prime number. For the recursive construction of the Artin limit 
pattern of a pro-p group G with commutator subgroup G′  and finite 
abelianization abG G G′= , we need the following considerations. 

3.1. Mappings of the Artin Limit Pattern 

Due to our assumptions, the first layer 1Lyr G  of subgroups of G is a finite set 
consisting of maximal normal subgroups S of G with abelian quotients G S . 
Consequently, the Artin transfer homomorphism from G to 1LyrS G∈  is 
distinguished by a very simple mapping law: 
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( ) ( )
2 1, 1

if \ ,
: ,

if ,
p

p

G S h h h

g S g G G S G
T G G S S g G

g S g S G
−+ + + +

 ′ ′ ′⋅ ∈′ ′ ′→ ⋅ 
′ ′⋅ ∈



  (3.1) 

where h denotes an arbitrary element in \G S  ([1], 4.1, p. 76). 
The Artin limit pattern encapsulates particular group theoretic information 

(connected with Artin transfers) about the lattice of subgroups of G, where each 
element U has at least one predecessor, except the root G itself. We select a unique 
predecessor in the following way: for 1LyrU S∈  we put ( ) :U Sπ = , and we add 
the formal definition ( ) :G Gπ = . This enables a recursive construction, as follows: 

Definition 3.1 The collection of Artin transfers up to order n of G is defined 
recursively by 

( )
( )

( ) ( ) ( )( )
1

1 1 1
, Lyr

: and : ; for 2.n n
G G S G

G T G G S nπα α α α −

∈

 = = ≥  
  (3.2) 

The limit of this infinite recursive nesting process is denoted by 
( ) ( ): lim n

n
G Gα α∞

→∞
=                        (3.3) 

and is called the Artin transfer collection of G. 
Remark 3.1 By means of the collection of Artin transfers up to order three, 

( ) ( )( ) ( )( )
11 1

3 2
, , , , LyrLyr Lyr

; ; ; ,G G G G G S S U U SS G S G
G T S T T Tα α

∈∈ ∈

    = =         
 

it should be emphasized that our definition of stepwise relative mappings ,G ST  
and ,S UT  admits finer information than the corresponding absolute mappings 

, , ,G U S U G ST T T=   ([1], Thm. 3.3, p. 72), since in general the kernel of ,S UT  
cannot be reconstructed from ,G UT  and ,G ST . 

3.2. Objects of the Artin Limit Pattern 

The infinite collection of mappings ( )Gα ∞  is only the foundation for the 
objects ( )Gτ ∞  and ( )G∞  we are really interested in. 

Definition 3.2 The iterated abelian quotient invariants up to order n of G are 
defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: AQI and : ; for 2.n n

S G
G G G G S nτ τ τ τ −

∈

 = = ≥  
 (3.4) 

Similarly, the iterated transfer kernels up to order n of G are defined 
recursively by 

( )
( )( ) ( ) ( ) ( )( )

1

1 1 1
, Lyr

: ker and : ; for 2.n n
G G S G

G T G G S nπ
−

∈

 = = ≥  
     (3.5) 

Both are collected in the nth order Artin pattern ( ) ( ) ( )( )AP : ,n n nG G Gτ=   of 
G. The limits of these infinite recursive nesting processes are called the abelian 
invariant collection of G, 

( ) ( ): lim ,n

n
G Gτ τ∞

→∞
=                        (3.6) 

and the transfer kernel collection of G, 
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( ) ( ): lim .n

n
G G∞

→∞
=                     (3.7) 

Finally, the pair ( ) ( ) ( )( )ALP : ,G G Gτ ∞ ∞=   is called the Artin limit pattern of 
G. 

Remark 3.2 For a finite p-group G, the recursive nesting processes in the 
definition of the Artin limit pattern are actually finite. 

The abelian quotient invariants are a unary concept, since  
( ) ( ) ( )1 AQI ATIG G G Gτ ′= =  depends on G only. The first order abelian  

quotient invariants ( )1 Gτ  already contain non-trivial information on the  
abelianization of G. 

The transfer kernels are a binary concept for S G< , since  
( )

( )( )1
,ker S SS Tπ=  depends on ( )Sπ  and S. The first order transfer kernel of 

G is trivial: ( )
( )( ) ( ) ( )1

,,ker ker ker id 1G G G GG GG T Tπ ′= = = = , and non-trivial 
information starts with the transfer kernels of second order  

( )
( )( ) ( )1

,,ker ker G SS SS T Tπ= =  for 1LyrS G∈  which are members of ( )2 G . 
The analogous constructions for a number field F instead of a pro-p group G, 

along the lines of §§2.1.2 and 2.2.2, lead to the Artin limit pattern  
( ) ( ) ( )( )ALP : ,F F Fτ ∞ ∞=   of F. 

3.3. Connection between Pro-p Groups and Number Fields 

Let ( )
pF ∞  be the Hilbert p-class tower of the number field F, that is, the maximal 

unramified pro-p extension of F, and denote by ( )( )G Galp pF F F∞∞ =  its Galois 
group, which is briefly called the p-tower group of F. Now we are going to 
employ the abelian type invariant collection ( )Fτ ∞  of F, and the abelian 
quotient invariant collection ( ) ( )G p Fτ ∞ ∞  of G p F∞ , i.e., the first component of 
the respective Artin limit pattern. The transfer kernel collections ( )∞  will be 
considered further in §5. 

Theorem 3.1 For each integer 1n ≥ , the abelian quotient invariants of nth 
order of the p-tower group G p F∞  of F are equal to the abelian type invariants 
of nth order of the number field F 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 G and thus G .n n
p pn F F F Fτ τ τ τ∞ ∞∞ ∞∀ ≥ = =   (3.8) 

The invariant type of the p-tower group G p F∞  of F coincides with the 
invariant type of the number field F 

( ) ( )1 1G .p pS S
p F F+ +∞ =                   (3.9) 

Even the orbit representatives of the transfer kernel types of G p F∞  and F 
coincide, 

( ) ( ) ( )( ) ( ),G , 1 11 1
G ker ker ,

ip i
p F EF U i pi p
F T T F∞

∞

≤ ≤ +≤ ≤ +

 = = = 
 

     (3.10) 

provided that the ( )1Lyr Gi pU F∞∈  and the 1LyriE F∈  are connected by 
( )( )Gali p iU F E∞= , for each 1 1i p≤ ≤ + . Otherwise, we only have equivalence 

( ) ( )G ~p F F∞  . 
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Proof. The claims are well-known consequences of the Artin reciprocity law of 
class field theory [2] [3]. 

In contrast to the full p-tower group G p F∞=G , the Galois groups 
( )( ) ( )G : Gal m mm

p pF F F= G G  of the finite stages ( )m
pF  of the p-class tower of 

F, that is, of the higher Hilbert p-class fields of the number field F, in general fail 
to reveal the abelian type invariants of nth order of the number field F. More 
precisely, there is a strict upper bound on the order n of the ATI of F which 
coincide with the AQI of order n of the mth p-class group Gm

p F  of F with a 
fixed integer 0m ≥ , namely the bound n m≤ . 

Theorem 3.2 (Successive Approximation Theorem.) 
Let F be a number field, p a prime, and m,n integers. The abelian invariant 

collection ( )Fτ ∞  of F is approximated successively by the iterated AQI of 
sufficiently high p-class groups of F: 

( ) ( ) ( ) ( ) ( )1 G .n nm
pn m n F Fτ τ∀ ≥ ∀ ≥ =           (3.11) 

However, the transfer kernel type is a phenomenon of second order: 

( ) ( ) ( )2 G ~ ,m
pm F F∀ ≥                 (3.12) 

in particular, the metabelian second p-class group 2: G pF ′′= M G G  of F is 
sufficient for determining the transfer kernel type of F. 

Proof. This is one of the main results in ([4], Thm. 1.19, p. 78) and ([5], p. 13). 
In general, the upper bound on the order n of the ATI of F in Theorem 3.2 

seems to be sharp, in the following sense, where 1m n= − . 
Conjecture 3.1 (Stage Separation Criterion.) 
Denote by pF  the length of the p-class tower of F, that is the derived length 

( )dl G p F∞  of the p-tower group of F. It is determined in terms of iterated AQI of 
higher p-class groups of F by the following condition: 

( ) ( ) ( ) ( )11 G .n nn
p pn F n F Fτ τ−∀ ≥ ≥ ⇔ <             (3.13) 

The sufficiency of the condition in Conjecture 3.1 is a proven theorem ([5], p. 
13). 

4. Successive Approximation of the p-Class Tower 
4.1. Computational Perspectives 

Our first attempt to find sound asymptotic tendencies in the distribution of 
higher non-abelian p-class groups ( )( )G Gal nn

p pF F F= , with 2n ≥ , among 
the finite p-groups was planned in 1991 already ([6], 3, Remark, p. 77). However, 
the insurmountable obstacles in the required computations limited the progress 
for twenty years. In 2012, we finally succeeded in the significant break-through 
of computing the second 3-class groups 2

3G F=M , that is, the 
metabelianizations ( )2

G G  of the 3-class tower groups ( )( )3Gal F F∞=G  of all 
4596 quadratic fields ( )F d=  with fundamental discriminants in the 
remarkable range 6 710 10d− < <  and elementary bicyclic 3-class group 
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3 3 3Cl F C C×  of rank two ([7], 6, pp. 495-499). The underlying computational 
techniques were based on the principalization algorithm via class group 
structure which we had invented in 2009 and implemented by means of the 
number theoretic computer algebra system PARI/GP [8] in 2010, as described in 
([9], 5-6, pp. 446-455). 

Throughout this paper, isomorphism classes of finite groups G are 
characterized uniquely by their identifier in the SmallGroups Database [10] [11], 
which is denoted by a pair ,o i  consisting of the order ( )ordo G=  and a 
positive integer i, delimited with angle brackets. The counter ( )1 i N o≤ ≤  is 
unique for a fixed value of the order o. In the computational algebra system 
MAGMA [12] [13] [14], the upper bound ( )N o  can be obtained as return 
value of the function NumberOfSmallGroups(o), provided that 
IsInSmallGroupDatabase(o) returns true. The identifier of a given finite group G 
can be retrieved as return value of the function IdentifyGroup(G), provided that 
Can IdentifyGroup(o) returns true. 

4.2. Trivial Towers with pF = 0  

For the decision if the p-class tower of a number field F is trivial with length 
0p F =  it suffices to compute the class number ( )h F  of the field. 

Theorem 4.1 (Trivial p-class tower.) 
The p-class tower of a number field F is trivial, ( )

pF F∞ = , with length 
0pF =

, if and only if the class number ( ) ( )#Clh F F=  is not divisible by p, i. 
e., the p-class number is 1ph F = . 

Proof. The proof consists of a sequence of equivalent statements: The class 
number satisfies ( )p h F . ⇔ The p-valuation of ( )h F  is ( )( ) 0pv h F = . ⇔ 
The p-class number is ( )( )#Cl 1pv h F

p pF h F p= = = . ⇔ The p-class group  

Cl 1pF =  is trivial. ⇔ The p-class rank ( ) ( )( )dim Cl Cl
p

p
p F Fρ =   is equal  

to zero. ⇔ The number of unramified cyclic extensions E F  of degree p is  
01 1 1 1 0

1 1 1

pp p
p p p

ρ − − −
= = =

− − −
. ⇔ The maximal unramified p-extension ( )

pF ∞  of F  

coincides with F. ⇔ The Galois group ( )( ) ( )G Gal Gal 1p pF F F F F∞∞ = = =  is 
trivial. ⇔ The length of the p-class tower is ( ) ( )dl G dl 1 0p pF F∞= = = . 

Already C. F. Gauss was able to compute class numbers ( )h F  of quadratic 
fields ( )F d=  , at a time when the concept of class field theory was not yet 
coined. Nowadays, there exist extensive tables of quadratic class numbers which 
even contain the structures of the associated class groups ( )Cl F . In 1998, 
Jacobson [15] covered all real quadratic fields with positive discriminants in the 
range 90 10d< < , and in 2016, Mosunov and Jacobson [16] investigated all 
imaginary quadratic fields with negative discriminants 1210 0d− < < . Now we 
apply these results to class field theory. 

Corollary 4.1 (Statistics for 3p = .) The asymptotic proportion of 
imaginary quadratic fields ( )F d=  , with negative discriminants 0d < , 
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whose class number ( )h F  is, respectively is not, divisible by 3p =  is given as 
43.99%, respectively 56.01%, by the heuristics of Cohen, Lenstra and Martinet. 
In Table 1, the approximations of these theoretical limits by relative frequencies 
in various ranges 0L d< <  are shown. 

Proof. The heuristic asymptotic limits are given in ([17], 2, (1.1.c), p. 126). 
Their approximation by discriminants 0L d< <  with 610L = −  in ([18], 
Example, p. 843) and ([6], 2, Remark, and 3, Remark, p. 77), where  
118455 3190 121645+ = , is still rather far away from the limits. In contrast, the 
approximations associated with the bounds 1110L = −  and 1210L = −  in ([16], 
p. 2001) are very close already. 

4.3. Abelian Single-Stage Towers with pF 1=  

The first stage ( )1
pF of the p-class tower of a number field F is determined by the 

structure of the p-class group Cl pF  of F as a finite abelian p-group. This is 
exactly the first order Artin pattern 

( ) ( ) ( )( ) ( ) ( )( )1 1 1
,AP , ATI Cl , ker ,p F FF F F F Tτ= =  (4.1) 

since the trivial ( ),ker 1F FT =  does not contain information. However, only in 
the case of p-class rank one, ( ) ( )( )dim Cl Cl 1

p

p
p F Fρ = = , it is warranted 

that the exact length of the tower is 1pF =
. A statistical example ([6], 2, 

Remark, p. 77) is shown in Table 2. 
Theorem 4.2 A number field F with non-trivial cyclic p-class group Cl p F  

has an abelian p-class tower of exact length 1p F =
, in fact, the Galois group 

1G G Clp p pF F F∞
   is cyclic. 

Proof. Suppose that Cl 1pF >  is non-trivial and cyclic. If the p-class tower 
had a length 2p F ≥

, the second p-class group 2G pF=M  would be a 
 
Table 1. Imaginary quadratic fields F with non-trivial, resp. trivial, 3-class tower. 

L ( )( )# 3 | h F  rel. fr. ( )( )# 3 h F  rel. fr. w. r. t. #total 

−106 121645 40.02% 182323 59.98% 303968 

−1011 13206088529 43.45% 17190266523 56.55% 30396355052 

−1012 132584350621 43.62% 171379200091 56.38% 303963550712 

 
Table 2. Imaginary quadratic fields F with cyclic 3-class tower for 610 0d− < < . 

3Cl F   abs. fr. rel. fr. w. r. t. ( )3# 1ρ =  

3C  80115 67.63% 118455 

9C  26458 22.34% 118455 

27C  8974 7.58% 118455 

81C  2472 2.09% 118455 

243C  393 0.33% 118455 

729C  43 0.04% 118455 
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non-abelian finite p-group with cyclic abelianization Cl pF′
M M . However, 

it is well known that a nilpotent group with cyclic abelianization is abelian, 
which contradicts the assumption of a length 2pF ≥

. 
Remark 4.1 We interpret the computation of abelian type invariants ( )1 Fτ  of 

the Sylow 3-subgroup 3Cl F  of the ideal class group ( )Cl F  of a quadratic 
field ( )F d=  as the determination of the single-stage approximation 

1
3 3G ClF F′

 G G  of the 3-class tower group 3G F∞=G  of F. This step yields 
complete information about the lattice of all unramified abelian 3-extensions 
E F  within the Hilbert 3-class field ( )1

3F  of F. 

4.4. Metabelian Two-Stage Towers with pF 2=  

According to the Successive Approximation Theorem 3.2, the second stage ( )2
pF  

of the p-class tower of a number field F is determined by the second order Artin 
pattern 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

11

2 2 2

, , LyrLyr

AP ,

ATI Cl ; ATI Cl , ker ; ker .p p F F F E E FE F

F F F

F E T T

τ

∈∈

=

    =        


 (4.2) 

The determination of ( )2AP F  for a quadratic field F with 3-class rank 

3 2ρ =  requires the computation of four 3-class groups 3Cl iE  of unramified 
cyclic cubic extensions 1 4, ,E E  and of four transfer kernels ( ),ker

iF ET . 
Whereas Mosunov and Jacobson [16] were able to determine the class groups 
( )Cl F  of more than 300 billion, precisely 303963550712, imaginary quadratic 

fields F with discriminants 1210 0d− < <  by parallel processes on multiple 
cores of a supercomputer in several years of total CPU time, it is currently 
definitely out of scope to compute the class groups ( )Cl ,1 4iE i≤ ≤ , for the 
22757307168 unramified cyclic cubic extensions iE F , of absolute degree six, 
of the 5689326792 imaginary quadratic fields F with discriminants  

1210 0d− < <  and 3-class rank 3 2ρ = . 
Therefore, it must not be underestimated that Boston, Bush and Hajir [19] 

succeeded in completing this task for the smaller range 810 0d− < <  with 
461925 imaginary quadratic fields F having 3-class rank 3 2ρ = , and 1847700 
associated totally complex dihedral fields iE  of degree six ([7], Prp. 4.1, p. 482). 
For this purpose the authors used the computational algebra system MAGMA 
[12] [13] [14] in a distributed process involving several processors with multiple 
cores. 276375 of these quadratic fields F have a 3-class group 3 3 3Cl F C C× . 

Imaginary quadratic fields ( )F d=  with negative discriminants 0d <  
are the simplest number fields with respect to their unit group FU , which is a 
finite torsion group of Dirichlet unit rank zero. This fact has considerable 
consequences for their p-class tower groups, according to the Shafarevich 
theorem [20], corrected in ([21], Thm. 5.1, p. 28), [22]. 

Theorem 4.3 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist only two metabelian 
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groups with GI-action (generator inverting action). and relation rank 2 2d G =  
(so-called Schur σ-groups [23] [19]), namely 243,5  and 243,7 . 

1) These are the groups of smallest order which are admissible as 3-class tower 
groups 3GG F∞

  of imaginary quadratic fields F with 3-class group  

3 3 3Cl F C C× . 
2) Generally, for any number field F, these groups are determined uniquely by 

the second order Artin pattern. 
(a) If ( ) ( ) ( )( )2 2 3AP 1 ; 21,21,1 ,21 , 1; 2241F  =      then 3G 243,5F∞

 . 
(b) If ( ) ( ) ( )( )2 2 3 3AP 1 ; 1 ,21,1 ,21 , 1; 4224F  =      then 3G 243,7F∞

 . 
3) The actual distribution of these 3-class tower groups G among the 276375 

imaginary quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  
and discriminants 810 0d− < <  is presented in Table 3. 

Proof. All finite 3-groups G with abelianization 3 3G G C C′ ×  are vertices 
of the descendant tree ( )R  with abelian root 3 39, 2R C C= × . A search 
for metabelian vertices with relation rank 2 2d G =  in this tree yields three hits 

27,4 , 243,5 , and 243,7 , but only the latter two of them possess a 
GI-action. 

The abelianization G G′  of a finite 3-group G which is realized as the 
3-class tower group G p F∞  of an algebraic number field F is isomorphic to the 
3-class group 3Cl F  of F. When F is imaginary quadratic, it possesses signature 
( ) ( )1 2, 0,1r r =  and torsionfree Dirichlet unit rank 1 2 1 0r r r= + − = . If  

3 3 3ClG G F C C′ ×  , then the generator rank of G is 1 2d G =  and the  
Shafarevich theorem implies bounds for the relation rank  

1 2 12 2d G d G d G r= ≤ ≤ + = . 
The entries of Table 3 have been taken from [19]. 
More recently, Boston, Bush and Hajir [24] used MAGMA [14] for computing the 

class groups of the 481756 real quadratic fields F having 3-class rank 3 2ρ =  and 
discriminants in the range 90 10d< < , and the class groups of the 1927024 
associated totally real dihedral fields iE  of degree six, arising from unramified 
cyclic cubic extensions iE F  ([7], Prp. 4.1, p. 482). 415698 of these quadratic 
fields F have a 3-class group 3 3 3Cl F C C×  (415699 according to( [15], Tbl. 7)). 

Real quadratic fields ( )F d=  with positive discriminants 0d >  are the 
second simplest number fields with respect to their unit group FU , which is an 
infinite group of torsionfree Dirichlet unit rank one. Again, there are remarkable 
consequences for their p-tower groups, by the Shafarevich theorem ([21], Thm. 
5.1, p. 28). 

Theorem 4.4 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many 
 
Table 3. Frequencies of metabelian 3-class tower groups G for 810 0d− < < . 

G   abs. fr. rel. fr. w. r. t. rel. fr. w. r. t. measure [19] 
min

d  

243,5  83353 30.16% 276375 18.04% 461925 128 729 17.56%≈  4027 

243,7  41398 14.98% 276375 8.96% 461925 64 729 8.78%≈  12131 
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metabelian groups with RI-action and relation rank 2 3d G =  (so-called Schur + 
1 σ-groups [24]), but only three of minimal order 34, namely 81,7 , 81,8  
and 81,10 . 

1) These are the groups of smallest order which are admissible as 3-class tower 
groups 3GG F∞

  of real quadratic fields F with 3-class group 3 3 3Cl F C C× . 
2) Generally, for any number field F, these groups are determined uniquely by 

the second order Artin pattern. 

(a) If ( ) ( ) ( )( )2 2 3 2 2 2AP 1 ; 1 ,1 ,1 ,1 , 1; 2000F  =      then 3G 81,7F∞
 . 

(b) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 21,1 ,1 ,1 , 1; 2000F  =      then 3G 81,8F∞
 . 

(c) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 21,1 ,1 ,1 , 1; 1000F  =      then 3G 81,10F∞
 . 

3) The actual distribution of these 3-class tower groups G among the 415698 
real quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  and 
discriminants 90 10d< <  is presented in Table 4. Additionally, the frequencies 
of the groups 243,5  and 243,7  in Theorem 4.3 are given. 

Proof. A search for metabelian vertices G of minimal order with relation rank 

2 3d G =  in the descendant tree ( )R  with abelian root 3 39, 2R C C= ×  
yields three hits 81,7 , 81,8 , and 81,10 . All of them possess a RI-action. 

The abelianization G G′  of a finite 3-group G which is realized as the 
3-class tower group G p F∞  of an algebraic number field F is isomorphic to the 
3-class group 3Cl F  of F. When F is real quadratic, it possesses signature  
( ) ( )1 2, 2,0r r =  and torsionfree Dirichlet unit rank 1 2 1 1r r r= + − = . If 

3 3 3ClG G F C C′ ×  , then the generator rank of G is 1 2d G =  and the 
Shafarevich theorem implies bounds for the relation rank  

1 2 12 3d G d G d G r= ≤ ≤ + = . 
The entries of Table 4 have been taken from [24]. 
In [24], Boston, Bush and Hajir only computed the first component of the 

second order Artin pattern ( ) ( ) ( )( )2 2 2AP ,F F Fτ=   in Formula (4.2), that is, 
the abelian type invariants ( )2 Fτ  of second order of real quadratic fields F with 
discriminants 90 10d< < . Determining the second component ( )2 F , the 
transfer kernel type of F, is considerably harder with respect to the 
computational expense. Consequently, the most extensive numerical results on 
transfer kernels available currently, have been computed by ourselves for the 
smaller ranges 80 10d< <  in [25] [26], and, even computing third order Artin 

 
Table 4. Frequencies of metabelian 3-class tower groups G for 90 10d< < . 

G   abs. fr. rel. fr. w. r. t. rel. fr. w. r. t. measure [24] mind  

81,7  122955 29.58% 415698 25.52% 481756 1664 6561 25.36%≈  142097 

81,8  or 208236 50.09% 415698 43.22% 481756 8320 19683 42.27%≈  32009 

81,10         

243,5  13712 3.30% 415698 2.85% 481756 1664 59049 2.82%≈  422573 

243,7  6691 1.61% 415698 1.39% 481756 832 59049 1.41%≈  631769 
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patterns, for 70 10d< <  in [27] [28]. With the aid of these results, we now 
illustrate that the transfer kernels ( ),ker F ET  of 3-class extensions  

, 3 3: Cl ClF ET F E→  from real quadratic fields F to unramified cyclic cubic 
extensions E F  are capable of narrowing down the number of contestants for 
the 3-tower group 3G F∞  significantly, and thus of refining the statistics in [24]. 

Corollary 4.2 

1) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 32,1 ,1 ,1 , 1; 1000F  =      then 3G 729,96F∞
 . 

2) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 32,1 ,1 ,1 , 1; 2000F  =      then 3G 729,F i∞
  with 

{ }97,98i∈ . 

3) If ( ) ( ) ( )( )2 2 2 2 2 2AP 1 ; 2 ,1 ,1 ,1 , 1; 0000F  =      then 3G 729,F i∞
  with 

{ }99,100,101i∈ . 
The actual distribution of these 3-class tower groups G among the 34631, 

respectively 2576, real quadratic fields ( )F d=  with 3-class group 

3 3 3Cl F C C×  and discriminants 80 10d< < , respectively 70 10d< < , is 
presented in Table 5. 

4.5. Non-Metabelian Three-Stage Towers with pF 3=  

According to the Successive Approximation Theorem 3.2, the third stage ( )3
pF  

of the p-class tower of a number field F is usually determined by the third order 
Artin pattern 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 1

3 3 3 1 2 1 2

Lyr Lyr
AP , ; , ; .

E F E F
F F F F E F Eτ τ τ

∈ ∈

    = =         
    (4.3) 

It is interesting, however, that there are extensive collections of quadratic 
fields F with 3-class towers of exact length 3 3F = , which can be characterized 
by the second order Artin pattern already. We begin with imaginary quadratic 
fields ( )F d=  with discriminants 0d < . 

Theorem 4.5 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many non- 
 
Table 5. Frequencies of metabelian 3-class tower groups G for 80 10d< < , resp. 107. 

G   abs. fr. rel. fr. w. r. t. mind  

81,7  10244 29.58% 34631 142097 

81,8  10514 30.36% 34631 32009 

81,10  7104 20.51% 34631 72329 

729,96  242 0.70% 34631 790085 

729,97  or 713 2.06% 34631 494236 

729,98      

729,99  66 2.56% 2576 62501 

729,100  42 1.63% 2576 152949 

729,101  42 1.63% 2576 252977 
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metabelian groups with GI-action and relation rank 2 2d G =  (so-called Schur 
σ-groups [19] [23]), but only seven of minimal order 38, namely 6561, i  with 

{ }606,616,617,618,620,622,624i∈ . 
1) These are the groups of smallest order which are admissible as non- 

metabelian 3-class tower groups 3GG F∞
  of imaginary quadratic fields F with 

3-class group 3 3 3Cl F C C× . 
2) Exceptionally, for an imaginary quadratic field F, the trailing six of these 

groups are determined by the second order Artin pattern already. 

(a) If ( ) ( ) ( )( )2 2 3AP 1 ; 32,21,1 ,21 , 1; 1313F  =      then 3G 6561,616F∞
 . 

(b) If ( ) ( ) ( )( )2 2 3AP 1 ; 32,21,1 ,21 , 1; 2313F  =      then 3G 6561,F i∞
  with 

{ }617,618i∈ . 

(c) If ( ) ( ) ( )( )2 2AP 1 ; 32,21,21,21 , 1; 1231F  =      then 3G 6561,622F∞
 . 

(d) If ( ) ( ) ( )( )2 2AP 1 ; 32,21,21,21 , 1; 2231F  =      then 3G 6561,F i∞
  with 

{ }620,624i∈ . 
3) The actual distribution of these 3-class tower groups G among the 24476 

imaginary quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  
and discriminants 710 0d− < <  is presented in Table 6. 

Proof. By a similar but more extensive search than in the proof of Theorem 
4.3. Data for Table 6 has been computed by ourselves in June 2016 using 
MAGMA [14]. 

Remark 4.2 It should be pointed out that items (1) and (2) of Theorem 4.5 are 
not valid for real quadratic fields, as documented in ([29], Thm. 7.8, p. 162, and 
Thm. 7.12, p. 165). 

The group 6561,606  belongs to the infinite Shafarevich cover of the 
metabelian group 729,45  with respect to imaginary quadratic fields ([30], 
Cor. 6.2, p. 301), [31]. It shares a common second order Artin pattern with all 
other elements of the Shafarevich cover. Third order Artin patterns must be used 
for its identification, as shown in ([29], Thm. 7.14, p. 168). 

Now we turn to real quadratic fields ( )F d=  with discriminants 0d > . 
Theorem 4.6 Among the finite 3-groups G with elementary bicyclic 

abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many non- 
 

Table 6. Frequencies of non-metabelian 3-class tower groups G for 710 0d− < < . 

G   abs. fr. rel. fr. w. r. t. type   min
d  

6561,616  760 3.11% 24476 E.6 (1313) 15544 

6561,617  or 1572 6.42% 24476 E.14 (2313) 16627 

6561,618        

6561,622  798 3.26% 24476 E.8 (1231) 34867 

6561,620  or 1583 6.47% 24476 E.9 (2231) 9748 

6561,624        
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metabelian groups with RI-action and relation rank 2 3d G =  (so-called Schur + 
1 σ-groups [24]), but only nine of minimal order 37, namely 2187, i  with 

{ }270,271,272,273,284,291,307,308,311i∈ . 
1) These are the groups of smallest order which are admissible as non- 

metabelian 3-class tower groups 3GG F∞
  of real quadratic fields F with 3- 

class group 3 3 3Cl F C C× . 
2) Exceptionally, for a real quadratic field F, four of these groups are 

determined by the second order Artin pattern already. 
(a) If ( ) ( ) ( )( )2 2 2 3AP 1 ; 2 ,21,1 ,21 , 1; 0313F  =      then 3G 2187,F i∞

  with 
{ }284,291i∈ . 

(b) If ( ) ( ) ( )( )2 2 2AP 1 ; 2 ,21,21,21 , 1; 0231F  =      then 3G 2187,F i∞
  

with { }307,308 .i∈  
3) The actual distribution of these 3-class tower groups G among the 415698 

real quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  and 
discriminants 91 10d< <  is presented in Table 7. 

Proof. The claims for transfer kernel type c.18, ( ) ( )~ 0313F , are a 
consequence of ([21], Prp. 7.1, p. 32, Thm. 7.1, p. 33, and Rmk. 7.1, p. 35), those 
for type c.21, ( ) ( )~ 0231F , have been proved in ([21], Prp. 8.1, p. 42, Thm. 
8.1, p. 44, and Rmk. 8.2, p. 45). A slightly stronger result is the Main Theorem 
([21], Thm. 2.1, p. 22). 

Remark 4.3 The groups 2187, i  with { }270,271,272,273i∈  are elements 
of the infinite Shafarevich cover of the metabelian group 729,45  with respect 
to real quadratic fields. 

The group 2187,311  belongs to the infinite Shafarevich cover of the 
metabelian group 729,57  with respect to real quadratic fields. 

These five groups share a common second order Artin pattern with all other 
elements of the relevant Shafarevich cover. Third order Artin patterns must be 
employed for their identification, as shown in ([29], Thm. 7.13, p. 167, and Thm. 
7.15, p. 169). 

5. Maximal Subgroups of 3-Groups of Coclass One 

Let ( )( ) 1i i
Gγ

≥
 be the descending lower central series of the group G, defined 

recursively by ( )1 :G Gγ =  and ( ) ( )1: ,i iG G Gγ γ −=     for 2i ≥ , in particular, 
( )2 G Gγ ′=  is the commutator subgroup of G. A finite p-group G is nilpotent 

with ( ) ( ) ( ) ( )1 2 1 1c cG G G Gγ γ γ γ +> > > > =  for some integer 1c ≥ , which is 
 
Table 7. Frequencies of non-metabelian 3-class tower groups G for 90 10d< < . 

G   abs. fr. rel. fr. w. r. t. type   mind  

2187,284  or 4318 1.04% 415698 c.18 (0313) 534824 

2187,291        

2187,307  or 4377 1.05% 415698 c.21 (0231) 540365 

2187,308        
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called the nilpotency class ( )cl G c=  of G. When G is of order np , for some 
integer 1n ≥ , the coclass of G is defined by ( )cc :G n c= −  and ( )lo :G n=  is 
called the logarithmic order of G. 

Finite 3-groups G with coclass ( )cc 1G =  were investigated by N. Blackburn 
[32] in 1958. All of these CF-groups, which exclusively have cyclic factors 
( ) ( )1i iG Gγ γ +  of their descending central series for 2i ≥ , are necessarily 

metabelian with second derived subgroup 1G′′ =  and abelian commutator 
subgroup G′  and possess abelianization 3 3G G C C′ × , according to 
Blackburn [33]. 

For the statement of Theorem 5.1, we need a precise ordering of the four 
maximal subgroups 1 4, ,H H  of the group ,G x y= , which can be generated 
by two elements ,x y , according to the Burnside basis theorem. For this purpose, 
we select the generators ,x y  such that 

2
1 2 3 4, , , , , , , ,H y G H x G H xy G H xy G′ ′ ′ ′= = = =  (5.1) 

and ( )1 2H Gχ= , provided that G is of nilpotency class ( )cl 3G ≥ . Here we 
denote by 

( ) ( )( ) [ ] ( ){ }2 2 4: | ,G g G h G g h Gχ γ γ= ∈ ∀ ∈ ∈           (5.2) 

the two-step centralizer of G′  in G. 

Parametrized Presentations of Metabelian 3-Groups 

The identification of the groups will be achieved with the aid of parametrized 
polycyclic power-commutator presentations, as given by Blackburn [32], Miech 
[34], and Nebelung [35]: 

( ) [ ] ( ) [ ] [ ]

( ) [ ] ( )
2 1 2 3 1 2 1

1 3 3 3 3 3 3 3 3
3 1 2 3 1 2 1 2 2 1

, : , , , , | , , , , 1, , ,

, 1, , , 1, 1 ,

n n a
a n i i i n n

n w z n
i i n n i i i i n n

G z w x y s s s y x s s x s y s s

y s x s y s s s s s s s s

− = − −

− −
= − − = + + − −

= = ∀ = = =

∀ = = = ∀ = = =



(5.3) 

where { }0,1a∈  and { }, 1,0,1w z∈ −  are bounded parameters, and the index of 
nilpotency ( ) ( ) ( ) ( )( ) ( )3cl 1 cl cc log ord : lon G G G G G= + = + = =  is an 
unbounded parameter. 

The following lemma generalizes relations for second and third powers of 
generators in ([27], Lem. 3.1), [28]. 

Lemma 5.1 Let ,G x y=  be a finite 3-group with two generators ,x y G∈ . 
Denote by [ ]2 : ,s y x=  the main commutator, and by [ ]3 2: ,s s x=  and 

[ ]3 2: ,t s y=  the two iterated commutators. Then the second and third power of 
the element xy , respectively 2xy , are given by 

( ) ( )

( ) ( )

2 32 2 3 3 3 2
2 3 2 3 3

2 32 2 4 2 2 2 3 6 6 2 2
2 3 2 3 3

and , respectively

and ,

xy x y s t xy x y s s t

xy x y s t xy x y s s t

= =

= =
    (5.4) 

provided that ( )3t Gζ∈  is central, 3
3 1t = , and [ ]3, 1s y = . 

Proof. We begin by preparing three commutator relations: 

[ ] [ ] [ ]2 2 2 2 2 3 2 2 2 2 3, , , and , .yx xy y x xys s x xs s x xs s s y ys s y ys t= = = = = =  (5.5) 
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Now we prove the power relations by expanding the power expressions by 
iterated substitution of the commutator relations in Formula (5.5), always 
observing that 3t  belongs to the centre, 3

3 1t = , and 3 3s y ys=  commute: 

( )2 2 2 2
2 2 3 2 3, and thusxy xyxy xxys y x yys t x y s t= = = =  

( )3 2 2 2 2 2 2 2
2 3 2 3 2 3 3 2 2 3 3

2 3 2 3 2 4
2 2 2 3 3 3 2 3 2 3 2 3 3 2 2 2 3 3

3 2 2 3 3 3 2
2 3 2 3 3 2 3 3

( )

, respectively

xy xy xy x y s t xy x y s xyt x yyxs s yt x yxys s ys t

x xys ys ys t s t x yys t ys t s s t x y s ys s s t

x y ys t s s t x y s s t

= = = = =

= = =

= =

 

( )22 2 2 2 2
2 2 2 3 2 3 2 3 2 2 3 3

2 2 3 2 3 2 3 2 4 2 2
2 3 2 3 2 2 3 2 3 2 3 2 3 , and thus

xy xyyxyy xyxys yy xxys yys t y x yys t ys yt x y s yys t t

x y ys t ys t x y s ys t x y ys t s t x y s t

= = = = =

= = = =
 

( ) ( )3 22 2 2 2 4 2 2 2 2 4 2 2 4 2
2 3 2 2 3 2 2 3 3

2 2 2 2 2 2 2 3
2 3 2 3 3 2 2 2 3 3 3 2 2 2 3 2 3 3

2 2 4 2 2 2 2
2 2 3 2 3 2 2 3 3 3 2 2 3 2 2 3 2 3 2 3 3

3

xy xy xy x y s t xy x y s s xyyt x y s xs s yyt

x yyyyxs s s yys t x yyyxys s ys t ys t x yyxys ys ys t s ys t

x yxys yys t ys t s ys t s t x xys yys t ys ys t ys t s s t

x y

= = = =

= = =

= =

= 3 2 2 3 3 2 2 2 2
2 3 2 2 3 2 3 2 3 3 2 2 2 3 2 2 3ys t ys yys t s t ys s t x y s ys yys t s ys s=

 

3 2 2 2 2 3 3 2 3 3 2
2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3

3 3 2 3 2 3 4 4 3 2 3 4 4 2
2 3 2 3 2 3 2 3 2 2 2 3 2 3 2 2 2 3 3

3 4 4 2 3 4 4 2 2 3 4 4 2 2
2 2 3 2 3 3 2 2 2 3 3 2 3 2 3 2 3 3

3 5
2

x y ys t ys t ys t ys t s s x y s ys t ys yt s s

x y ys t s t yys t s s x y s s yys t s s x y s s yys s t

x y s ys t ys s t x y s ys ys s t x y ys t ys t s s t

x y s ys

= =

= = =

= = =

= 2 4 2 2 3 5 5 2 4 3 6 6 2 2
2 3 2 3 3 2 3 2 3 3 2 3 3 .t s s t x y ys t s s t x y s s t= =

 

Theorem 5.1 Let ( ), ,n
aG x y G z w=   be a finite 3-group of coclass 

( )cc 1G =  and order 3nG =  with generators ,x y  such that ( )2y Gχ∈  is 
contained in the two-step centralizer of G, whereas ( )2\x G Gχ∈ , given by a 
polycyclic power commutator presentation with parameters { }0,1a∈ , 

{ }, 1,0,1w z∈ − , and index of nilpotency 4n ≥ . 
Then three of the four maximal subgroups, 2 ,i

iH xy G G− ′= < , 2 4i≤ ≤ , 
are non-abelian 3-groups of coclass ( )cc 1iH = , as listed in Table 8 in 
dependence on the parameters , , ,n a z w . 

The supplementary Table 9 shows the abelian maximal subgroups of the 
remaining two extra special 3-group of coclass ( )cc 1G =  and order 33G = . 

Proof. For an index of nilpotency 4n ≥ , the first maximal subgroup 
 
Table 8. Non-abelian maximal subgroups iH G<  of 3-groups G of coclass 1. 

G   n a z w 2 ,H x G′=  3 ,H xy G′=  2
4 ,H xy G′=  

( )0 0,0nG  ≥4 0 0 0 ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  

( )0 0,1nG  ≥4 0 0 1 ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )0 1,0nG  ≥4 0 1 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )0 1,0nG −  ≥4 0 −1 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )1 0, 1nG −  ≥5 1 0 −1 ( )1
0 0,1nG −

  ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  

( )1 0,0nG  ≥5 1 0 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )1 0,1nG  ≥5 1 0 1 ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  
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Table 9. Abelian maximal subgroups iH G<  of extra special 3-groups G. 

G   n a z w 1 ,H y G′=  2 ,H x G′=  3 ,H xy G′=  2
4 ,H xy G′=  

( )3
0 0,0G  3 0 0 0 3 3C C×  3 3C C×  3 3C C×  3 3C C×  

( )3
0 0,1G  3 0 0 1 3 3C C×  9C  9C  9C  

 

1 ,H y G′=  of G coincides with the two-step centralizer ( )2 Gχ  of G, which 
is a nearly homocyclic abelian 3-group ( )3, 1A n −  of order 13n− , when 0a = . 
For 1a = , we have ( )1 1 3, 1H H A n′ − . 

We transform all relations of the group ( ),n
aG G z w  into relations of the 

remaining three maximal subgroups ( )1 ,nH Gα ζ ω−
  of G. 

The polycyclic commutator relations [ ]2 ,s y x= , [ ]1,i is s x−=  for 3 i n≤ ≤ , 
and the nilpotency relation 1ns =  for the group ,G x y= , with lower central 
series 1,i i iG s Gγ γ +=  for 2i ≥ , can be used immediately for the subgroup 

2 2, ,H x G x s′= =  with lower central series 2 1 2,i i iH t Hγ γ += , where 

1:i it s +=  for 2i ≥ , and 1 1nt − = . 
For the lower central series of 3 ,H xy G′=  and 2

4 ,H xy G′= , we must 

employ the main commutator relation [ ]2 1, a
ny s s −= , and [ ], 1iy s =  for 3i ≥ . 

According to the right product rule for commutators, we have  

[ ] [ ] [ ] [ ]1 1 1, , , 1 , 1y y
i i i i i i i is xy s y s x s s s y s s− − −= ⋅ = ⋅ = = ⋅ = , for 4i ≥ , but  

[ ] [ ] [ ] [ ]2 2 2 1 3 1 3 3 1 3, , , ,y a y a a
n n ns xy s y s x s s s s s y s s− − −
− − −= ⋅ = = = , and in a similar fashion 

[ ] [ ] [ ]2
1 1 1, , , 1 , 1y y

i i i i i i i is xy s y s xy s s s y s s− − −  = ⋅ = ⋅ = = ⋅ =  , for 4i ≥ , but again 

exceptionally [ ] [ ]2 1 2
2 2 2 1 1 3 1 3 1 3, , , y a a a a

n n n ns xy s y s xy s y s s y s s s s− − − −
− − − −  = ⋅ = = =  . For 

1a = , the left product rule for commutators shows  
31 1 1 1 1

1 3 1 3 4, , ,
s

n ns s xy s xy s xy s± ± ±
− −     = ⋅ =     
  , that is, the slight anomaly for the 

main commutator disappears in the next step. Thus, the lower central series is 

1,i j i i jH t Hγ γ +=  for 2i ≥ , 3 4j≤ ≤ , where generally 1:i it s +=  for 3i ≥ , and 

2 3:t s=  for 0a = , 2
2 1 3: j

nt s s−
−=  for 1a = . In particular, 3 2,H xy s=  and 

2
4 2,H xy s= . 

The main commutator relation for all three subgroups 2 3 4, ,H H H  of any 
group ( ),n

aG G z w  with 4n ≥  is [ ]2 2 2, 1 ns t tα−= = , that is 0α = , generally, 
and it remains to determine ,ζ ω . 

For this purpose, we come to the power relations of G, 3
1

w
nx s −= ,  

3 3
2 3 1

z
ny s s s −= , and 3 3

1 2 1i i is s s+ + =  for 2i ≥ , supplemented by (5.4):  

( )3 3 3 3 2 2
2 3 1 1 1 1

a w z a
n n n nxy x y s s s s s s− −
− − − −= =  and ( ) ( )3 22 3 3 3 2 2 2

2 3 1 1 1 1
a w z a

n n n nxy x y s s s s s s− −
− − − −= = , 

and we use these relations to determine ,ζ ω  in dependence on , ,w z a . 

Generally, we have 3 3 3 3
2 2 3 2 3 4 1s t t s s s= =  for 0a = ,  

( )3 23 3 3 3 3 3
2 2 3 2 1 3 4 2 3 4 1j

ns t t s s s s s s s−
−= = =  for 1a = , and thus uniformly 0ζ = . 

For ( )0 0,0nG , we uniformly have ( ) ( )333 2 1x xy xy= = = , and thus 0ω =  
for all three subgroups. For ( )0 0,1nG , we uniformly have  
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( ) ( )333 2
1nx xy xy s −= = = , and thus 1ω =  for all three subgroups. For 

( )0 1,0nG ± , we have 3 1x = , but ( )3 1
1nxy s±−= , ( )32 2 1

1 1n nxy s s±
− −= =  , and thus 

0ω =  for 2H  but 1ω =  for 3 4,H H , since ( ) ( )0 00, 1 0,1n nG G−  . 

For ( )1 0, 1nG − , we have 3 1
1nx s−−= , but ( ) ( )33 2 3

1 1nxy xy s−−= = = , and thus 

1ω =  for 2H  but 0ω =  for 3 4,H H . For ( )1 0,0nG , we have 3 1x = , but 

( ) ( )33 2 2
1 1n nxy xy s s−
− −= = = , and thus 0ω =  for 2H  but 1ω =  for 3 4,H H . 

For ( )1 0,1nG , we have 3
1nx s −= , ( ) ( )33 2 1

1nxy xy s−−= = , and thus 1ω =  for all 

three subgroups, again observing that ( ) ( )0 00, 1 0,1n nG G−  . 

The only 3-groups G of coclass ( )cc 1G =  and order 33G =  are the two 
extra special groups ( )3

0 0,0G  and ( )3
0 0,1G . Since 2 3 1t s= = , all their four 

maximal subgroups, 1 2,H y s= , 2 2,H x s= , 3 2,H xy s= , 2
4 2,H xy s= , 

are abelian. For 0w z= = , 2s  is independent of the other generator, and 

3 3iH C C×  for 1 4i≤ ≤ . However, for 1w = , 0z = , we have  

( ) ( )333 2
2x xy xy s= = = , 3

2 1s = , and thus 2 3 4 9H H H C   , whereas  

1 3 3H C C× . 

6. A General Theorem for Arbitrary Base Fields 

Suppose that p is a prime, F is an algebraic number field with non-trivial p-class 
group Cl 1p F > , and E is one of the unramified abelian p-extensions of F. We 
show that, even in this general situation, a finite p-class tower of F exerts a very 
severe restriction on the p-class tower of E. 

Theorem 6.1 Assume that F possesses a p-class tower ( ) ( )n
p pF F∞ =  of exact 

length p F n=  for some integer 1n ≥ . Then the Galois group ( )( )Gal pE E∞  
of the p-class tower of E is a subgroup of index :E F  of the p-class tower 
group ( )( )Gal pF F∞  of F and the length of the p-class tower of E is bounded by 

p E n≤ . 
Proof. According to the assumptions, there exists a tower of field extensions, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1< ,n n n
p p p p p p pF E F E F E F E F +≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

where p F n=  enforces the coincidence ( ) ( ) ( )1n n n
p p pF E F += =  of the trailing 

three fields. Since ( )( ) ( )( ) ( )Gal Gal Galn n
p pF F F E E F , the group index of 

( )( ) ( )( )Gal Galn n
p pE E F E=  in ( )( )Gal n

pF F  is equal to the field degree  

[ ]:E F  and ( )( ) ( )( )Gal Gal n
p pE E E E∞ =  is a subgroup of index [ ]:E F  of  

( )( ) ( )( )Gal Galn
p pF F F F∞= . The equality ( ) ( )1n n

p pE E +=  implies the bound 

p E n≤ . 

We shall apply Theorem 6.1 to the situation where 3p = , 2n = , and E is an  

unramified cyclic cubic extension of F, whence ( )( )3Gal E E∞  is a maximal 
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subgroup of ( )( )3Gal F F∞ . 

6.1. Application to Quadratic Base Fields 

Proposition 6.1 Let G be a finite 3-group with elementary bicyclic  
abelianization 3 3G G C C′ × . Then the following conditions are equivalent: 

1) The transfer kernel type of G is D.10, ( ) ( )~ 2241G . 
2) The abelian quotient invariants of the four maximal subgroups 1 4, ,H H  

of G are ( ) ( )3~ 21,21,1 ,21Gτ . 
3) The isomorphism types of the four maximal subgroups of G are  

4
1 2 4 3 ,3H H H    and 4

3 3 ,13H  . 
4) The group G is isomorphic to the Schur σ-group 53 ,5  with relation rank 

2 2d = . 
Proof. We put : 243,5G =  and use the presentation [14] 

3 3
2 3 3 2 3 2 3 2 3 3, , , , | [ , ], [ , ], [ , ], , .G x y s s t s y x s s x t s y x s y s= = = = = =  

Then we obtain the maximal subgroups 

1 2 3, , ,H y G y s s′= = , since [ ]3 2 ,t s y= , 

2 2 3, , ,H x G x s t′= = , since [ ]3 2 ,s s x= , 

3 2 3, , ,H xy G xy s s′= = , since [ ]2 3 3,s xy s t= , 
2 2

4 2 3, , ,H xy G xy s s′= = , since 2 2
2 3 3,s xy s t  =  . 

Using Lemma 5.1, and comparing to the abstract presentations [14] 
[ ] 3

2 281,3 , , , | , ,ξ υ σ τ σ υ ξ τ ξ= = =  and 

[ ] 3 3 3
2 2 281,13 , , , | , , , 1ξ υ ζ σ σ υ ξ ξ σ υ ζ= = = = = , 

we conclude 

1 2 3 2, , , 81,3H y s s y s= =  , since [ ]3
3 2 3,y s s y t= ≠ = , 

2 2 3, , 81,13H x s t=  , since [ ]3
3 2 ,x s s x= = , 

3 2 3 2, , , 81,3H xy s s xy s= =  , since ( ) [ ]3 2
3 2 3 3,xy t s xy s t= ≠ = , 

2 2
4 2 3 2, , , 81,3H xy s s xy s= =  , since ( )32 2 2 2 2

3 3 2 3 3,xy s t s xy s t = ≠ =  . 

Theorem 6.2 Let ( )F d=  be a quadratic field with elementary bicyclic 
3-class group 3 3 3Cl F C C× . Then the following conditions are equivalent: 

1) The transfer kernel type of F is D.10, ( ) ( )~ 2241F . 
2) The abelian type invariants of the 3-class groups 3Cl iE  of the four 

unramified cyclic cubic extensions iE F  are ( ) ( )3~ 21,21,1 ,21Fτ . 
3) The second 3-class group 2

3G F  of F has the maximal subgroups 
4

1 2 4 3 ,3H H H    and 4
3 3 ,13H  . 

4) The 3-class tower group 3G F∞  of F is the Schur σ-group 53 ,5  with 
relation rank 2 2d = . 

Proof. The claims follow from Proposition 6.1 by applying the Successive 
Approximation Theorem 3.2 of first order. 

Corollary 6.1 Let F be a quadratic field which satisfies one of the equivalent 
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conditions in Theorem 6.2. Then the length of the 3-class tower of F is 3 2F = . 
The four unramified cyclic cubic extensions iE F  are absolutely dihedral of 
degree 6, with torsionfree Dirichlet unit rank 2r ≥ , and possess 3-class towers 
of length 3 2iE = . More precisely, 3 3 3 3 3Cl E C C C× ×  and 4

3 3G 3 ,13E∞
  

with relation rank 2 5d = , but 3 9 3Cl iE C C×  and 4
3G 3 ,3iE∞

  with 
relation rank 2 4d =  for { }1,2,4i∈ . 

Proof. This is a consequence of Theorems 6.1 and 6.2, satisfying the 
Shafarevich theorem. 

Proposition 6.2 Let G be a finite 3-group with elementary bicyclic 
abelianization 3 3G G C C′ × . Then the following conditions are equivalent: 

1) The transfer kernel type of G is D.5, ( ) ( )~ 4224G . 
2) The abelian quotient invariants of the four maximal subgroups 1 4, ,H H  

of G are ( ) ( )3 3~ 1 ,21,1 ,21Gτ . 
3) The isomorphism types of the four maximal subgroups of G are 

4
1 3 3 ,13H H   and 4

2 4 3 ,3H H  . 
4) The group G is isomorphic to the Schur σ-group 53 ,7  with relation 

rank 2 2d = . 
Proof. We put : 243,7G =  and use the presentation [14] 

[ ] [ ] [ ] 3 3 2
2 3 3 2 3 2 3 2 3 3, , , , | , , , , , , , .G x y s s t s y x s s x t s y x s y s= = = = = =  

Similarly as in Proposition 6.1, we obtain the maximal subgroups 

1 2 3, , ,H y G y s s′= = , 2 2 3, , ,H x G x s t′= = , 

3 2 3, , ,H xy G xy s s′= = , and 2 2
4 2 3, , ,H xy G xy s s′= = . 

Using Lemma 5.1, and comparing to the abstract presentations 
[ ] 3

2 281,3 , , , | , ,ξ υ σ τ σ υ ξ τ ξ= = =  and 
[ ] 3 3 3

2 2 281,13 , , , | , , , 1ξ υ ζ σ σ υ ξ ξ σ υ ζ= = = = = , 

we conclude 

1 2 3 2, , , 81,3H y s s y s= =  , since [ ]3 2
3 2 3,y s s y t= ≠ = , 

2 2 3, , 81,13H x s t=  , since [ ]3
3 2 ,x s s x= = , 

3 2 3 2, , , 81,3H xy s s xy s= =  , since ( ) [ ]3 2
3 3 2 3 3,xy s t s xy s t= ≠ = , 

2
4 2 3, , 81,13H xy s s=  , since ( )32 2 2

3 3 2 ,xy s t s xy = =   . 

Theorem 6.3 Let ( )F d=  be a quadratic field with elementary bicyclic 
3-class group 3 3 3Cl F C C× . Then the following conditions are equivalent: 

1) The transfer kernel type of F is D.5, ( ) ( )~ 4224F . 
2) The abelian type invariants of the 3-class groups 3Cl iE  of the four 

unramified cyclic cubic extensions iE F  are ( ) ( )3 3~ 1 ,21,1 ,21Fτ . 
3) The second 3-class group 2

3G F  of F has the maximal subgroups  
4

1 3 3 ,13H H   and 4
2 4 3 ,3H H  . 

4) The 3-class tower group 3G F∞  of F is the Schur σ-group 53 ,7  with 
relation rank 2 2d = . 

Proof. The claims follow from Proposition 6.2 by applying the Successive 
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Approximation Theorem 3.2 of first order. 
Corollary 6.2 Let F be a quadratic field which satisfies one of the equivalent 

conditions in Theorem 6.3. Then the length of the 3-class tower of F is 3 2F = . 
The four unramified cyclic cubic extensions iE F  are absolutely dihedral of 
degree 6, with torsionfree Dirichlet unit rank 2r ≥ , and possess 3-class towers 
of length 3 2iE = . More precisely, 3 3 3 3Cl iE C C C× ×  and 4

3G 3 ,13iE∞
  

with relation rank 2 5d =  for { }1,3i∈ , but 3 9 3Cl iE C C×  and 
4

3G 3 ,3iE∞
  with relation rank 2 4d =  for { }2,4i∈ . 

Proof. This is a consequence of Theorems 6.1 and 6.3, satisfying the 
Shafarevich theorem. 

6.2. Application to Dihedral Fields 

We recall that a dihedral field E of degree 6 is an absolute Galois extension 
E   with group ( ) 3 2 1Gal , | 1,E σ τ σ τ στ τσ −= = = = . It is a cyclic cubic 
relative extension E F  of its unique quadratic subfield F Eσ= , and it 
contains three isomorphic, conjugate non-Galois cubic subfields L Eτ= , Lσ , 

2
Lσ . The conductor c of E F  is a nearly squarefree positive integer with 
special prime factors, and the discriminants satisfy the relations 4 3

E Fd c d=  and 
2

L Fd c d= . Here, we shall always be concerned with unramified extensions, 
characterized by the conductor 1c = , and thus 3

E Fd d= , a perfect cube, and 
equal L Fd d= . 

6.2.1. Totally Complex Dihedral Fields 
The computational information on 3-tower groups 3: GG F∞=  of imaginary 
quadratic fields F in Table 3 admits the purely theoretical deduction of 
impressive statistics for 3-tower groups 3: GS E∞=  of totally complex dihedral 
fields E in Table 10 by means of the Corollaries 6.1 and 6.2. We use the crucial 
new insight that the groups S G  are maximal subgroups of G, because the 
extensions E F  are unramified cyclic of degree 3. 

6.2.2. Totally Real Dihedral Fields 
The computational information on 3-tower groups 3: GG F∞=  of real quadratic 
fields F in Table 4 admits the purely theoretical deduction of impressive statistics for 
3-tower groups 3: GS E∞=  of totally real dihedral fields E in Table 11 by means of 
Theorem 5.1. Again, we use the innovative result that the groups S G  are 
maximal subgroups of G, since the extensions E F  are unramified cyclic cubic. 
 
Table 10. Frequencies of dihedral 3-class tower groups S for 2410 0Ed− < < . 

G   ( )1 Gτ  abs. fr. S   ( )1 Sτ  abs. fr. 
minEd  

243,5  12 83353 81,3  21 250059 40273 

243,5  12 83353 81,13  13 83353 40273 

243,7  12 41398 81,3  21 82796 121313 

243,7  12 41398 81,13  13 82796 121313 
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Table 11. Frequencies of dihedral 3-class tower groups S for 270 10Ed< < . 

G   ( )1 Gτ  abs. fr. S   ( )1 Sτ  abs. fr. ( )minEd  

81,7  12 122955 27,3  12 122955 1420973 

81,7  12 122955 27,4  12 245910 1420973 

81,7  12 122955 27,5  12 122955 1420973 

 
The first row of Table 11 reveals extensive realizations of the extraspecial 

group 27,3S =  as 3-tower group of dihedral fields. This is the first time that 
27,3S =  occurs as a 3-tower group. It is forbidden for quadratic fields, and it 

did not occur for cyclic cubic fields and bicyclic biquadratic fields, up to now. 
Theorem 6.4 (A new realization as 3-tower group.) The extraspecial 

3-group 27,3S =  of coclass 1 and exponent 3 occurs as 3-class tower group 

3G E∞  of totally real dihedral fields E of degree 6. 
Proof. The group 27,3S =  possesses the relation rank 2 4d S = . 

According to the Shafarevich Theorem, it is therefore excluded as 3-tower group 

3G F∞  of both, imaginary and real quadratic fields F. However, the combination 
of Theorem 5.1 and Theorem 6.1 proves its occurrence as 3-class tower group 

3G E∞  of totally real dihedral fields E of degree 6, as visualized in Table 11. 
Theorem 6.5 (3-class tower groups of totally real dihedral fields.) Let 

( )F d=  be a real quadratic field with 3-class group 3 3 3Cl F C C×  and 
fundamental discriminant 1d > . Suppose the second order Artin pattern 

( ) ( ) ( ) ( ) ( )( )2 2 2AP ,F F Fτ=   is given by the abelian type invariants  
( ) ( ) ( )2 2 2 2 2 21 ; 2 ,1 ,1 ,1Fτ  =    and the transfer kernel type ( ) ( ) ( )2 1; 0000F =    . 

Let 2 3 4, ,E E E  be the three unramified cyclic cubic relative extensions of F with 
3-class group 3 3 3Cl iE C C× . 

Then iE   is a totally real dihedral extension of degree 6, for each 2 4i≤ ≤ , 

and the connection between the component ( ) ( ) ( )1
3

3

,
# #ker

ii E F
F T =  

 
  of the 

third order transfer kernel type ( ) ( )3 F  and the 3-class tower group  

( )( )( )3 3
Gali i i iS G E E E∞∞= =  of iE  is given in the following way: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3

3

# 3 243,27 with 1000 ,

# 9 243,26 with 0000 .

i ii

i ii

F S S

F S S

= ⇔ =

= ⇔ =





 

 
       (6.1) 

Proof. This theorem was expressed as a conjecture in [27] [28], and is now an 
immediate consequence of Theorems 6.1 and 5.1. 

Remark 6.1 Recall that each unramified cyclic cubic relative extension iE F , 
1 4i≤ ≤ , gives rise to a dihedral absolute extension iE   of degree 6, that is an 

3S -extension ([7], Prp. 4.1, p. 482). For the trailing three fields iE , 2 4i≤ ≤ , 
in the stable part of ( ) ( ) ( )2 2 2 2 2 21 ; 2 ,1 ,1 ,1Fτ  =   , i.e. with 3 3 3Cl iE C C× , we 
have constructed the unramified cyclic cubic extensions ,i j iE E , 1 4j≤ ≤ , and 
determined the Artin pattern ( )2AP iE  of iE , in particular, the transfer kernel 
type of iE  in the fields ,i jE  of absolute degree 18. The dihedral fields iE  of 
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degree 6 share a common polarization ( )1
,1 3iE F= , the Hilbert 3-class field of F, 

which is contained in the relative 3-genus field ( )iE F ∗ , whereas the other 
extensions ,i jE  with 2 4j≤ ≤  are non-abelian over F, for each 2 4i≤ ≤ . 
Our computational results underpin Theorem 6.5 concerning the infinite family 
of totally real dihedral fields iE  for varying real quadratic fields F. 

7. Conclusion 

Guided by the Successive Approximation Theorem 3.2 in terms of the Artin 
limit pattern, we have given a most up-to-date survey concerning the finite 
3-groups which are populated most densely by 3-class tower groups 3G F∞  of 
quadratic number fields ( )F d=  in Sections 4.2-4.5. In particular, the 
discovery of non-metabelian 3-class towers with exact length 3 3F = , which is 
currently the maximal proven finite length, in Theorems 4.5 and 4.6, is entirely 
due to our cooperation with M. R. Bush, initiated by our joint paper [36]. With 
Theorems 5.1 and 6.1, we have finally presented a new technique for deriving 
theoretical conclusions on 3-class towers of dihedral fields with degree six from 
corresponding results for quadratic fields. 
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Abstract 
By using the fixed point theorem under the case structure, we study the exis-
tence of sign-changing solutions of A class of second-order differential equa-
tions three-point boundary-value problems, and a positive solution and a 
negative solution are obtained respectively, so as to popularize and improve 
some results that have been known. 
 

Keywords 
Case Theory, Boundary-Value Problems, Fixed Point Theorem, 
Sign-Changing Solutions 

 

1. Introduction 

The existence of nonlinear three-point boundary-value problems has been stu-
died [1]-[6], and the existence of sign-changing solutions is obtained. In the past, 
most studies were focused on the cone fixed point index theory [7] [8] [9], just a 
few took use of case theory to study the topological degree of non-cone mapping 
and the calculation of fixed point index, and the case theory was combined with 
the topological degree theory to study the sign-changing solutions. Recent study Ref. 
[10] [11] have given the method of calculating the topological degree under the case 
structure, and taken use of the fixed point theorem of non-cone mapping to study 
the existence of nontrivial solutions for the nonlinear Sturm-Liouville problems. 
Relevant studies as [12] [13] [14]. 

Inspired by the Ref. [8]-[13] and by using the new fixed point theorem under 
the case structure, this paper studies three-point boundary-value problems for A 
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class of nonlinear second-order equations 

( ) ( )( )
( ) ( ) ( )

0, 0 1;

0 0, 1 ,

u t f u t t

u u uα η

 ′′ + = ≤ ≤

′ = =

                 (1) 

Existence of the sign-changing solution, constant 0 1,0 1α η< < < < ,  
( ),f C R R∈ . 

Boundary-value problem (1) is equivalent to Hammerstein nonlinear integral 
equation hereunder 

( ) ( ) ( )( )1

0
, d , 0 1u t G t s f u s s t= ≤ ≤∫             (2) 

Of which ( ),G t s  is the Green function hereunder 

( )

( ) ( )
( )
( ) ( )
( ) ( )

1 ,0 ,0 ;

1 , 1,0 ;1,
1 1 1 ,0 , 1;

1 1 , 1, 1.

s s s t s

s s t s
G t s

t s s t

y t s s t

α η η

η

α αη α η

α α η

− − − ≤ ≤ ≤ ≤


− ≤ ≤ ≤ ≤
= 

− − − − ≤ ≤ ≤ ≤
 − − − ≤ ≤ ≤ ≤

 

Defining linear operator K as follow 

( )( ) ( ) ( ) [ ]1

0
, d , 0,1 .Ku t G t s u s s u C= ∈∫                 (3) 

Let ( ) ( )( )Fu t f u t= , [ ]0,1t∈ , obviously composition operator A KF= , 
i.e. 

( )( ) ( ) ( )( )1

0
, d , 0 1Au t G t s f u s s t= ≤ ≤∫                 (4) 

It’s easy to get: [ ]2 0,1u C∈  is the solution of boundary-value problem (1), 
and [ ]0,1u C∈  is the solution of operator equation u Au= . 

We note that, in Ref. [9] [10], an abstract result on the existence of sign- 
changing solutions can be directly applied to problem (1). After the necessary 
preparation, when the non-linear term f  is under certain assumptions, we get 
the existence of sign-changing solution of such boundary-value problems. 
Compared with the Ref. [8], we can see that we generalize and improve the non-
linear term f , and remove the conditions of strictly increasing function, and 
the method is different from Ref. [8]. 

For convenience, we give the following conditions. 
(H1) ( ) :f u R R→  continues, ( ) 0f u u > , , 0u R u∀ ∈ ≠ , and ( )0 0f = . 

(H2) 
( )

0
lim
u

f u
u

β
→

= , and 0n N∈ , make 
0 02 2 1n nλ β λ +< < , of which 

1 2 10 n nλ λ λ λ +< < < < < <   is the positive sequence of cos cosx xα η= . 

(H3) exists 0ε > , make 
( )

1lim sup
u

f u
u

λ ε
→+∞

≤ − . 

2. Knowledge 

Provided P is the cone of E in Banach space, the semi order in E is exported by 
cone P. If the constant 0N > , and x y x N yθ ≤ ≤ ⇒ ≤ , then P is a normal 
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cone; if P contains internal point, i.e. int P ≠ ∅ , then P is a solid cone. 
E becomes a case when semi order ≤, i.e. any ,x y E∈ , { }sup ,x y  and 
{ }inf ,x y  is existed, for x E∈ , { }sup ,x x θ+ = , { }sup ,x x θ− = − , we call posi-

tive and negative of x respectively, call x x x+ −= +  as the modulus of x. Ob-
viously, x P+ ∈ , ( )x P− ∈ − , x P∈ , x x x+ −= − . 

For convenience, we use the following signs: x x+
+ = , x x−

− = − . Such that 
x x x+ −= + , x x x+ −= − . 

Provided Banach space [ ]0,1E C= , and E’s norm as ⋅ , i.e.  

( )
0 1
max

t
u u t

≤ ≤
= . Let ( ) [ ]{ }| 0, 0,1P u E u t t= ∈ ≥ ∈ , then P is the normal cone of  

E, and E becomes a case under semi order ≤. 
Now we give the definitions and theorems 
Def 1 [10] provided , :D E A D E⊂ →  is an operator (generally a nonlinear). 

If ,Ax Ax Ax x E+ −= + ∀ ∈ , then A is an additive operator under case structure; 
if v E∗ ∈ , and ,Ax Ax Ax v x E∗

+ −= + + ∀ ∈ , then A is a quasi additive operator. 
Def 2 provided x is a fixed point of A, if { }( )\x P θ∈ , then x is a positive 

fixed point; if ( ) { }( )\x P θ∈ − , then x is a negative fixed point; if  

( )( )x P P∉ ∪ − , then x is a sign-changing fixed point. 
Lemma 1 [6] ( ),G t s  is a nonnegative continuous function of [ ] [ ]0,1 0,1× ,  

and when [ ], 0,1t s∈ , ( ) ( ), 0,G t s G sγ≥ , of which 
( )1

1
α η

γ
αη
−

=
−

. 

Lemma 2 :K P P→  is completely continuous operator, and :A E E→  is 
completely continuous operator. 

Lemma 3 A is a quasi additive operator under case structure. 
Proof: Similar to the proofs in Lemma 4.3.1 in Ref. [10], get Lemma 3 works. 
Lemma 4 [6] the eigenvalues of the linear operator K are  

1 2 1

1 1 1 1, , , , ,
n nλ λ λ λ +

  . And the sum of algebraic multiplicity of all eigenvalues is  

1, of which nλ  is defined by (H2). 
The lemmas hereunder are the main study bases. 
Lemma 5 [10] provided E is Banach space, P is the normal cone in E, 
:A E E→  is completely continuous operator, and quasi additive operator un-

der case structure. Provided that 
1) There exists positive bounded linear operator 1B , and 1B ’s ( )1 1r B < , and 

1,u P u P∗ ∈ ∈ , get 

1 1, ;u Ax B x u x P∗− ≤ ≤ + ∀ ∈  

2) There exists positive bounded linear operator 2B , 2B ’s ( )2 1r B < , and 

2u P∈ , get 

( )2 2 , ;Ax B x u x P≥ − ∀ ∈ −  

3) Aθ θ= , there exists Frechet derivative Aθ′  of A at θ , 1 is not the eigen-
value of Aθ′ , and the sum µ  of algebraic multiplicity of Aθ′ ’s all eigenvalues in 
the range ( )1,∞  is a nonzero even number, 
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{ }( ) ( ) { }( )\ , \A P P A P Pθ θ
° °

⊂ − ⊂ −  

Then A exists three nonzero fixed points at least: one positive fixed point, one 
negative fixed point and a sign-changing fixed point. 

3. Results 

Theorem provided (H1) (H2) (H3) works, boundary-value problem (1) exists a 
sign-changing solution at least, and also a positive solution and a negative solu-
tion. 

Proof provided linear operator 1 2
B Kε

λ = − 
 

, Lemma 2 knows  

[ ] [ ]: 0,1 0,1B C C→  is a positive bounded linear operator. Lemma 4 gets K’s 

( )
1

1r K
λ

= , so ( ) ( )1
1

1 1
2 2

r B r Kε ε
λ

λ
 = − = − < 
 

. 

(H3) knows 0m >  and gets 

( ) [ ]1 , 0,1 , 0
2

f u u m t uε
λ ≤ − + ∀ ∈ ≥ 
 

           (5) 

( ) [ ]1 , 0,1 , 0
2

f u u m t uε
λ ≥ − − ∀ ∈ ≤ 
 

           (6) 

Let ( ) ( )1
0 0

, du t m G t s s= ∫ , obviously, 0u P∈ . Such that, for any ( )u t P∈ ,  

there 

( )( ) ( ) ( )( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

0

1
10

1 1
1 0 0

1 0

0

, d

, d
2

, d , d
2

2

Au t G t s f u s s

G t s u m s

G t s u s s m G t s s

Ku t u t

Bu t u t

ε
λ

ε
λ

ε
λ

=

  ≤ − +  
  

 ≤ − + 
 
 = − + 
 

= +

∫

∫

∫ ∫  

And for any u P∗ ∈ , from (H1), obviously gets ( )( ) ( )Au t u t∗≥ − . 

For any ( )u t P∈− , there 

( )( ) ( ) ( )( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

0

1
10

1 1
1 0 0

1 0

0

, d

, d
2

, d , d
2

2

Au t G t s f u s s

G t s u m s

G t s u s s m G t s s

Ku t u t

Bu t u t

ελ

ελ

ελ

=

  ≥ − −  
  

 ≥ − − 
 
 = − − 
 

= −

∫

∫

∫ ∫  

Consequently (1) (2) in lemma 5 works. 
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We note that ( )0 0f =  can get Aθ θ= , from (H2), we know 0ε∀ > , and 
0r∃ >  gets 

( ) ,f u u u u rβ ε− ≤ ≤  

Then 

( )( ) ( ) ( )( ) ( ) ,Fu t u t f u t u t u u rλ β ε− = − ≤ ∀ ≤  

( ) ,Au A Ku K Fu Ku K u u rθ β β ε− − = − ≤ ∀ ≤  

Such that 

0
lim 0
u

Au A Ku
u
θ β

→

− −
=  

i.e. A Kθ β′ = , from lemma 4 we get linear operator K’s eigenvalue is 
1

nλ
, 

then Aθ′ ’s eigenvalue is 
n

β
λ

. Because 
0 02 2 1n nλ β λ +< < , let µ  be the sum of  

algebraic multiplicity of Aθ′ ’s all eigenvalues in the range ( )1,∞ , then 02nµ =  
is an even number. 

From (H1) ( ) 0f u u > , { }\ 0u R∈ , there 

( )( ) [ ] ( )0, 0,1 , 0,f u t t u t> ∀ ∈ >  

( )( ) [ ] ( )0, 0,1 , 0.f u t t u t< ∀ ∈ <  

Easy to get 

{ }( ) { } ( ) { }( ) ( ) { }\ \ , \ \ ,F P P F P Pθ θ θ θ⊂ − ⊂ −  

Lemma (1) for any ( )u t P∈ ,  

( )( ) ( ) ( ) ( ) ( )1 1

0 0
, d 0, dKu t G t s u s s G s u s sγ= ≥∫ ∫ ,  

consequently { }( )\K P Pθ
°

⊂ . Such that 

{ }( ) ( ) { }( )\ , \ ,A P P A P Pθ θ
° °

⊂ − ⊂ −  

Such that (3) in lemma 5 works. According to lemma 5, A exists three nonzero 
fixed points at least: one positive fixed point, one negative fixed point and one 
sign-changing fixed point. Which states that boundary-value problem (1) has 
three nonzero solutions at least: one positive solution, one negative solution and 
one sign-changing solution. 

4. Conclusion 

Provided that all conditions of the theorem are satisfied, and ( )f u  is an odd 
function, then boundary-value problem (1) has four nonzero solutions at least: 
one positive solution, one negative solution and two sign-changing solutions. 

Note 

By using case theory to study the topological degree of non-cone mapping and 
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the calculation of fixed point index, it’s an attempt to combine case theory and 
topological degree theory, the author thinks it’s an up-and-coming topic and 
expects to have further progress on that. 
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Abstract 

Given two left cO -analytic functions ,f g  in some open set Ω  of 8R , we 

obtain some sufficient conditions for fg  is also left cO -analytic in Ω . 

Moreover, we prove that f λ  is a left cO -analytic function for any 

constants cλ∈O  if and only if f  is a complex Stein-Weiss conjugate 
harmonic system. Some applications and connections with Cauchy- 
Kowalewski product are also considered. 
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1. Introduction 

Let Ω  be an open set of 8R . A function f  in ( )1 ,C Ω O  is said to be left 
(right) O -analytic in Ω  when 

7 7

0 0
0 0 ,i i

i ii i

f fDf e fD e
x x= =

 ∂ ∂
= = = = 

∂ ∂ 
∑ ∑  

where the Dirac D-operator and its adjoint D  are the first-order systems of  

differential operators in ( )1 ,C Ω O  defined by 7
0 i

i

D e
x
∂

=
∂∑  and  

7
0 1

0
i

i

D e e
x x
∂ ∂

= −
∂ ∂∑ . 

If f  is a simultaneously left and right O -analytic function, then f  is 
called an O -analytic function. If f  is a (left) O -analytic function in 8R , 
then f  is called a (left) O -entire function. 
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Since octonions is non-commutative and non-associative, the product 
( ) ( )f x g x  of two left O -analytic functions ( )f x  and ( )g x  is generally no 

longer a left O -analytic function. Furthermore, if ( )g x λ≡  becomes an 
octonionic constant function, the product ( )f x λ  is also probably not a left 
O -analytic function; that is, the collection of left O -analytic functions is not a 
right module (see [1]). 

The purpose of this paper is to study the analyticity for the product of two left 
cO -analytic functions in the framework of complexification of O , cO . 

Especially, the analyticity for the product of left cO -analytic functions and cO
constants will be consider more by us. 

The rest of this paper is organized as follows. Section 2 is an overview of some 
basic facts concerning octonions and octonionic analysis. Section 3 we give some 
sufficient conditions for the product ( ) ( )f x g x  of two left cO -analytic 
functions ( )f x  and ( )g x  is also a left cO -analytic function. In Section 3, 
we prove that, ( )f x λ  is a left cO -analytic function for any constants cλ∈O  
if and only if ( )f x  is a complex Stein-Weiss conjugate harmonic system. This 
gives the solution of the problem in [2]. In the last section we give some 
applications for our results. 

2. Preliminaries: Octonions and Octonionic Analysis 

It is well known that there are only four normed division algebras [3] [4] [5]: the 
real numbers R , complex numbers C , quaternions H  and octonions O , 
with the relations ⊆ ⊆ ⊆R C H O . In other words, for any ( )1, , nx x x= 

, 
( )1, , n

ny y y= ∈ R , if we define a product “ xy ” such that nxy∈R  and  

x y x y⋅ = , where 2
1
n

ix x= ∑ , then the only four values of n  are 1,2,4,8.  

Quaternions H  is not commutative and octonions O  is neither commutative 
nor associative. Unlike R , C  and H , the non-associative octonions can not 
be embedded into the associative Clifford algebras [6]. 

Octonions stand at the crossroads of many interesting fields of mathematics, 
they have close relations with Clifford algebras, spinors, Bott periodicity, 
Projection and Lorentzian geometry, Jordan algebras, and exceptional Lie 
groups, and also, they have many applications in quantum logic, special 
relativity and supersymmetry [3] [4]. 

Denote the set W  by 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1,2,3 , 1,4,5 , 1,7,6 , 2,4,6 , 2,5,7 , 3,4,7 , 3,6,5 .=W  

Then the multiplication rules between the basis 0 1 7, , ,e e e  on octonions are 
given by [3] [7]: 

2 2
0 0 0 0, , 1, 1, 2, ,7,i i i ie e e e e e e e i= = = = − = 

 

and for any triple ( ), ,α β γ ∈W , 

, , .e e e e e e e e e e e e e e eα β γ β α β γ α γ β γ α β α γ= = − = = − = = −  

For each ( )7
0 , 0,1, ,7i i ix x e x i= ∈ ∈ =∑ O R , 0x  is called the scalar part of 
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x and 7
1 i ix x e=∑  is termed its vector part. Then the norm of x is  

( )
1

7 2 2
0 ix x= ∑  and its conjugate is defined by 7

00 i ix x e x x= = −∑ . We have 

7 2
0 ixx xx x= =∑ , ( ),xy yx x y= ∈O  Hence, 1

2

xx
x

− =  is the inverse of  

( )0x ≠ . 

Let ( )7 7
0 0, , , 0,1, ,7i i i i i ix x e y y e x y i= = ∈ ∈ =∑ ∑ O R , then 

0 0 0 0 ,xy x y x y x y y x x y= − ⋅ + + + ×      (2.1) 

where 7
1: i ix y x y⋅ = ∑  is the inner product of vectors ,x y  and 

( ) ( ) ( )
( ) ( )
( ) ( )

1 23 45 67 2 13 46 57 3 12 47 56

4 15 26 37 5 14 27 36

6 17 24 35 7 16 25 34

:x y e A A A e A A A e A A A

e A A A e A A A

e A A A e A A A

× = + − + − + + + + −

+ − − − + − +

+ + − + − + +

 

is the cross product of vectors ,x y , with 

det , , 1, 2, ,7.i j
ij

i j

x x
A i j

y y
 

= = 
 

  

For any ,x y∈O , the inner product and cross product of their vector parts 
satisfy the following rules [8]: 

( ) ( )0, 0, || 0, .x y x x y y x y x y x y y x× ⋅ = × ⋅ = ⇔ × = × = − ×  

We usually utilize associator as an useful tool on ontonions since its non- 
associativity. Define the associator [ ], ,x y z  of any , ,x y z∈O  by  
[ ] ( ) ( ), ,x y z xy z x yz= − . 

The octonions obey the following some weakened associative laws. 
For any , , , ,x y z u v∈O , we have (see [7]) 

[ ] [ ] [ ] [ ] [ ] [ ], , , , , , , , , , , , 0 , ,x y z y z x x z y x y z x x y x x y= = − = =      (2.2) 

and the so-called Moufang identities [5] 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , .uvu x u v ux x uvu xu v u u xy u ux uy= = =  

Proposition 2.1 ([7]). For any { }, , 0,1, ,7i j k∈ 
, , , 0 0i j ke e e ijk  = ⇔ =   

or ( )( )( ) 0i j j k k i− − − =  or ( ) 1i j ke e e = ± . 

Proposition 2.2 ([7]). Let , ,i j ke e e  be three different elements of  
{ }1 2 7, , ,e e e

 and ( ) 1i j ke e e ≠ ± . Then ( ) ( )i j k i j ke e e e e e= − . 
Since octonions is an alternative algebra (see [3] [9] [10]), we have the 

following power-associativity of octonions. 
Proposition 2.3. Let 1 2, , , kx x x ∈ O , ( )1, , nl l

 be n  elements out of  

{ }1, ,k
 repetitions being allowed and let ( )1 2 n n

l l lx x x
⊗

  be the product of n  

octonions in a fixed associative order n⊗ . Then 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is  

independent of the associative order n⊗ , where the sum runs over all 
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distinguishable permutations of ( )1, , nl l
 

Proof. Let 1 1 2 2 k kx x x xλ λ λ= + + + , then 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is just the 

coefficient of 
1 2 nl l lλ λ λ  in the product of ( )

s
n

n

n x

x xx x ⊗=


 . By induction and 

(2.2), one can easily prove that ( )
s

n

n

n x

x xx x ⊗=


  is independent of the 

associative order n⊗  for any x∈O . Hence 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is also 

independent of the associative order n⊗ .  

( )0 1, , , nµ µ µ µ= 
 is called a Stein-Weiss conjugate harmonic system if they 

satisfy the following equations (see [11]): 

( )
0

0, 0 .
n

ji i

i i j i

i j n
x x x

µµ µ
=

∂∂ ∂
= = ≤ < ≤

∂ ∂ ∂∑  

It is easy to see that if ( ) ( )0 1 7 0 1 7, , , , , ,F x x x f f f= 
 is a Stein-Weiss 

conjugate harmonic system in an open set Ω  of 8R , then there exists a real- 
valued harmonic function Φ  in Ω  such that F is the gradient of Φ . Thus 

0 0 1 1 7 7F f e f e f e D= − − − = Φ  is an O -analytic function. But inversely, this is 
not true [12]. 

Example. Observe the O -analytic function ( ) ( )2 2
6 7 2 6 7 32g x x x e x x e= − − . 

Since 

62
6

6 2

2 0 ,
gg x

x x
∂∂

= ≠ =
∂ ∂

 

g  is not a Stein-Weiss conjugate harmonic system. 
In [13] Li and Peng proved the octonionic analogue of the classical Taylor 

theorem. Taking account of Proposition 2.3, we obtain an improving of Taylor 
type theorem for O -analytic functions (see [14] [15]). 

Theorem A (Taylor). If ( )f x  is a left O -analytic function in Ω  which 
containing the origin, then it can be developed into Taylor series 

( )
( )

( ) ( )
1 1

10 , ,
0 ,

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

and if ( )f x  is a right O -analytic function, then the Taylor series of f  at the 
origin is given by 

( )
( )

( ) ( )
11

10 , ,
0 ,

l l kk
k

x x l l
k l l

f x f V x
∞

=

= ∂ ∂∑ ∑




  

where ( )1, , kl l
 runs over all possible combinations of k  elements out of 

{ }1, ,7
 repetitions being allowed. 

The polynomials 
1 kl lV


 of order k  in Theorem A is defined by 

( )
( )

( )( )( )1 1 2 3
1, ,

1 ,
!k k

k
l l l l l l

l l
V x z z z z

k π
= ∑





   

where the sum runs over all distinguishable permutations of ( )1, , kl l
 and 
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0 0 , 1, ,
j j jl l lz x e x e j k= − =  . 

We have the following uniqueness theorem for O -analytic functions [7]. 
Proposition 2.4. If f  is left (right) O -analytic in an open connect set 

8Ω⊂ R  and vanishes in the open set { }0 0x a⊂ Ω = ≠ ∅E , then f  is 
identically zero in Ω . 

Proof. Without loss of generality, we let E  which containing the origin and 
let 0 0x = . Then f  can be developed into Taylor series 

( )
( )

( ) ( )
1 1

10 , ,
0 .

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

Thus we have 

( )
( )

( )
1 2 1

10 , ,
0 0.

k l lk
k

l l l x x
k l l

f x x x x f
∞

=

= ∂ ∂ ≡∑ ∑


   

By the uniqueness of the Taylor series for the real analytic function, we have 
( )

1
0 0

l lkx x f∂ ∂ =  for any ( ) { }7
1, , 1, 2, ,7kl l ∈   and k∈N . This shows 

that f  is identically zero in E  and also in Ω .  
For more references about octonions and octonionic analysis, we refer the 

reader to [7] [13]-[20]. 

3. Sufficient Conditions 

In what follows we consider the complexification of O , it is denoted by cO .  
Thus, c∈O  is of the form 7

0 ,i i ie= ∈∑ C   . 0  and 7
0 i ie=∑   are still  

called the scalar part and vector part, respectively. The norm of c∈O  is  

( )
1

27 2
0 i= ∑   and its conjugate is defined by 7

0 i ie=∑  , where i  is of the  

conjugate in the complex numbers. We can easily show that for any , c′∈O  , 
2′ ′≤   . For any c∈O , we may rewrite   as x iy= + , where 

,x y∈O . The multiplication rules in cO  is the same as in (2.1). Note that cO  
is no longer a division algebra. Finally, the properties of associator in (2.2) 
except that [ ], , 0=    are also true for any , , c∈O   : 

[ ] [ ] [ ] [ ] [ ], , , , , , , , , , , , 0.= = − =                    (3.1) 

Example. Let 1 2 4,e ie e= + =  , then 

[ ] [ ] [ ] [ ]1 2 1 2 4 1 2 4 2 1 4 7, , , , , , , , 4 0.e ie e ie e i e e e i e e e ie= + − + = − = ≠    

By (3.1) we can get the following lemma, which is useful to deduce our results. 
Lemma 3.1. Let , , c∈O    and there exists complex numbers λ  and 
( )0µ λ µ+ ≠  such that 0λ µ+ =   or 0λ µ+ =   or 0λ µ+ =  , then 

[ ], , 0=   . 
For functions, f, under study will be defined in an open set Ω  of 8R  and  

take values in cO , with the form ( ) ( )7
0 i if x f x e=∑ , where ( )( )0,1, ,7if x i = 

 

are the complex-valued functions. 
Hence, we say that, a function ( ) ( ) ( )f x g x ih x= +  is left cO -analytic in an 
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open set Ω  of 8R , if ( )g x  and ( )h x  are the left O -analytic functions, 
since 

0 0,Df Dg Dh= ⇔ = =  

where 7
0 ii

i

D e
x=

∂
=

∂∑  is the Dirac operator as in Section 1. 

In the case of cO , we call ( ) ( ) ( )f x g x ih x= +  a complex Stein-Weiss 
conjugate harmonic system, if ( ) ( ),g x h x  are the Stein-Weiss conjugate 
harmonic systems. A left (right) cO -analytic functions ( )g x  also have the 
Taylor expansion as in Theorem A. 

Now we consider the product ( ) ( )f x g x  of two left cO -analytic functions 
( ) ( ),f x g x  in Ω . In general, ( ) ( )f x g x  is no longer left cO -analytic in Ω . 

But, in some particular cases, the product ( ) ( )f x g x  can maintain the 
analyticity for two left cO -analytic functions ( )f x  and ( )g x . 

Theorem 3.2. Let ( ) ( ),f x g x  be two left cO -analytic functions in Ω . 
Then ( ) ( )f x g x  is also left O -analytic in Ω  if ( ) ( ),f x g x  satisfy one of 
the following conditions: 

1) ( )f x  or ( )g x  is a complex constant function. 
2) ( )f x  is a complex Stein-Weiss conjugate harmonic system in Ω  and 
( )g x  is an cO -constant function. 
3) ( )f x  is of the form ( ) { }( )0 0 1, 2, ,7i if x f e f e i= + ∈   and ( ) ( ),f x g x  

depend only on 0x  and ix , where 0 , if f  are the complex-valued functions. 
4) ( )f x  and ( )g x  belong to the following class 

( ) ( ) ( ) ( ) ( ) ( )
7

1
1 1

1
| 0, , , .i

i
h x Dh x h x h x e h x C

=

 = = = ∈ Ω 
 

∑ CS      (3.2) 

5) ( )f x  is of the form ( ) 0 0f x f e f e f e f eα α β β γ γ= + + + ,  

0 0g c e c e c e c eα α β β γ γ= + + +  is a constant function, where ( ), ,α β γ ∈W ,  

0 , , ,c c c cα β γ ∈C  and ( )f x  depends only on 0 , , ,x x x xα β γ . 
Proof. 1) The proof is trivial. 
2) In view of Proposition 2.1 we have , , 0i je e λ  =   when 0i =  or 0j =  

or i j=  for any cλ∈O . Then we have 

( ) ( )

( )

( )

( )

7

, 0

7 7

, 0 , 0

7

, 0

1 7

, ,

, ,

, , .

j
i j

i j i

j j
i j i j

i j i ji i

j
i j

i j i

j
i j

i j i

f
D f e e

x
f f

e e e e
x x

f
Df e e

x
f

Df e e
x

λ λ

λ λ

λ λ

λ λ

=

= =

=

≤ ≠ ≤

∂
=

∂

∂ ∂
 = −  ∂ ∂

∂
 = −  ∂

∂
 = −  ∂

∑

∑ ∑

∑

∑

 

Since f  is a complex Stein-Weiss conjugate harmonic system, thus 0Df =   

and j i

i j

f f
x x
∂ ∂

=
∂ ∂

 for , 1,i j i j≥ ≠ . But , , , ,j i i je e e eλ λ   = −    , therefore 
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( )
1 7 1 7

, , , , 0.j ji
i j i j

i j i ji j i

f ffD f e e e e
x x x

λ λ λ
≤ ≠ ≤ ≤ < ≤

 ∂ ∂∂   = − = − =     ∂ ∂ ∂ 
∑ ∑  

3) Since ( ) ( ),f x g x  are only related to variables 0x  and ix , we have 

( ) ( )( )

( )

0
0

0
0

0 0

.

i i i
i

i
i i i i i

i i i

D fg e f f e g
x x

f ff g gg e e g f e f f e
x x x x x

 ∂ ∂
= + + 

∂ ∂ 
    ∂ ∂∂ ∂ ∂

= + + + + +     ∂ ∂ ∂ ∂ ∂    

 

By Lemma 3.1 it follows that 

0 0i i
i i i i i

i i i i i

f f f f fe e g e e g e g
x x x x x

        ∂ ∂ ∂ ∂ ∂
+ = + =           ∂ ∂ ∂ ∂ ∂        

 

and 

( ) ( )( ) ( )( ) ( )0 0 0 0 .i i i i i i i i i i i i
i i i i

g g g ge f f e e f f e f f e e f f e e
x x x x

   ∂ ∂ ∂ ∂
+ = + = + = +   

∂ ∂ ∂ ∂   
 

Thus we get 

( ) ( ) ( )
0 0

0.i i
i i

f f g gD fg g e g f f e Df g f Dg
x x x x

   ∂ ∂ ∂ ∂
= + + + = + =   
∂ ∂ ∂ ∂   

 

4) Let ( ) 7
0 0 11 iif x f e f e

=
= +∑  and ( ) 7

0 0 11 iig x g e g e
=

= +∑ , then we have 

( ) ( )( )
7 7 7

0 0 1 0 0 1
0 1 1

7 7 7
0 1

0 0 0 1
0 1 1

7 7 7
0 1

0 0 1 0
0 1 1

.

j i i
j i ij

j i i
j i ij j

j i i
j i ij j

D f x g x e f e f e g e g e
x

f fe e e g e g e
x x

g ge f e f e e e
x x

= = =

= = =

= = =

 ∂   = + +   ∂    

  ∂ ∂   = + +    ∂ ∂    

  ∂ ∂  + + +    ∂ ∂   

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

By Lemma 3.1 we get 

7 7
0 1

0 0 0 1
1 1

j i i j
i ij j j

f f fe e e g e g e e g
x x x= =

    ∂ ∂ ∂  + + =        ∂ ∂ ∂     
∑ ∑  

and 

7 7
0 1

0 0 1 0
1 1

7 7
0 1

0 0 0 1
1 1

.

j i i
i ij j

j i i
i ij j

j
j

g ge f e f e e e
x x

g ge e e f e f e
x x

ge f
x

= =

= =

  ∂ ∂  + +    ∂ ∂   
  ∂ ∂   = + +    ∂ ∂    

 ∂
=   ∂ 

∑ ∑

∑ ∑  

Hence we obtain 
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( ) ( )( ) ( ) ( )
7

0
0.j j

j j j

f gD f x g x e g e f Df g Dg f
x x=

    ∂ ∂
 = + = + =       ∂ ∂    

∑  

5) This case is equivalent to a left quaternionic analytic function right- 
multiplying by a quaternionic constant, the analyticity is obvious since the 
multiplication of the quaternion is associative. 

The proof of Theorem 3.2 is complete.  
From Theorem 3.2(d), if ( ) ( ),f x g x ∈S , then ( ) ( )f x g x ∈S ; that is, the 

multiply operation in S  is closed. Also, the division operation is closed in S .  
Actually, let ( ) ( ) ( )7

0 11 iif x f x f x e
=

= + ∈∑ S , assume 2 2
0 17 0f f+ ≠ , then 

( )( ) ( )1 0 1 1 2 7
2 2

0 1

.
7

f f e e e
f x

f f
− − + + +
=

+



 

Thus we have 

( )( ) ( )( )

( ) ( )

( )( ) ( )

( ) ( )( )( )

1
71

0

7 12 2 0 1
0 1 1 2 7

0

22 20 1
0 1 1 2 7 0 1 0 1

7 22 2 2 20 1
1 7 1 0 0 1 1 7 0 1

0

7

2 14 7

7 2 7

i
i i

i
i i i

i i

i
i i i

f x
D f x e

x

f fe f f e e e
x x

f ff f e e e f f f f
x x

f fe e e f f f f e e f f
x x

−
−

=

−

=

−

−

=

∂
=

∂

  ∂ ∂
= + − + + +   ∂ ∂ 

 ∂ ∂
− − + + + + +   ∂ ∂  

  ∂ ∂
= + + + − + + + +   ∂ ∂  

∑

∑

∑





  

 

( ) ( )( )( )

( )( ) ( )( )( )

7 22 2 2 20 1
1 7 1 0 0 1 1 7 0 1

0

22 2 2 2
1 0 0 1 1 7 0 1

7 2 7

7 2 7

0.

i
i i i

f fe e e f f f f e e f f
x x

Df x f f f f e e f f

−

=

−

  ∂ ∂
= + + + − + + + +   ∂ ∂  

= − + + + +

=

∑  


 

An element belongs to S  is the exponential function: 

( ) ( ) ( ) ( )1 7
0 0 1 7 0

1exp e cos 7 sin 7 .
7

x xx x e e e x+ +   
= + − + +  

  


      (3.3) 

The results in Theorem 3.2 also hold on octonions(no complexification), since 
cO  contains O . If one switch the locations of ( ) ( ),f x g x , and the “left” 

change into “right” in Theorem 3.2, then this theorem is also true, since left and 
right is symmetric. These principles also hold in the rest of this paper. 

4. Necessary and Sufficient Conditions 

If we consider the product of a left cO -analytic function and an cO -constant, 
we can get the necessary and sufficient conditions for the analyticity(these 
results obtained in this section for O -analytic functions are also described in 
[19]). 

Applying Theorem 3.2(a) and (b), if ( )f x  is a left cO -analytic function 
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and λ  is a complex constant, or ( )f x  is a complex Stein-Weiss conjugate 
harmonic system and λ  is an cO -constant, then ( )f x λ  is a left cO - 
analytic function. In what follows we will see that these conditions are also 
necessary in some sense. 

Theorem 4.1. Let cλ∈O , then f λ  is a left cO -analytic function for any 
left cO -analytic functions f  if and only if λ∈C . 

Proof. We only prove the necessity. Taking a left cO -analytic function 

1 2 0 3f x e x e= − , then 

( ) [ ] [ ]

[ ] [ ] [ ] [ ]

7 7 7
2

2 1 2 1
, , 0 1 41

4 2 1 4 5 2 1 5 6 2 1 6 7 2 1 7

4 7 5 6 6 5 7 4

, , , , , ,

, , , , , , , ,
2 2 2 2 .

j
k i j k k k k k

i j k k ki

f fD f e e e e e e e e e
x x

e e e e e e e e e e e e
e e e e

λ λ λ λ

λ λ λ λ

λ λ λ λ

= = =

∂ ∂ = − = = ∂ ∂

= + + +

= − + − +

∑ ∑ ∑

 

Thus 4 5 6 7 0λ λ λ λ= = = = . A similar technique yields 1 2 3 0λ λ λ= = = . 
Hence λ∈C .  

Theorem 4.2. Let ( )1 , cf C∈ Ω O . Then ( ) 0D f λ =  for any cλ∈O  if and 
only if f  is a complex Stein-Weiss conjugate harmonic system in Ω . 

Now we postpone the proof of Theorem 4.2 and consider a problem under 
certain conditions weaker than Theorem 4.2. In [2] the authors proposed an 
open problem as follows: 

Find the necessary and sufficient conditions for an cO -valued function f , 
such that the equality ( ), , 0f x Dλ =    holds for any constant cλ∈O . 

Note that this problem is of no meaning for an associative system, but 
octonions is a non-associative algebra, therefore we usually encounter some 
difficulties while disposing some problems in octonionic analysis. In [2] the 
authors added the condition ( ), , 0f x Dλ =    for ( )f x  to study the Cauchy 
integrals on Lipschitz surfaces in octonions and then prove the analogue of 
Calderón’s conjecture in octonionic space. 

Next we give the answer to the Open Problem as follows. 
Theorem 4.3. Let ( )1 , cf C∈ Ω O . Then [ ] [ ]( ), , 0 , , 0D f f Dλ λ= =  for any 

cλ∈O  if and only if 

, , 1, 2, ,7.ji

j i

ff i j
x x

∂∂
= =

∂ ∂
                     (4.1) 

Proof. By Proposition 2.1, we have 

[ ]
7

, 0 1 7
, , , , , , .j j i

i j i j
i j i ji i j

f f fD f e e e e
x x x

λ λ λ
= ≤ < ≤

 ∂ ∂ ∂
   = = −     ∂ ∂ ∂ 

∑ ∑  

If f  satisfies (4.1), then [ ], , 0D f λ = . 
Inversely, let ( ), ,α β γ ∈W , { } { } { }1 2 3 41, 2, ,7 \ , , , , ,t t t tα β γ =

 and 

1 2 2 1 3 4 4 3
, .t t t t t t t te e e e e e e e e eγ γ= = − = = −  

From Propositions 2.1 and 2.2 we have , , 0te e eα β  =   and  

( ), , 2 2t t te e e e e e e eα β α β γ  = =   when , ,t α β γ=  and 1 2 3 4, , ,t t t t t= , respectively. 
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Hence, taking 
1t

eλ =  it follows that 

1

1

34
1 3 4 1

23 4

34
2

23 4

1 7

, ,

, ,

, , , ,

2 .

t

j i
i j t

i j i j

tt
t t t t s s

s tt t

tt
t s s

s tt t

D f e

f f
e e e

x x

fff f
e e e e e e g e

x x x x

fff f
e g e

x x x x

β α
α β

α β

β α

α β

≤ < ≤

≠

≠

  
 ∂ ∂  = −    ∂ ∂ 

   ∂∂∂ ∂   = − + − +         ∂ ∂ ∂ ∂   
 ∂∂∂ ∂

= − + − +  ∂ ∂ ∂ ∂ 

∑

∑

∑

   (4.2) 

Similarly, we take 
3t

eλ = , then 

2 1
3 4

41 2

, , 2 ,t t
t t s s

s tt t

f ff fD f e e h e
x x x x
β α

α β ≠

 ∂ ∂∂ ∂  = − + − +    ∂ ∂ ∂ ∂ 
∑      (4.3) 

Also we can get 

[ ] 32 1 4

1 2 3 4

, , 2 .tt t t
s s

st t t t

ff f f
D f e e y e

x x x xα β
β≠

 ∂∂ ∂ ∂
= − + − +  ∂ ∂ ∂ ∂ 

∑      (4.4) 

If we require [ ], , 0D f λ =  for any constants cλ∈O , from (4.2), (4.3) and 
(4.4) we obtain 

34

3 4

2 1

1 2

32 1 4

1 2 3 4

0,

0,

0.

tt

t t

t t

t t

tt t t

t t t t

fff f
x x x x

f ff f
x x x x

ff f f
x x x x

β α

α β

β α

α β

 ∂∂∂ ∂
− + − =

∂ ∂ ∂ ∂
 ∂ ∂∂ ∂ − + − =
∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
 − + − =
∂ ∂ ∂ ∂

 

Combining above three equations with the randomicity of ( ), ,α β γ  we have 
(4.1) holds.  

Proof of Theorem 4.2. The sufficient from Theorem 3.2(b). Inversely, if we 
take 1λ =  in ( ) 0D f λ =  it follows that f  is a left cO -analytic function. 
Thus for any cλ∈O , we have 

( ) ( ) [ ] [ ], , , , 0.D f Df D f D fλ λ λ λ= − = − =  

By Theorem 4.3 we get that f  satisfies (4.1). On the other hand, 

( ) 0
0 0

0 0 0

0.
ffDf f f f f f

x x x
∂  ∂∂

= +∇ + = −∇ ⋅ + +∇ +∇× = 
∂ ∂ ∂ 

     (4.5) 

From (4.1) it easily to get 0f∇× = , again by (4.5) it follows that 

0
0

0 0

0,
ff f f

x x
∂∂

−∇ ⋅ + +∇ =
∂ ∂

 

namely 

0
0

0 0

0, 0.
ff f f

x x
∂∂

−∇ ⋅ = +∇ =
∂ ∂
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Combining this with (4.1) it shows that f  is a complex Stein-Weiss 
conjugate harmonic system in Ω .  

5. Some Applications and Relations with the C-K Products 

From Theorem A we can see that ( )
1 kl lV x


 are the basic components for (left) 
O -analytic functions. It is proved in [13] that the polynomials ( )

1 kl lV x


 are all 
O -analytic functions, therefore they are the suitable substitutions of the 
polynomial kz  in C . 

Again from Theorem A, since ( )
1 1k kl l l lV x λ
 

 is an item in the Taylor 
expansion of a left O -analytic function, ( )

1 1k kl l l lV x λ
 

 should be also a left O
analytic function. Applying Theorem 4.2, the conjugate of ( )

1 kl lV x


 is probably 
a Stein-Weiss conjugate harmonic system. The following theorem prove this is 
true. 

Theorem 5.1. For any combination ( )1, , kl l
 of k  elements out of 

{ }1, ,7
 repetitions being allowed, ( )

1 kl lV x


 is a Stein-Weiss conjugate 
harmonic system in 8R . 

Proof. Let ( )1, ,7is i = 
 be the appearing times of i  in ( )1, , kl l

. Hence 
the following equality 

( ) ( )
1 1 7kl l s sV x D x= Φ
 

                     (5.1) 

shows that ( )
1 kl lV x


 is a Stein-Weiss conjugate harmonic system in 8R , where 

( ) ( )
( ) ( )1 7

22 12 7
0

0 1
1, ,7

1 !
2 1 ! ! 2 !

i
j j

i

s
s
j

s s
j j j j

i

xx
x

s

κκ κ

κ

κ
κ κ κ

 
−  + 

= =
=

 − Φ =  
+ −  

∑ ∏




 

is a real-valued harmonic function of order ( )1 2 7 1s s s+ + + +
 with  

7
1 iiκ κ
=

=∑ . 

Actually, put 0 0x = , the both sides of (5.1) equal to 71
1 7

1 2 7

1
! ! !

ssx x
s s s





. On  

the other hand, ( )
1 kl lV x


 is left O -analytic in 8R . Thus by Proposition 2.4 we 
have (5.1) holds.  

Combining Theorem 3.2(b) and Theorem 5.1 it really shows that all the 
( )

1 1k kl l l lV x λ
 

 are left cO -analytic functions for any 
1 k

c
l lλ ∈


O . Hence the 
following series 

( )
( )

1 1
10 , ,

k k
k

l l l l
k l l

V x λ
∞

=
∑ ∑

 



                    (5.2) 

is a left cO -analytic function in some open neighborhood Λ  of the origin if 

{ }1 kl lλ


 satisfies certain bounded conditions. 
Theorem 5.2. For any combination ( )1, , kl l

 of k elements out of { }1, ,7
  

repetitions being allowed, let 
1

,
k

c
l l kλ ∈ ∈


O N . If 
( ) 1

1

7lim sup
! k

k

k

l lk l lk
λ γ

→∞
= < ∞





,  

then the series (5.2) converges to a left cO -analytic function ( )f x  in the 
following region 
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8 2 2
0

1: , 1, 2, ,7 .ix x x iγ γ
 

Λ = ∈ + < = 
 

R  

More over, ( )
1 1

0
k l lkl l x x fλ = ∂ ∂



  Particularly, if 
( ) 1

1

sup
k

k
l l

l l
k

Cλ
∈

≤ < ∞




N

, then 
f  will be a left cO -entire function. 

Proof. Let 

( )
( )

( )
1 1

10 , ,
, .

k k
k

N

N l l l l
k l l

S x V x Nλ
=

= ∈∑ ∑
 



N  

For any 7
0 i ix x e γ= ∈Λ∑ , there exists γ γ′ >  such that  

2 2
0

1 , 1, 2, ,7ix x i
γ

+ < =
′

 . Thus 

( ) ( )

( )
( )

( )( )

1 1
1

1 1
1

1

, ,

7

, , 1

sup

sup

1sup
!

7 1 0 inf , .
!

k k
k

k k
k

k

N M
x

N

l l l l
x k M l l

N

l l l l
x k M l l

kN

l lk
k M

S x S x

V x

z z
k

M N
k

γ

γ

γ

λ

λ

λ
γ

′

′

′

∈Λ

∈Λ =

∈Λ = =

=

−

≤

≤

≤ → →∞
′

∑ ∑

∑ ∑

∑

 











 

From Weierstrass Theorem on octonions [13] and the analyticity of 
( )

1 1k kl l l lV x λ
 

, then there exists a left cO -analytic function f  in γΛ  such 
that 

( ) ( )
( )

( )
1 1

10 , ,
lim ,

k k
k

N l l l lN k l l
f x S x V x λ

∞

→∞ =

= =∑ ∑
 



 

and the series uniformly converges to ( )f x  in each compact subset K γ⊂ Λ . 
Again from the expansion of ( )f x  we easily get that ( )

1 1
0

k l lkl l x x fλ = ∂ ∂


 . 

If 
( ) 1

1

sup
k

k
l l

l l
k

Cλ
∈

≤ < ∞




N

, then 8
γΛ = R , since 

7lim 0
!

k

k k→∞
= . Therefore f  is a  

left cO -entire function.  
Example. Taking 

1
1

kl lλ ≡


 for all k∈N  in (5.2), then 

( )
( )

1
1

0 , , k
l lk

k l l
V x

∞

=
∑ ∑





                     (5.3) 

is an O -entire function. In fact, (5.3) is the Taylor expansion of the exponential 
function ( )exp x  as in (3.3). From (3.3) we can find ( )exp x  satisfies 

( ) ( ) ( ) ( ) ( ) ( )exp 0 1, exp exp exp exp exp .x y x y y x= + = ⋅ = ⋅  

Corollary 5.3. For any left cO -analytic function f , if the coefficients in its 
Taylor series about the origin satisfy 

( )
( )

1

0 , , 1, 2, ,7

0 , otherwise.

k
i

l lk

ix

x x

f e k i

f

∂ ∈ + ∈ =

∂ ∂ ∈





C C N

C
            (5.4) 

Then f  is a complex Stein-Weiss conjugate harmonic system. 
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Proof. From (5.4), we easily obtain that all the conjugates of  
( ) ( )

1 1
0

k l lkl l x xV x f∂ ∂


  are complex Stein-Weiss conjugate harmonic systems. 
Hence by Weierstrass Theorem, f  also is a complex Stein-Weiss conjugate 
harmonic system in its convergent area.  

Combining Theorem 3.2(b), Theorems 5.1 and 5.2, by an analogous method 
in [6] we can define the Cauchy-Kowalewski product for any two left cO
analytic functions f and g in Ω  which containing origin. We let their Taylor 
expansions be 

( )
( )

( ) ( )
1 1

10 , ,
0

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

and 

( )
( )

( ) ( )
1 1

10 , ,
0 .

t s st
t

s s x x
t s s

g x V x g
∞

=

= ∂ ∂∑ ∑




  

Then the (left) Cauchy-Kowalewski product of f and g is defined by 

( )

( )
( )

( ) ( ) ( ) ( )( )1 1 1 1
1
1

7

, 0 , , =1
, ,

!
0 0 ,

! ! k t l l s sk t
k
t

L

i i
l l s s x x x x

k t l l i i i
s s

f g x

n n
V x f g

n n

∞

=

′ +
= ∂ ∂ ⋅∂ ∂  ′ 
∑ ∑ ∏

 







 

 

where in  and in′  are the appearing times of i in ( )1, , kl l
 and ( )1, , ts s

, 
respectively. 

We have the following relation for the product and the left Cauchy-Kowalewski 
product between two left cO -analytic functions. 

Theorem 5.4. Let ( ) ( ),f x g x  be two left cO -analytic functions in Ω  
which containing origin. If ( ) ( )( ) 0D f x g x =  then 

( ) ( ) ( ).Lf x g x f g x= 
 

Proof. It is easy to see that ( ) ( ) ( )Lf x g x f g x= 
, then by Proposition 2.4 

and the analyticity of ( ) ( )f x g x  and ( )Lf g x
 we get  

( ) ( ) ( )Lf x g x f g x= 
.  

Remark. In this paper we study the analyticity of the product of two left cO
-analytic functions. Theorem 3.2 give some sufficient conditions for the product 
of two left cO -analytic functions is also a left cO -analytic function. From 
Theorem 5.4 we can see that ( ) ( )( ) 0D f x g x =  for two left cO -analytic 
functions ( ) ( ),f x g x  if and only if this product is just equal to their left 
Cauchy-Kowalewski product. Since ⊆H O , our result is also true for 
quaternionic cases. 
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Abstract 
After developing the concept of displaced squeezed vacuum states in the non- 
unitary approach and establishing the connection to the unitary approach we 
calculate their quasiprobabilities and expectation values †ka a  in general 
form. Then we consider the displacement of the squeezed vacuum states and 
calculate their photon statistics and their quasiprobabilities. The expectation 
values of the displaced states are related to the expectation values of the un-
displaced states and are calculated for some simplest cases which are sufficient 
to discuss their categorization as sub-Poissonian and super-Poissonian statis-
tics. A large set of these states do not belong to sub- or to super-Poissonian 
states but are also not Poissonian states. We illustrate in examples their pho-
ton distributions. This shows that the notions of sub- and of super-Poissonian 
statistics and their use for the definition of nonclassicality of states are prob-
lematic. In Appendix A we present the most important relations for 

( )1,1SU  treatment of squeezing and the disentanglement of their operators. 
Some initial members of sequences of expectation values for squeezed vacuum 
states are collected in Appendix E. 
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1. Introduction 

Besides the number states n  and the coherent states α  the squeezed 
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coherent states or, what is the same, the displaced squeezed vacuum states 
belong to the most interesting states in quantum optics for which, practically, all 
interesting parameters and quasiprobabilities may be calculated in closed exact 
way. The coherent states are the vacuum states 0n =  displaced by a complex 
parameter β  in the phase space (for one mode). The higher number states n  
with 0n ≠  are the discrete excitations of the ground state 0n =  of a 
harmonic oscillator and they also can be displaced and squeezed but this we do 
not consider in present article. All minimum uncertainty states belong to the 
squeezed coherent states and therefore some aspects of these states were already 
considered in the early years of the development of quantum mechanics 
although not under this name, for example, by Schrödinger [1], Pauli [2] and 
Louisell [3]. The name “squeezed states” appeared in the eighties by Walls [4] 
and others and numerous articles and reviews are published since this time, e.g., 
[5]-[14] and, e.g., [15] [16] [17] [18] [19]. 

In the narrow sense the squeezing operations form together with rotations in 
a plane (the two-dimensional phase plane) the Lie group ( )1,1SU  with 3 real 
parameters. This Lie group possesses different realizations in quantum optics of 
a single mode and also a basic nontrivial realization in a two-mode system. We 
will deal with in this article a single mode where the basic operators of the Lie 
group ( )1,1SU  are realized by quadratic combinations of the annihilation and 
creation operators ( )†,a a  of this mode but in Appendix A we represent in 
detail the basic relations for ( )1,1SU . Besides this, the Lie group ( )1,1SU  may 
find application within a single mode also for the treatment of phase states and 
as mentioned possesses a basic realization in a two-mode system (e.g., [15]). 
Dynamical squeezing appears if the Hamiltonian or Liouvillean of a process is 
described by quadratic combinations of annihilation and creation operators. 

The main purpose of this paper is the representation of the formalism of 
( )1,1SU  squeezing in two approaches concerning the complex squeezing 

parameter which we call non-unitary and unitary approach and the calculation 
of expectation values and of the basic quasiprobabilities for squeezed vacuum 
and squeezed coherent states. The squeezed coherent states are well appropriate 
to demonstrate some problems of the distinction of sub- and super-Poissonian 
photon statistics because the whole set of these states can be not assigned to only 
one of these two kinds of statistics and it requires substantial efforts to find out 
to which of these statistics it belongs in a special case. The cases when they are 
neither sub- nor super-Poissonian statistics may be very far from a Poisson 
statistics that can be seen by the distance parameter. This shows in an example of 
nonclassical states the problems of classification of statistics in quantum optics 
in this way and is discussed in Section 11. 

2. Squeezed Vacuum States in Non-Unitary Approach and 
Their Photon Statistics 

In this section we begin with the discussion of squeezed vacuum states in the 
non-unitary approach. For their definition we apply the non-unitary operator  
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†2exp
2

aζ − 
 

 with ζ  as a complex parameter ( )1ζ <  onto the vacuum  

state 0 . As usual, ( )†,a a  denote a pair of annihilation and creation 
operators of a single boson mode with the commutation relations 

† † †,a a aa a a I  ≡ − =  , (I unity operator) and they act onto the number states 
n  which are orthonormalized and complete 

† †1 , 1 1 , ,a n n n a n n n N n a a n n n= − = + + ≡ =  

( )
†

,
0

, , 0 , 0,1, 2, .
!

n

m n
n

am n n n I n n
n

δ
∞

=

= = = =∑    (2.1) 

Now, we define the squeezed vacuum states 0,ζ  in the non-unitary 
approach by 

( ) ( ) ( )2 2

0 0

1 2 !1
0, exp 0 0 2 ,

2 2 ! 2 !

mm
m m m

m m
m m

m
a a m

m m
ζ

ζ ζ ζ
∞ ∞

= =

−− ∝ − = = 
 

∑ ∑† † (2.2) 

where the zero in the notation 0,ζ  is arranged for the substitution by a 
complex displacement parameter β  in the later generalization to displaced 
vacuum states ,β ζ  (see Figure 1 and from Section 7 on). 

Since 
†2

2e
aζ

−
 is not a unitary operator the right-hand side of (2) is not 

normalized and using the Taylor series 
( )
2 20

2 ! 1
2 ! 1

m
mm

m
q

m q
∞

=
=

−
∑  we find the  

normalization factor 

( )

( ) ( ) ( )

1
* 24

1
* *4

0

0, 1 exp 0
2

1 2 !
1 2 , 0, 0, 1, 1.

2 !

m
m

m
m

a

m
m

m

ζ
ζ ζζ

ζζ ζ ζ ζ ζ ζζ
∞

=

 = − − 
 

−
= − = ≡ <∑

†

  (2.3) 

The complex parameter ζ  is restricted in the non-unitary approach for 
normalizable states to 1ζ <  but can be continued to non-normalizable states 
for 1ζ ≥ . In the unitary approach (2) we apply a unitary operator 

*
2 2exp

2 2
a aζ ζ ′ ′

− 
 

†  to the vacuum state 0  according to 

* *
2 2 2 2Arth

0, exp 0 exp 0 .
2 2 2 2

a a a a
ζ ζ ζ ζ ζζ

ζ
    ′ ′ ≡ − ≡ −    
     

† †   (2.4) 

The connection between the two parameters ζ  and ζ ′  is given by1 

( ) ( )* *Arth Arth
, , Arth , ,

ζ ζ ζ ζ
ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ
′

′ ′ ′= = = =
′

 

 

 

1Note that the operators ( )
*

* 2 2,0, exp
2 2

S a aζ ζζ ζ
′ ′ ′ ′ ≡ − 

 
†  with complex ζ ′  do not form a 

group that means the product of two such operators with different parameters is, in general, not an 
operator of this type but by a small extension one comes to the ( )1,1SU  group of squeezing and 
rotation operators; see Appendix A. 
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Figure 1. Position of ellipses of squeezed vacuum states in dependence on the phase of squeezing 

parameter ζ . The drawn squeezing ellipses for 1
2

ζ =  are a contour of equal height of the Wigner 

quasiprobability ( ),W q p . The mean value N  of the number operator N depends for the squeezed 

vacuum states only on the modulus 
ζ

 of the squeezing parameter ζ  and is 
2

21
N

ζ
ζ

=
−

 and the 

variance is ( )
( )

2
2

22

2

1
N

ζ

ζ
∆ =

−
 that means 1

3
N =  and ( )2 8

9
N∆ =  in our case. This shows that all 

squeezed vacuum states possess a super-Poissonian photon statistics. In the second picture we have 
shown a displacement of squeezed vacuum states in the quantum phase plane (see from Section 7 on). 
The squeezing parameter remains the same under displacements. The circle on the left figure corresponds 
to the vacuum state and on the right figure to a coherent state. 

 

( ) ( ) ( )* *th th
, , th .

ζ ζ
ζ ζ ζ ζ ζ ζ

ζ ζ

′ ′
′ ′ ′= = =

′ ′
        (2.5) 

The parameter ζ ′  is stretched in comparison to ζ  and takes on the whole 
complex plane for normalizable states but ζ  and ζ ′  possess the same 
directions in the complex plane. It is easy to rewrite the formulae derived in the 
following from parameters ( )*,ζ ζ  to parameters ( )*,ζ ζ′ ′  using (5), for 
example 

( ) ( ) ( )
2

2 2
2 2

11 ch , sh , exp .
11 1

ζ ζ
ζ ζ ζ

ζζ ζ

±
′ ′ ′= = = ±

− − 

  (2.6) 

The complex parameter ζ  has often some advantages in comparison to the 
complex parameter ζ ′  concerning compactness of formulae but sometimes, 
e.g., in the dynamics to quadratic Hamiltonians in ( )†,a a , the representation 
by ζ ′  is to prefer and ζ  in literature notations ,α ζ  corresponds mostly 
to our ζ ′ . In Appendix A we consider the relations in detail. 

The equivalence of the two approaches is given by the following general 
disentanglement of the unitary squeezing operator in (almost) normal ordering 
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( ) ( )† †

*
2 2

1 *
2 * 24

Arth
exp

2 2

exp 1 exp .
2 2

aa a a

a a

a a

ζ ζ ζ
ζ

ζ ζζζ
+

   −  
   

  = − −   
   

†

†

     (2.7) 

The basic relations for squeezing operators between unitary and non-unitary 
approach were developed already earlier (e.g., [18]) for the ( )1,1SU  group and 
we collect the most important relations in Appendix A. 

From (2.3) follow the probabilities np  to the photon statistics of squeezed 
vacuum states 

( ) ( )2 2 2 2
2 2 2

2 1

0, 0,

2 ! 2 1 !!
1 1

2 ! 2 !
0.

n

m m
m m m

m

p n n

m m
p

m m
p

ζ ζ

ζ ζ ζ ζ

+

≡

−
= − = −= 

 =

      (2.8) 

The sum over the np  are normalized according to 

( )2 2
2 2

0 0

2 !
1 1,

2 !
m

n m
n m

m
p

m
ζ ζ

∞ ∞

= =

= − =∑ ∑               (2.9) 

as one affirms from the Taylor series of the function ( )
1

2 21 ζ
−

− . Only the  

probabilities for even 2n m=  are non-vanishing and the probabilities 2mp  
a r e  
strictly decreasing ( ( ) 22 1 mmp p+ ≤ ) for increasing m. 

From the commutation relations 

†2 2

2
2 2 2

exp exp
2 2

1, , , ,
2 2! 2

a a a

a a a a a a a a

ζ ζ

ζ ζ
ζ

   −   
   

      = − + − = +      


†

† † † †

     (2.10) 

in connection with 0 0a =  follows that the states 0,ζ  are eigenstates of 
the operator †a aζ+  to the eigenvalue zero 

( )†2 20 exp 0 exp 0 ,
2 2

a a a a aζ ζ
ζ   = − = + −   

   
† †       (2.11) 

that means 

( )† †0, 0, 0, 0, .a a a aζ ζ ζ ζ ζ+ = ⇔ = −         (2.12) 

In representation by canonical operators ( ),Q P  this is equivalent to 

( ) ( )( ) 11 i 1 0, 0, 0, i 0, .
1

Q P P Qζ
ζ ζ ζ ζ ζ

ζ
+

+ + − = ⇔ =
−

   (2.13) 

Thus both the states 0,a ζ  and † 0,a ζ  as well as the states 0,Q ζ  

and 0,P ζ  are linearly dependent. Furthermore, from (2.12) follows 

† † 1 10, 0, , 0, 0, .k k l la a a a a aζ ζ ζ ζ ζ ζ+ −= − = − †      (2.14) 
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If one forms the scalar products of these relations by multiplication with 
0,ζ  one obtains the expectation values of †ka a  and † 1kaζ +−  and the 

expectation values la  and 1la aζ −− † , respectively, with equality relations 
between them. By differentiations of (2.3) with respect to ζ  and to *ζ  in 
connection with (2.14) for 1k =  we find 

†2 *
*0, 0, 2 0, ,N aζ ζ ζ ζ ζ ζ

ζ ζ
 ∂ ∂

= − = − ∂ ∂ 
        (2.15) 

as a further interesting relation which can also be written as eigenvalue equation 
for 0,ζ  to eigenvalue zero. 

Another interesting characteristics of a state is its (Hilbert-Schmidt) distance 
to the nearest coherent state which in case of squeezed vacuum states 0,ζ  is 
the vacuum state 0 . It may be considered as a measure of nonclassicality of a 
state [20] [21] [22]. For this distance one finds (see (5) for ζ  and ζ ′ ) 

( ) ( )

( ) ( )
2

2 2

0, 0, , 0 0 2 1 0 0, 0, 0

12 1 1 2 1
ch

1 51 1 .
8 24

d ζ ζ ζ ζ

ζ
ζ

ζ ζ ζ ζ

= −

 
= − − = −  ′ 

   ′ ′= + + = − +   
   

 

 (2.16) 

It depends only on the modulus of ζ . For strong squeezing 1ζ →  this 
distance goes to 2  that is the largest distance for normalized states in Hilbert 
space and means orthogonality of the two states (Figure 2). 

3. Wave Functions of Squeezed Vacuum States and 
Uncertainty Matrix 

The wave functions of squeezed vacuum states are the scalar products 0,q ζ  
and 0,p ζ  with the eigenstates q  and p  of the operators Q and P. 
Their number representations are 

( )

2

1
04

1 1exp H ,
2 2 !π

nnn

q qq n
n

∞

=

   
= −   

  
∑







 

( )

2

1
04

1 iexp H ,
2 2 !π

n

nnn

p pp n
n

∞

=

   
= −   

  
∑







           (3.1) 

where ( )Hn z  denotes the Hermite polynomials. They are not normalizable as 
it is well known and are only normalized by means of the delta function 

( ) ( )
*

, ,

1 exp i .
2 π

q q q q p p p p

qpq p p q

δ δ′ ′ ′ ′= − = −

 = = 
 

            (3.2) 

Using the number-state representation (3.3) of squeezed vacuum states we find by 
applying the first of the generating functions (3.3) for even Hermite polynomials 
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Figure 2. Distance of squeezed vacuum states to vacuum state in dependence on 
squeezing parameters ζ  and ζ ′  in non-unitary and in unitary approach. The figures 
show that for 1ζ →  the parameter ζ ′  is stretched up to ∞  in comparison to ζ . 

The maximal distance of two pure normalized states in Hilbert space is 2 . 
 

( )

( )
( )

1
* 24

22
0

1
2* 4

110, exp H
π 2 2 ! 2

11 1 exp ,
π 1 21

m m

mm
m

q qq
m

q

ζζζ
ζ

ζζζ
ζζ

∞

=

−   −  = −     
    

 + −
= −    −−   

∑
 



 

 

( )
( )

1
* 24

22
0

1
2* 4

10, exp H
π 2 2 ! 2

11 1 exp .
π 1 21

m

mm
m

p pp
m

p

ζζ ζ
ζ

ζζζ
ζζ

∞

=

   −  = −     
    

 − −
= −    ++   

∑
 



 

        (3.3) 

From this follows 

( )
( )( )

( )
( )( )

* 2*

* *

110, 0, exp ,
1 1 π 1 1

q
W q q q

ζζζζζ ζ
ζ ζ ζ ζ

 −−  ≡ = −
 − − − −  

 

( )
( )( )

( )
( )( )

* 2*

* *

110, 0, exp ,
1 1 π 1 1

p
W p p p

ζζζζ
ζ ζ

ζ ζ ζ ζ

 −−  ≡ = −
 + + + +  

  (3.4) 
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with the normalization 

( ) ( )d d 1.qW q pW p
+∞ +∞

−∞ −∞
= =∫ ∫                   (3.5) 

The functions ( )W q  and ( )W p  are the Wigner quasiprobability ( ),W q p  
integrated over one of the canonical variable p or q. The functions (3.4) remain 
invariant by interchanging the squeezing parameter ζ  with its complex 
conjugate *ζ ζ↔ . This shows in an example that, in general, a state (here 
0,ζ ) cannot uniquely be reconstructed from ( )W q  and ( )W p  alone. 

The functions ( )W q  and ( )W p  are two normalized Gaussian distribution 
with the expectation values 

( )
( )( )

( )
( )( )* *

2 2
* *

1 1 1 1
0, 0, , .

2 21 1
Q P Q P

ζ ζ ζ ζ

ζζ ζζ

− − + +
= = ∆ = ∆ =

− −
 

  (3.6) 

The product of their uncertainties ( )2Q∆  and ( )2P∆  (note inequality 
2 *2 *2z z zz+ ≤  for arbitrary complex iz x y= +  in contrast to 2 2 2x y xy+ ≥  

for arbitrary real x and y) 

( ) ( )
( )( )

( )

2 *2 2 2
2 2

2*

1 1
.

4 41
Q P

ζ ζ

ζζ

− −
∆ ∆ − ≥

−

                 (3.7) 

It depends on the phase χ  of the complex squeezing parameter ie χζ ζ=  
that means on the position of the principal axes of squeezing in comparison to 
the axes of the canonical coordinates ( ),q p  (see Figure 1). In contrast, the 
sum of the uncertainties 

( ) ( )
*

2 2
*

1 ,
1

Q P ζζ
ζζ

+
∆ + ∆ =

−
                    (3.8) 

does not depend on the phase of the squeezing parameter ζ . For real squeezing 
parameter *ζ ζ=  we find for the uncertainties 

( ) ( ) ( )2 2 *1 1, , ,
1 2 1 2

Q Pζ ζ
ζ ζ

ζ ζ
− +

∆ = ∆ = =
+ −

 

            (3.9) 

and their product is equal to 
2

4


 the minimal possible one. The principal axes  

of the squeezing ellipses are then in direction of the coordinate axes ( ),q p  (see 
Figure 1). Clearly, it is not satisfying to consider squeezed vacuum states 0,ζ  
with real ζ  as minimum uncertainty states and such with complex ζ  which 
are only rotated in the phase plane (Figure 1), in general, not as minimum 
uncertainty states. The satisfying solution of this problem is to consider in  

addition the uncertainty correlation 1
2

Q P P Q∆ ∆ + ∆ ∆  [23] [24]. 

The uncertainty correlation 1
2

QP PQ+  arises in a natural way as non- 

diagonal elements of the (symmetrical) uncertainty matrix S  if we consider the 
cumulant expansion of the Wigner quasiprobability ( ),W q p  or the 
corresponding expansion of its Fourier transform ( ),W u v  [24] 
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( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 22 2† † † †

2 22 2† † † †

1
2S

1
2

i
.

2i

Q Q P P Q

Q P P Q P

a a a a a a a a

a a a a a a a a

 ∆ ∆ ∆ + ∆ ∆ 
≡  
 ∆ ∆ + ∆ ∆ ∆ 
 

    ∆ ∆ + ∆ ∆ + ∆ + ∆ − ∆ − ∆    
    =

    − ∆ − ∆ ∆ ∆ + ∆ ∆ − ∆ + ∆    
    



(3.10) 

It is also called variance matrix [23] and is related to the covariance matrix [10] 
(3.p. 61). The trace of the uncertainty matrix S  denoted by S  

( ) ( ) ( )2 2 † †S ,Q P a a a a= ∆ + ∆ = ∆ ∆ + ∆ ∆            (3.11) 

is the uncertainty sum and the determinant of the matrix S  denoted by [ ]S  is 
essentially the uncertainty product but modified by the uncertainty correlations 

[ ] ( ) ( ) ( )

( ) ( ) ( )

22 2

2 22 22† † †

1S
4

4 .
4 4

Q P Q P P Q

a a a a a a

= ∆ ∆ − ∆ ∆ + ∆ ∆

 = ∆ ∆ + ∆ ∆ − ∆ ∆ ≥ 
 

 

        (3.12) 

The chain of inequalities which generalizes the basic uncertainty relation of 
quantum mechanics is ([18] [24]) 

[ ] ( ) ( )2 2S S .
2

Q P≤ ≤ ∆ ∆ ≤
                  (3.13) 

Both quantities S  and [ ]S  are invariant with respect to rotations and 
displacement of the states in the quantum phase plane and S  is additionally 
invariant with respect to squeezing [24]. 

For squeezed vacuum states 0,ζ  we find using their number 
representation (2.2) 

( ) ( ) ( )
*22 †
*

1 i i ,
2 2 21

Q P P Q a a ζ ζ
ζζ
− ∆ ∆ + ∆ ∆ = − ∆ − ∆ =  − 

 

        (3.14) 

and therefore for the modified uncertainty product [ ]S  in (3.12) using the 
explicit expressions (3.7) and (3.14) 

[ ]
2

S .
4

=


                          (3.15) 

This modified uncertainty product for squeezed vacuum states does no more 
depend on the position of the principal axes of squeezing ellipses in phase plane 
of canonical coordinates ( ),q p  shown in Figure 1. It is the minimum possible 
one characterizing the states as minimum uncertainty states in this generalized 
sense. 

By a rotation of the canonical coordinates ( ),q p  to new canonical 
coordinates ( ),q p′ ′  one may bring them in the position of the principal axes of 
the squeezing ellipses and since this is fully obvious we do not give the explicit 
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transformation relations. However, this suggests that it is better not to exclude 
squeezed vacuum states with arbitrary positions of the squeezing ellipses from 
the minimum uncertainty states. 

4. Bargmann Representation and Quasiprobabilities for 
Squeezed Vacuum States 

The Bargmann representation of a state is a representation by an analytic 
function which, in particular, leads immediately to the Husimi-Kano 
quasiprobability ( )*,Q α α  [25] (chap. 7) and [26]. For this purpose we 
calculate the scalar product of a state with the analytic (but non-normalized)  

coherent states 
*

0exp
2 !

|
n

n n
n

αα αα α ∞

=

 
≡ = 

 
∑  with arbitrary complex α .  

For the squeezed vacuum state 0,ζ  this provides its Bargmann 
representations 

( ) ( )

( )

1*
* * 24

0

*1 * *
* 24

1
exp 0, 1

2 2 !

1 exp exp 0, .
2 2

m
m m

m
m m

αα ζ α ζζ ζ α

ζ ααζζ α α ζ

∞

=

− 
= − 

 

    
= − − =          

∑
  (4.1) 

From this one obtains the Husimi-Kano quasiprobability ( )*,Q α α  for 
density operator 0, 0,ρ ζ ζ=  

( )

( )

* *
* * 2 *2

* *

0, 0, 1
, exp ,

π π 2 2

i d d , 1.
2

Q

Q

α ζ ζ α ζζ ζ ζα α αα α α

α α α α

  −  ≡ = − + +  
   

∧ =∫

  (4.2) 

In representation by real canonical variables ( ),q p  this is 

( ) ( )

( )

* * *
2 2 *1 2, exp 1 1 i ,

2 π 2 2

d d , 1.

Q q p q p qp

q pQ q p

ζζ ζ ζ ζ ζ ζ ζ
     − + + = − + + − − −            

∧ =∫

   

(4.3) 

There are different possibilities to calculate the Wigner quasprobability [27] 
[28]. In most convenient way the Wigner quasiprobability ( )*,W α α  of an 
arbitrary squeezed state can be calculated from the Wigner quasiprobability 

( )*
0 ,W α α  of the corresponding non-squeezed state using the relation (4.9) of 

Appendix B. The parameters for our non-unitary approach (4.4) are derived in 
(4.18) where we have to set *ξ ζ=  and have 

( )
* * *

*
0 * *

, , .
1 1

W W α ζα α ζ αα α
ζζ ζζ

 + + =
 − − 

  (4.4) 

Taking into account the well-known Wigner quasiprobability for the vacuum 
state 
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( ) ( ) ( )* *
0

2, exp 2 , 0 0 ,
π

W α α αα ρ= − =           (4.5) 

we obtain 

( ) ( )( )

( ) ( )

* * *
*

*

* * * 2 *2
* *

*

2, exp 2
π 1

12 iexp 2 , d d , 1.
π 21

W

W

α ζα α ζ α
α α

ζζ

ζζ αα ζ α ζα
α α α α

ζζ

 + + = − 
−  

 + + + = − ∧ = 
−  

∫

 (4.6) 

In representation by the real canonical variables ( ),q p  

( )
( )( ) ( )( ) ( )

( )
( ) ( )( ) ( ) ( )( )

( )
( )

* 2 * 2 *

*

* *

*

,

1 1 1 1 i 21 exp
π 1

1 i 1 1 i 11 exp ,
π 1

d d , 1.

W q p

q p qp

q p q p

q pW q p

ζ ζ ζ ζ ζ ζ

ζζ

ζ ζ ζ ζ

ζζ

 + + + − − − − = − 
−  

 + + − + − − = − 
−  

∧ =∫









   (4.7) 

Another often easy way to calculate the Wigner quasiprobability ( )*,W α α  is 
to make first the normal ordering of the operator involved in the representation 
(4.1) that leads to [22] 

( ) ( )

( )

( )

* *
*

2
† *

* *

† *
*

, exp ,

1exp exp exp ,
2

2exp exp exp 2 .
π

W a a

a a

a a

α α ρ δ α α
α α

ρ δ α α
αα α α

ρ αα
αα

∂ ∂ = − − ∂ ∂ 

 ∂ ∂ ∂   = − −     ∂∂ ∂ ∂     
∂ ∂   = − − −   ∂∂   

†

  (4.8) 

For example, one obtains then immediately from it the already used Wigner 
quasiprobability for the vacuum state (4.5) since the application of the operator  

exp a
α
∂ − ∂ 

 to the state 0  and of †
*exp a

α
∂ − ∂ 

 from the right to 0   

reproduces them. In the real representation one may use the following 
equivalent definitions where the first corresponds to the definition given by 
Wigner [27] [28] for pure states (written here with density operator ρ  and 
with Dirac’s notations for states) 

( ) 1 2, d exp i
π

1 2d | exp i .
π

pxW q p x q x q x

qyy p y p y

ρ

ρ

+∞

−∞

+∞

−∞

 = − +  
 
 = + − 〉  
 

∫

∫

 

 

         (4.9) 

We checked (4.7) by these formulae using the wave functions 0,q ζ  and 
0,p ζ  derived in (3.3). 

Without presenting its detailed calculation let us give the more general 
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quasiprobabilities ( )*,rF α α  with the parameter r and defined by [29] (‘*’ 
means convolution) 

( ) ( )

( )

2
* *

*

*
*

2

, = exp ,
2

2 2exp * , ,
π

α α α α
α α

αα α α

 ∂
 

∂ ∂ 
 

= − 
 

r
rF W

W
rr

          (4.10) 

Our result for the squeezed vacuum states 0,ζ  is 

( )
*

*
2 2

*

*
* * 2 *2

2 2
*

1 1,
π 1 1

2 2

1 1
2 2 2 2exp .

1 1
2 2

rF
r r

r r

r r

ζζ
α α

ζζ

ζ ζζζ αα α α

ζζ

−
=

+ −   −   
   

 + − + + +    × − 
+ −    −        

      (4.11) 

For 0r =  one obtains the Wigner quasiprobability ( )*,W α α , for 1r = +  
the Husimi-Kano quasiprobability ( )*,Q α α  and for 1r = −  the Glauber- 
Sudarshan quasiprobability ( )*,P α α . The Glauber-Sudarshan quasiprobability 

( )*,P α α  for squeezed vacuum states is a singular generalized function and 
makes for 0ζ =  the transition to the delta function ( )*,δ α α . The 
representation of (4.10) by real canonical variables ( ),q p  is easily to make. 
Furthermore, with some calculation one may bring all quasiprobabilities in 
representation by real variable to principal axes form that, however, we do not 
demonstrate here. 

5. Expectation Values of Powers of Number Operator and 
Related Ordered Operators for Squeezed Vacuum States 

We now calculate expectation values for the squeezed vacuum states. In 
particular interesting are the expectation values of ordered powers of the 
annihilation and creation operators ( )†,a a . We begin with the special 
expectation values †k ka a  since from these expectation values one may calculate 
the expectation values lN  of the number operator N. 

Using the number representation (2.3) of the squeezed vacuum states 0,ζ  
we proceed quickly for the expectation values †k ka a  which depend only on 

*ζ ζζ≡  to the following intermediate result 

( )
( )

( )

2
2 2† †

2 2
=0

2 2
2 2

=0

2

2

2 !
0, 0, 1

2 ! 2 !

2 !
1

2 !

11 ,
1

ζ ζ ζ ζ

ζ ζ ζ
ζ

ζ ζ
ζ ζ

∞

∞

≡ = −
−

∂
= −

∂

∂
= −

∂ −

∑

∑

mk k k k
m

m

k
k m

k m
m

k
k

k

m
a a a a

m m k

m
m

    (5.1) 
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where we used that the last sum on the right-hand side is the Taylor series of  

( )
1

2 21 ζ
−

− . This result can be expressed by the Ultraspherical polynomials 

( ) ( ),Pn uα α  as special case α β=  of the Jacobi polynomials ( ) ( ),Pn uα β  (e.g., [30]  

[31]) in two essentially different ways. We represent this in a slightly more 
general form as needed here in Appendix C. The result specialized for (5.1) is 

( )
1 1,

† 2 2
2

2 2

2
! P

1

i i
! P ,

1 1

k
k k

k k
k

k

k

a a k

k

ζ
ζ

ζ

ζ ζ

ζ ζ

 − − − − 
 

 
 = −
 − 

   
   = −      − −   

              (5.2) 

where ( ) ( ) ( )0,0P Pn nu u≡  are the Legendre polynomials as special case of the 
Jacobi polynomials ( ) ( ),Pn uα β . More explicitly this provides 

( ) ( ) ( )
2 2†

22
0

!! 2 0.
! 2 !2 1

k k

k jk k

j

ka a k
j k j

ζ
ζ

ζ

 
   −

=

 
 = ≥  −− 
 

∑             (5.3) 

Remarkable in these transformations is that we could split an essential factor  

21

k
ζ

ζ

 
 
 − 

 multiplied by a polynomial in comparison to the infinite sums in  

(5.1). 
The expectation values of symmetrically ordered power operators { }†k ka a  

are connected with †k ka a  by (see, e.g., Equation (7.6) in [22]) 

{ } ( )
2

† †
2

0

! 1 .
2! !

lk
k k k l k l

l

ka a a a
l k l

− −

=

 =  −  
∑             (5.4) 

Inserting for †k l k la a− −  the result (5.3) one may transform the arising double 
sum by reordering to 

{ }
( )( ) ( ) ( )

( )( ) ( )

2 22 2†
22 0

2
2

2 0

! ! 1
! 2 !2 1

! ! .
! !2 1

k
k jjk k

k
j

k l
k

l

k ka a
j k j

k k
l k l

ζ ζ
ζ

ζ
ζ

 
   −

=

=

= +
−−

 
=   − −

∑

∑



    (5.5) 

The transition from the first line to the second line is possible after Taylor  

series expansion of ( ) 221
k j

ζ
−

+  and applying then Vandermonde’s convolution 

identity which provides a particularly interesting representation with the 
squared binomial coefficients involved. One may also directly make the 
transition to representations of the result by the Jacobi polynomials and by its 
special case of Legendre polynomials using their explicit representations and 
transformation formulae as follows 
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{ }
( )( )

( ) ( )

( )
( )

2
20, 2 1†

2 2

2
0, 2 1

22

1! !P P 1 2
2 1 2 1

2! P 1 .
2 1

ζ
ζ

ζ ζ

ζ

ζζ

− −

− −

 +
 = = −
 −  −

      = −   −    

kk k
k kk k

k

k
k

k ka a

k



   (5.6) 

In Appendix E we give some first members of the explicit representation of  

the sequence { }†k ka a . 

The expectation values kN  of powers of the number operator can be 
calculated from the expectation values †k ka a  by the relation 

( ) †

0
S , ,

k
k l l

l
N k l a a

=

= ∑                       (5.7) 

where ( )S ,k l  denotes the Stirling numbers of second kind. We could not find 
up to now a closed representation of the coefficients in front of powers of 2ζ   

in the polynomial in the numerator over the denominator ( )21
k

ζ−  in kN   

and we give explicit results in Appendix E up to 5k = . 
From the calculated expectation values we find in first order 

{ } ( )
2 2

† †
2 2

1 1, ,
21 2 1

a a N a a N
ζ ζ

ζ ζ

+
= = = = +

− −
          (5.8) 

and in second order (see also Appendix E for more and higher-order 
expectation values) 

( )
( )

( ) ( )
( )

( )
2 2 2 2

†2 2 2
2 22 2

1 2 2
3 1 , 3 2 ,

1 1
a a N N N N N

ζ ζ ζ ζ

ζ ζ

+ +
= = + = = +

− −
 

{ }
( )

( )
2 4

†2 2
22

1 4 13 1 .
22 1

a a N N
ζ ζ

ζ

+ +
= = + +

−
              (5.9) 

From this follows for squeezed vacuum states using 
2 1

1
N

N
ζ = <

+
 

( ) ( )
( )

( )
2

22 2
22

2
2 1 ,

1
N N N N N

ζ

ζ
∆ ≡ − = = +

−
            (5.10) 

that means the number uncertainty for squeezed vacuum states is larger than,  

for example, for coherent states ( ( )2N N∆ = ) and furthermore 

( ) ( )
( )

( ) ( )
2 2

2 2†2 2
22

1
2 1 ,

1
a a a a N N N N

ζ ζ

ζ

+
− = = ∆ − = +

−

†  

{ } { }( ) ( )
( )

2 42
†2 2

22

1 6 1 12 1 .
4 44 1

a a a a N N
ζ ζ

ζ

+ +
− = = + + ≥

−
  †     (5.11) 
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This shows that sub-Poissonian statistics ( )2
†2 2 0a a a a− <†  does not exist 

for squeezed vacuum states and that { } { }( )2
†2 2 1

4
a a a a− ≥  †  satisfies the 

general inequality for this quantity [22]. 

6. Further Expectation Values for Squeezed Vacuum States 

In this Section we calculate more general expectation values for the squeezed 
vacuum states of the form 

*
† †k l l ka a a a=  than in the preceding Section. They 

are only non-vanishing if the difference k l−  is an even number 2m. This 
follows from symmetry considerations of the squeezed vacuum states or from 
their number-state representation which contains only even number states 
2m  Therefore, we now calculate separately the expectation values †2 2k la a  

and †2 1 2 1k la a+ + . They depend on ζ  and *ζ  separately and, therefore, we use 
here the pair of variables ( )*,ζ ζ  for the representation of the results. 

For †2 2k la a  using (2.2) and doubling relations for the Gamma function 
applied to ( )2 !x  we arrive at the intermediate result 

( ) ( )

†2 2 2 2

*
* *

0

0, 0,

1 1! !
1 2 22 ,

1π ! !
2

1 ! π .
2

k l k l

jk l k l

j

a a a a

j k j l

j j

ζ ζ

ζζ
ζ ζ ζζ

∞
+

=

≡

   + − + −   −    = −
 − 
 

  − ≡  
  

∑

†

    (6.1) 

By comparison of this expression with explicit expressions for the Hyper- 
geometric function ( )2 1F , ; ; zα β γ  we see that this is a polynomial case with the 
Jacobi polynomials ( ) ( ),Pn uα β  involved. The main polynomial case of the 
Hypergeometric function is 

( ) ( )
( )

( ) ( )

( )
( )

( )

( )

1,
2 1

,

2 1

! 1 !
F , ; ; P 1 2

1 !

! 1 ! 2P 1
1 !

F , ; ; ,

γ β γ

β β γ

γ
β γ

γ

γ
γ

β γ

− − −

− − − −

−
− = −

+ −

−  = − + −  

= −

n
n

n nn
n

k
n z z

n

n
z

n z

n z

           (6.2) 

and the other possible polynomial case is ( see [32] Section 5 there) 

( ) ( ) ( ),2
2 1 2 2

1 1 ! !F , ; 1; 1 P .
2 2 ! 1

n
n

n
n n n zz z

nz z
α αα

α
α

 − − − + − = +    +  + 
 (6.3) 

By transformation relations of the Hypergeometric function, in general, and 
in possible special cases we find the relation between the Jacobi polynomials 

( ) ( ) ( ) ( ), , 2 111 P P 1 2 ,
1

n n
n n

zz z
z

α β α α β− − − −+ − = − − 
              (6.4) 

and in special case if one of the upper indices is an integer 
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( )
( ) ( ) ( )

( ) ( ), ,! 2 ! 2P P .
! 1 ! 1

n m
m n n m

n m
n mu u

n u m u
β β

β β
− −   =   + − + −   

  (6.5) 

Together with the more trivial relation 
( ) ( ) ( ) ( ) ( ), ,P 1 P ,n
n nu uα β β α= − −                   (6.6) 

this provides many possibilities to represent our final results. 
Our final result admits the following two equivalent representations showing 

some symmetry with respect to interchanging k l↔  

( )
( )

( )
( )

1* *,
†2 2 2

**

1* *,
2

**

1! !
122 P

1 11!
2

1! !
122 P ,

1 11!
2

ζ ζ ζζ
ζζζζ

ζ ζ ζζ
ζζζζ

 − − +  

 − − +  

 −   + = −  
−   −− 

 

 −   + = −  
−   −− 

 

k l l kk lk l
kl

k l k lk l
lk

k l
a a

l k
       (6.7) 

or alternatively 

( )
( )

( )

( )
( )

( )

1 1* ,
†2 2 *2 2

*

1 1* ,
*2 2

*

1! !
22 P 1 2

1 1!
2

1! !
22 P 1 2 .

1 1!
2

k l k lk lk l
kk l

k l k lk l
lk l

k l
a a

l k

ζ ζ
ζζ

ζζ

ζ ζ
ζζ

ζζ

 − − − − +  
+

 − − − − +  
+

 − 
 = − −
  −− 
 
 − 
 = − −
  −− 
 

   (6.8) 

In case of the expectation values †2 1 2 1k la a+ +  the analogous intermediate result 
to (6.1) is 

( )
( )

( )
*

†2 1 2 1 1 * *

1

1 1! !
1 2 21 2 .

1π ! 1 !
2

jk lk l k l k l

j

j k j l
a a

j j

ζζ
ζ ζ ζζ

∞
++ + + +

=

   + − + −   −    = −
 − − 
 

∑  (6.9) 

Using the relation to the Hypergeometric function and the Jacobi polynomials 
from this follows in analogy to (6.7) 

( )
( )

( )
( )
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†2 1 2 1 2
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2

1! !
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2

k l l kk lk l
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a a

l k
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+

 + + − +  
+

 +   + = −  −   − 
 
 +   + = −  

−   − 
 

      (6.10) 

or, alternatively, in analogy to (6.8) 
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†2 1 2 1 *2 2
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*2 2

1*

1! !
22 P 1 2

1 1!
2

1! !
22 P 1 2 .

1 1!
2

k l k lk lk l
kk l

k l k lk l
lk l

k l
a a

l k

ζ ζ
ζζ

ζζ

ζ ζ
ζζ

ζζ
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+ +

 + + − − − +  
+ +

 + 
 = − −
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 
 + 
 = − −
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  (6.11) 

We checked the special cases k l=  in comparison with the representation 
(5.2) by the Legendre polynomials. We checked too that the right-hand sides of 
this formula gives for all the four different representations the same result. 

There is yet an interesting mathematical aspect. In (5.2) Section 5 we 
calculated the expectation values †k la a  in the special case k l=  by formulae 
which involve Jacobi polynomials (or their special case Legendre polynomials) 
without distinction of even and odd k, whereas in present Section we calculated 
the more general cases k l≠  and had to distinguish the cases of even k and l 
and of odd k and l and in the specialization k l=  there are involved Jacobi 
polynomials which are different from that for k l=  and it is not possible (or 
simple) to join these polynomials for k l=  to one common formula. The 
manifold of different transformation relations for Jacobi polynomials is very 
astonishing (see Appendix C and [27]). 

As alternative to the calculation of expectation values by the number 
representation of squeezed vacuum states one may calculate them from the 
quasiprobabilities that, however, is also not very simple. With the Wigner 
quasiprobability ( )*,W α α  one may calculate basically the expectation values 
of symmetrically (Weyl) ordered operators, for example, by integration over the  

function *αα  for the expectation value of the operator ( )† †1 1
2 2

aa a a N I+ = + .  

With the Husimi-Kano quasiprobability ( )*,Q α α  one may calculate basically 
the expectation values of anti-normally operators which one has then to 
transform to the more interesting expectation values of normally ordered 
operators. The expectation values of †ka  and of la  can be calculated with an 
arbitrary quasiprobability with the parameter r considered in Section 4. 

7. Displaced Squeezed Vacuum States or Squeezed Coherent 
States in Non-Unitary Approach 

As a generalization of squeezed vacuum states we derive here shortly their 
representation in the basis of number state and discuss a very interesting aspect. 
It is difficult to deal with squeezing in full generality and one may find in 
literature many approaches which are special ones (squeezing only in directions 
of coordinate axes ( ),q p ) or with absent calculation of basic functions 
connected with them. 

We define displaced squeezed vacuum states in the non-unitary approach by 
applying the displacement operator ( )*,D β β  to squeezed vacuum states 
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0,ζ  according to 

( ) ( ) ( )

( ) ( ) ( )

* * *

* *

, , 0, , ,0, 0 ,

Arth
, , ,

D D Sβ ζ β β ζ β β ζ ζ

ζ
ζ ζ ζ ζ

ζ

′ ′≡ =

′ ′ =
  (7.1) 

where ( )*,0,S ζ ζ′ ′  is the squeezing operator in unitary approach. We may 
change the order of operations of displacement and squeezing where the 
squeezing operator remains the stable part and the displacement operator has to 
be change. The basic relations for this provides the fundamental representation 
(A.7) setting there 0η =  and substituting ζ ζ ′→ −  

( )( ) ( ) ( )
( )( ) ( )( )
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=  
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†

†             (7.2) 

These transformations of ( )†,a a  after transition to the Hermitean basis of 
operators ( ),Q P  are very similar to Special Lorentz transformations of ( ),x ct  
with x  one space coordinate and t the time and this is not incidental since it is 
for real parameter ζ  the same one-parameter Lie group. From (7.2) follows 
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ζ ζ
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 − − = −  − − 
 + + = −  − − 

 + + =   − − 

†

†

         (7.3) 

Applied to (7.1) we find (see also Schleich [13], p. 125) 
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     (7.4) 
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as alternative representation of squeezed vacuum states. This means that we 
make first a displacement of the vacuum state 0  to a coherent state ,0β ′  
with the changed displacement parameter β ′  and after this the squeezing of 
the coherent state with the same squeezing operator ( )*,0,S ζ ζ′ ′  as in the first 
variant. Therefore, displaced squeezed vacuum states are fully equivalent to 
squeezed coherent states with the changed displacement parameters as seen 
from (7.1) and (7.4). For 0ζ =  one obtains from ,β ζ  the coherent states 
and for 0β =  the squeezed vacuum states 

( )
( )

*

*

,0 , 0,0 ,

0, ,0, 0,0 , 0,0 0 .

D

S

β β β β

ζ ζ ζ

= ≡

′ ′= ≡
            (7.5) 

The squeezing operator is the stable part in these two alternative 
representations. Figure 3 shows schematically the displacement of squeezed 
vacuum states under fixed complex squeezing parameters ζ  in different 
directions of the complex phase plane described by the complex parameter β  
( constβ =  in the four particular pictures). 

In generalization of the well-known eigenvalue equation of coherent states 
,0β β≡  the displaced squeezed vacuum states ,β ζ  are right-hand 

eigenstates of the operator †a aζ+  to eigenvalues *β ζβ+  according to 

( ) ( )† *, , .a aζ β ζ β ζβ β ζ+ = +              (7.6) 

This follows from the relation 

( ) ( )
( ) ( )( )

( ) ( )

† † *

† * *

* *

exp 0,

exp 0,

exp 0, ,

ζ β β ζ

β β β ζ β ζ

β ζβ β β ζ

+ −

= − + + +

= + −

a a a a

a a a I a I

a a

†

†

         (7.7) 

using that 0,ζ  are right-hand eigenstates of †a aζ+  to eigenvalue zero (see 
(2.12)). 

We now derive the number representation of displaced squeezed vacuum 
states. Using the normally order form (2.7) of the squeezing operator and the 
following normally ordered form of the displacement operator 

( ) ( ) ( )
*

* *, exp exp exp ,
2

D a aββ
β β β β

 
= − − 

 
†          (7.8) 

from the definition (7.1) follows 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1*
* * 24

1 * 2* * *4

1 * *2
* * 24

,

exp 1 exp exp exp 0
2 2

1 exp exp exp exp 0
2 2

1 exp exp 0 .
2 2

a a a

a a I a

a a

β ζ

ββ ζ
ζζ β β

ββ ζ
ζζ β β β

ββ ζβ ζ
ζζ β ζβ

   = − − − −   
  

   = − − − − −   
  

 +  = − − + −   
  

† †

† †

† †

(7.9) 
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Figure 3. Squeezing ellipses in relation to the displacement parameter of squeezed coherent states (schematically). The mean value 
N  of the number operator N depends for squeezed coherent states only on the modulus ζ  of the squeezing parameter ζ  left 

constant here and on the modulus β  of the complex displacement parameter β  and, therefore, is the same on the shown 
circles in all four partial figures. The case of squeezing in direction of the displacement parameter β  is also called “amplitude 
squeezing” (in q-direction in first figure) and in opposite direction to the displacement parameter β  “phase squeezing” (in 
p-direction in first figure). 

 
If we now apply the generating function (D.1) for Hermite polynomials to the 

factor in front of 0  we obtain the following form of the representation of 
displaced squeezed vacuum states 

( )
1 * *2 *

* 4

0

21, 1 exp H 0 ,
2 ! 2 2

n

n
n

a
n

ζββ ζβ β ζβ
β ζ ζζ

ζ

∞

=

    + +
= − −              

∑ † (7.10) 
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and using the generation of number states n  from the vacuum state 0  (see 
(2.1)) one finds the final form of the number-state representation2 

( ) ( )* *1 *
* 4

0

21, 1 exp H .
2 2! 2

n

n
n

n
n

β ζβ β ζ β ζβ
β ζ ζζ

ζ

∞

=

 +    + = − −             
∑ (7.11) 

It is easy to see that for 0β =  using ( ) ( ) ( ) ( )2 2 1

1 2 !
H 0 , H 0 0

!

m

m m
m

m +

−
= =  

one obtains the number representation (2.3) of squeezed vacuum states 0,ζ  

and for 0ζ =  using 
( )

( )1lim H 1
2

z nn z
z

→∞ =  the number representation of 

coherent states β . 

From (7.10) one finds the probabilities np  of the photon statistics 

** * 2 *2
*

* * *

*

, ,

2 11 exp
2 ! 2

H H .
2 2

n

n

n n

p n n

n

β ζ β ζ

ζζββ ζ β ζβ
ζζ

β ζβ β ζ β
ζ ζ

≡

  + +  = − −      
  + + ×        

     (7.12) 

By means of the generating function (D.2) for products of two Hermite 
polynomials it can be affirmed that the states ,β ζ  are normalized and that 
the probabilities np  satisfy the necessary relation 

0
1.n

n
p

∞

=

=∑                           (7.13) 

In contrast to the photon distributions of coherent states ,0β β≡  which 
depends only on 2 *β ββ≡  and of squeezed vacuum states 0,ζ  which 
depends only on 2 * 1ζ ζζ≡ <  the photon distribution (7.12) depends in 
addition to the moduli also on the phases of ζ  and β  in the complex plane. 

The nearest coherent state to the state ,β ζ  is the state β  and for this 
distance ( ), , ,d β ζ β ζ β β  one obtains the same value as on the 
right-hand side of (2.16). This means that it does not depend on β . 

8. Wave Functions of Displaced Squeezed Vacuum States or 
Squeezed Coherent States 

As important characteristics of the displaced squeezed vacuum states ,β ζ  we 
now calculate their wave functions ,q β ζ  and ,p β ζ  in the eigenstates 
q  and p  of the canonical operators Q and P (in the usual standardizations  

( )q q q qδ′ ′= − , dq q q I
+∞

−∞
=∫  and similar for p ). From the number  

representation (7.11) of the states and the well-known number representation of 
q  and p  follows as the first step in the calculation 

 

 

2In both parts with 2ζ  one has to choose the same sign of the root but which sign does not mat-
ter. 
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( )

( )

1
* ** 24

*

0

1, exp
π 2 2

H H ,
2 ! 2

n

n nn
n

qq

q
n

β β ζβζζ
β ζ

ζ β ζβ
ζ

∞

=

 + −  = − −      

 + ×        
∑

 



 

( )

( )

1
* ** 24

*

0

1, exp
π 2 2

i
H H .

2 ! 2

n

n nn
n

pp

p
n

β β ζβζζ
β ζ

ζ β ζβ
ζ

∞

=

 + −  = − −      

−  + ×        
∑

 



         (8.1) 

The infinite sums can be calculated in closed form using the generating 
function (D.2) for the product of two Hermite polynomials. We represent the 
result by the mean values , ,Q Qβ ζ β ζ≡  and , ,P Pβ ζ β ζ≡  of the 
canonical operators Q and P. For squeezed vacuum states 0,ζ  these mean 
values vanish already due to the symmetry and for the displaced squeezed 
vacuum states they are simply connected with the complex displacement 
parameter ( )*,β β  according to 

( ) ( )* *, i .
2 2

Q Pβ β β β= + = − −
                (8.2) 

With these parameters the result of the evaluation of the sums in (8.1) can be 
represented in the form 

( ) ( )( )
( )

1 2
* 4

,

2 11 1 exp i exp ,
π 2 2 11

β ζ

ζζζ
ζζ

  − + − −   = −     −−      
  

q

P q Q q Q  

( ) ( )( )
( )

1 2
* 4

,

2 11 1 exp i exp .
π 2 2 11

β ζ

ζζζ
ζζ

  − − − −   = − −     ++      
  

p

Q p P p P    (8.3) 

One may make cross checks of these relations using the pair of Fourier 
transformations 

1, d exp i , ,
2 π
1, d exp i , .
2 π

pqp q q

qpq p p

β ζ β ζ

β ζ β ζ

+∞

−∞

+∞

−∞

 = − 
 
 =  
 

∫

∫









             (8.4) 

From (8.3) one finds the Gaussian distributions 

( )

( )( ) ( )( )
( )2

* *

* *

, ,

1 1exp ,
1 1 π 1 1

W q q q

q Q

β ζ β ζ

ζζ ζζ
ζ ζ ζ ζ

≡

 −− − = − 
− − − −  




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( )

( )( ) ( )( )
( )2

* *

* *

, ,

1 1exp ,
1 1 π 1 1

W p p p

p P

β ζ β ζ

ζζ ζζ
ζ ζ ζ ζ

≡

 −− − = − 
+ + + +  





    (8.5) 

with the normalization 

( ) ( )d d 1.qW q pW p
+∞ +∞

−∞ −∞
= =∫ ∫                    (8.6) 

The functions ( )W q  and ( )W p  are equal to the Wigner quasiprobability 

( ),W q p  integrated over one of the canonical variables p or q and nothing 
speaks as known against an interpretation of genuine one-dimensional 
probability densities. They remain invariant with interchanging *ζ ζ↔  and 
the states are not uniquely reconstructible from ( )W q  and ( )W p  alone. In 
our case of (8.5) they are one-dimensional normalized Gaussian distributions 
around Q  and P , respectively, with the variances of Q  and P  

( )
( )( )

( )
( )( )

*
2

*

*
2

*

1 1
,

21

1 1
,

21

Q

P

ζ ζ

ζζ

ζ ζ

ζζ

− −
∆ =

−

+ +
∆ =

−





                  (8.7) 

The uncertainty product (see also (3.7)) 

( ) ( )
( )( )

( )

2 *2 2 2
2 2

2*

1 1
,

4 41
Q P

ζ ζ

ζζ

− −
∆ ∆ = ≥

−

                (8.8) 

is only for real squeezing parameter ζ  but not for complex ζ  the minimal 
possible one. 

In case of real squeezing parameter *ζ ζ=  one obtains from (8.3) 

( )

( ) ( )
( )

2

1 2
42

21, exp i exp ,
2 4

2 π

P q Q q Q
q

Q
Q

β ζ
  − −  = −    ∆    ∆ 

 



 

( )

( ) ( )
( )

2

1 2
42

21, exp i exp ,
2 4

2 π

Q p P p P
p

P
P

β ζ
  − −  = − −    ∆    ∆ 

 



   (8.9) 

with the variances of Q and P 

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 *1 1, , , ,
1 2 1 2 4

Q P Q Pζ ζ
ζ ζ

ζ ζ
− +

∆ = ∆ = ∆ ∆ = =
+ −

  

 (8.10) 

As already explained in Section 3 only in case of real *ζ ζ=  the squeezing 
axes coincide with the axes of ( ),q p  and the uncertainty product becomes the 
minimal one but taking into account the uncertainty correlation the Gaussian 
states with other positions of the squeezing axes can be included into the 
minimum uncertainty states (see Section 3). 
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By differentiation of relations (8.9) with respect to variables q and p follows 

( ) ( )

( )

2 2

2

ii , ,
2 2

i , ,
2

q q q P Q
q Q Q

QP q
Q

β ζ β ζ

β ζ

   ∂   − + ≡ −
   ∂ ∆ ∆   

 
 = −
 ∆ 







 

( ) ( )

( )

2 2

2

ii , ,
2 2

i , ,
2

p p p Q P
p P Q

PQ p
P

β ζ β ζ

β ζ

   ∂   + ≡ +
   ∂ ∆ ∆   

 
 = +
 ∆ 







      (8.11) 

where we used iq P q
q
∂

= −
∂
  and ip Q p

p
∂

=
∂
 . The normalization of 

the states in (8.10) and the pure phase factors exp i
2
PQ 

 
 




 do not follow from  

the differential equations (8.11) and must be determined where the mentioned 
phase factors must be present to get full agreement with the usual definitions of 
the phases of the states q  and p . 

Pauli in his hand-book article [2] (pp. 20, 21) derives the first of the 
differential equations (8.11), however, with the right-hand side equal to zero that 
means he does not take into account the possible displacements Q  and P  
that corresponds to squeezed vacuum states (displaced squeezed vacuum states 
were not known or discussed at that time but Schrödinger considered already 
coherent states although not under this name in [1]). More general and complete 
are the derivations in the monographs of Louisell [3] (p. 50, Equation (1.12.23)) 
and of Leonhardt [14] (p. 32, Equation (2.85)). The derivations of Pauli are the 
usual ones in the theory of elements (states) and operators in a Hilbert space 
known already at that time. Starting from the axiom of positive definiteness of 
the norm (square root of scalar product of an element with itself) of non-zero 
elements they consider the superpositions of two arbitrary states and from their 
norms they derive first the Cauchy-Bunyakovski-Schwarz inequality and second 
from the vanishing of the superpositions of the two states that they have to be 
linearly dependent [33]. In the derivations of uncertainty relations this is applied 
to two states which are generated from one state ψ  by applying two different 
operators to this one state (here of Q QI−  and P PI− ). For the minimum of 
the norm (equal to zero) this superposition has to be linearly dependent as seen 
in (8.11). This leads then to the superposition of the two states ( ) ,Q QI β ζ−  
and ( ) ,P PI β ζ−  (see also (2.13)) with real ζ  and β  in which Pauli in 
foresight of the result introduced ( )2Q∆  instead of a more indifferent real 
parameter λ . Thus the result is connected with the basic assumption that all 
states in quantum optics may be considered as states with positive norm in a 
Hilbert space. 
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The displaced squeezed vacuum states or squeezed coherent states ,β ζ  are 
the most general pure states with Gaussian distributions. 

9. Bargmann Representation and Wigner Quasiprobability 
for Displaced Squeezed Vacuum States 

The Bargmann representation of states is the representation by an analytic 
function of α  obtain by forming the scalar product of the state with the  

analytic but non-normalized coherent state 0 0
!

|
n

n n
α

α ∞

=
≡∑  (see Section 4).  

From the number representation of displaced squeezed vacuum states (7.11) 
using the generating function for Hermite polynomials (9.1) we find 

( ) ( )
1* * *

2* *4

**

exp 0, 1 exp
2 2 2

exp 0, .
2

αα ββ ζ
ζ α ζζ αβ α β

αα
α ζ

   
= − − + − −   

   

  
=      

  (9.1) 

The Bargmann representation of a state contains the full information about 
the state. From (9.1) one finds the Husimi-Kano quasiprobability 

( )

( )( ) ( ) ( )

( )

*

* * 22* * * *

* *

, ,
,

π
1

exp ,
π 2 2

i d d , 1.
2

Q

Q

α β ζ β ζ α
α α

ζζ ζ ζ
α β α β α β α β

α α α α

≡

  −  = − − − + − + −  
   

∧ =∫

 (9.2) 

This is the corresponding Husimi-Kano quasiprobability (4.2) for squeezed 
vacuum states with argument displacement. 

In Appendix B it is shown by a very simple transformation that the Wigner 
quasiprobability ( )*,W α α  of a displaced state can be obtained from Wigner 
quasiprobability ( )*

0 ,W α α  of the corresponding undisplaced state by a simple 
argument displacement ( ) ( )* * *, ,α α α β α β→ − − . This is also true for other 
quasiprobabilities such as for example the Husimi-Kano quasiprobability 

( )*,Q α α  as we saw and for the Glauber-Sudarshan quasiprobability ( )*,P α α . 
In this way one obtains from (4.6) for the Wigner quasiprobability of displaced 
squeezed vacuum states 

( ) ( )( ) ( )( )

( )

* * * *
*

*

* *

2, exp 2 ,
π 1

i d d , 1.
2

W

W

α β ζ α β α β ζ α β
α α

ζζ

α α α α

 − + − − + − = − 
−  

∧ =∫

  (9.3) 

As discussed in Section 7 as alternative we may first make a displacement of 
the vacuum state to a coherent state with the displacement parameter  

* * *

* *
,

1 1

β ζβ β ζ β

ζζ ζζ

 + + 
 − − 

 that provides the Wigner quasiprobability 
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( )
* * *

* *
0 * *

2, exp 2 .
π 1 1

W β ζβ β ζ β
α α α α

ζζ ζζ

   + +   = − − −   − −    
      (9.4) 

If we now make the squeezing of coherent state with the same squeezing 
operator as in the other variant (see (7.4)) we have to transform the arguments  

in (9.4) according to ( )
* * *

*

* *
, ,

1 1

α ζα α ζ α
α α

ζζ ζζ

 + + →
 − − 

 (see also (4.4)) and we  

obtain again the Wigner quasiprobability (9.3) that affirms the inter- 
changeability of squeezing and displacement according to (7.4). 

The Wigner quasiprobability for displaced squeezed vacuum states in the 
representation by canonical variables ( ),q p  can be obtained from (4.7) by the 
following substitution of the canonical variables ( ),q p  

( ) ( ) ( ) ( ) ( )* * *i i, , , , , , , .
2 2

β β
 + −

→ − − ≡ = = 
  

Q P Q Pq p q Q p P a a a a† (9.5) 

We do not write down this. In analogous way we may find the other 
quasiprobabilities in the representation by canonical variables. 

The given quasiprobabilities can be used for the calculation of expectation 
values for displaced squeezed vacuum states or squeezed coherent states but in 
next Section we present an alternative for such calculations. 

10. Calculation of Expectation Values for Displaced States 
from the Expectation Values of the Undisplaced States 

An alternative for the calculation of expectation values of ordered powers of the 
annihilation and creation operator for displaced states from that for the 
undisplaced states is the following possibility presented here for normal ordering. 
Using the unitary displacement operator ( )*,D β β  one finds applied to 
displaced squeezed vacuum states 

( )
( ) ( )
( ) ( )( ) ( )( )

† †

†* *

†† * * *

, ,

0, ( , , 0,

0, , , 0,

k l k l

k l

k l

I

a a a a

D a a D

a I D D a I

β
β ζ β ζ

ζ β β β β ζ

ζ β β β β β β ζ
=

≡

=

= + +


†   (10.1) 

that after Taylor series expansion of the binomials can be written 

( ) ( ) ( ) ( )† *

00 0

! ! ,
! ! ! !

k l
k l i j k i l j

i j

k la a a a
i k i j l jβ

β β − −

= =

=
− −∑∑ †        (10.2) 

where index 0 at expectation values means the expectation values before the 
displacement and with index β  after the displacement with the complex 
parameter β . 

For squeezed vacuum states the expectation values ( )†

0

k la a  are only non-  

vanishing if the difference k l−  is an even number. Taking this into account 
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we find for displaced squeezed vacuum states the expectation values of the 
operators a  and †a  

( ) ( ) ( ) ( )† * *
0 0

, ,a I a I
β β

β β β β= = = =            (10.3) 

and for the expectation values of the operators 2a  and †2a  

( ) ( ) ( )2 2 2 2
*00

,
1

a a I
β

ζβ β
ζζ

= + = − +
−

 

( ) ( ) ( )
*

†2 2 *2 *2
*00

.
1

a a I
β

ζβ β
ζζ

= + = − +
−

†           (10.4) 

Next we calculate expectation values of operators which are important for the 
photon statistics. The expectation value of the number operator †N a a=  
depends only on the squared moduli 2 *ζ ζζ≡  and 2 *β ββ≡  of the 
complex ζ  and β  and we find 

( ) ( ) ( ) ( )
2*

2† † * *
* 200

.
1 1

N a a a a I
β β

ζζζββ ββ β
ζζ ζ

= = + = + = +
− −

  (10.5) 

For the discussion of sub- and super-Poissonian statistics of displaced 
squeezed vacuum states we need in addition the expectation value of the 
operator †2 2a a . It does not only depend on the moduli of ζ  and β  but also 
on their phases and from (10.2) we find 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
( )

2†2 2 2 2 * * 2 2 *2 2
00 0 0 0

* * * 2* *
2 **

*
2 *2

* *

4

1 2
4

11

.
1 1

a a a a a a I a a
β

ββ ββ β β

ζζ ζζ ζζββ ββ
ζζζζ

ζ ζβ β
ζζ ζζ

= + + + +

+
= + +

−−

− −
− −

† † †

 (10.6) 

The expectation values for the squeezed vacuum states can be taken from 
Appendix E where they are collected. From this follows for the expectation 
value of the operator 2 2 2N a a a a= +† †  

( ) ( )
( )

( )
* * * *22 * * 2 *2

2 * * **

2 1 3 ,
1 1 11

N
β

ζζ ζζ ζζ ζ ζββ ββ β β
ζζ ζζ ζζζζ

+ +
= + + − −

− − −−
 (10.

7) 

and for the variance of the number operator 

( )( ) ( ) ( )

( )

( )
( )( )

22 2

* * *
* 2 *2

2 * * **

* * **

2 **

2 1
1 1 11

2 0.
11

N N N
βββ

ζζ ζζ ζ ζββ β β
ζζ ζζ ζζζζ

β ζβ β ζ βζζ
ζζζζ

∆ = −

+
= + − −

− − −−

− −
= + ≥

−−

 (10.8) 
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Finally we calculate the expectation value which plays a role for the definition 
of sub- and super-Poissonian statistics by its sign 

( ) ( ) ( )( ) ( )
( )

( )
( )

( )
( )( )

2 2†2 2

* * * *
* 2 *2

2 * * **

* * * * *
*

2 **

1
2

1 1 11

1
.

11

ββ β β

ζζ ζζ ζζ ζ ζββ β β
ζζ ζζ ζζζζ

ζζ ζζ β ζβ β ζ β
ββ

ζζζζ

− = ∆ −

+
= + − −

− − −−

+ − −
= − +

−−

a a a a N N†

     (10.9) 

The expectation values (10.6)-(10.9) depend not only on the moduli of β  
and ζ  but also on their phases ie ϕ  and ie χ . For comparison with (10.9) one 
finds for the corresponding symmetrically (Weyl) ordered quantity 

{ }( ) { }( )
( ) ( ) ( )

( )
( )( )

2
†2 2

2
2 2

* * **

2 **

1
4

2 1 1 .
4 411

a a a a

a a a a a a

β β

β β β

β ζβ β ζ βζζ
ζζζζ

−

= − + +

− −
= + + ≥

−−

  †

† † †           (10.10) 

This quantity is greater than or equal to 1 4  in every case but depends also 
on the phases of β  and ζ . 

11. Sub- and Super-Poissonian Photon Statistics for 
Displaced Squeezed Vacuum States or Squeezed 
Coherent States 

The sign of the quantity (10.9) was taken by Mandel to define of sub- and 
super-Poissonian statistics as follows [11] 

( ) ( ) ( )
2 2†2 2 0, sub-Poissonian ,a a a a N N− = ∆ − <†  

( ) ( ) ( )
2 2†2 2 0, super-Poissonian .a a a a N N− = ∆ − >†       (11.1) 

We now investigate the photon statistics of this quantity for displaced 
squeezed vacuum states starting from (10.9). First we denote the phases of β  
and ζ  in the the complex plane as follows 

i ie , e .ϕ χβ β ζ ζ= =                      (11.2) 

The mean value N  of the number operator N according to (10.5) does not 
depend on the angle between β  and ζ  and if we change only the angle ϕ  
of β  leaving β  and ζ  constant the mean value N  remains constant and 
the squeezing ellipses change in their position in comparison to the 
displacement β . This is shown in Figure 2. In the following we show that the 
photon statistics may change from sub- to super-Poissonian statistics if the 
displacement β  moves around the circles shown schematically in Figure 2 and 
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if β  is sufficiently large and somewhere between this has to be a position 
where it possesses the same values of †N a a=  and ( )2

†2 2a a a a− †  as the 
Poisson statistics of coherent states with the same N . 

From (10.9) and from definition (11.1) follows as condition for sub- 
Poissonian statistics of squeezed coherent states ,β ζ  

( )
( )

( )( ) ( )
2 2

2 0
02 22

1 cos
2 0, 2 ,

11

ζ ζ ζ χ ζ
β χ χ ϕ

ζζ

+ −
− < ≡ −

−−
  (11.3) 

or resolved to 2β  for ( )0cos 0χ ζ− >  (pay attention that in case of 
( )0cos 0χ ζ− <  the inequality (11.3) cannot be satisfied or changes “>” into “<” 

if divided by ( )0cos 0χ ζ− < !) 

( )
( ) ( )( )

( )( )
2

2
02

0

1
0, cos .

2 1 cos

ζ ζ
β χ ζ

ζ χ ζ

+
> > >

− −
  (11.4) 

For possible sub-Poissonian statistics it is necessary that ( )0cos χ ζ>  
whereas in case of ( )0cos χ ζ<  we have super-Poissonian statistics. For 

0 0χ =  or ( )0cos 1 0χ ζ ζ− = − >  that means for squeezing in direction of 
the displacement parameter β  (amplitude squeezing, see Figure 3) the 
necessary condition for sub-Poissonian statistics is satisfied but according to 
(11.4) the modulus β  of the displacement parameter has to be greater than a 
minimal value defined by the equality sign in (11.4). For 0 πχ =  or 

( )0cos 1 0χ ζ ζ− = − − <  the left-hand side of (11.3) is positive and we have 
super-Poissonian statistics. Thus one of the necessary conditions for 
sub-Poissonian statistics is (see Figure 4, inner circle) 

( )0cos 0,χ ζ− >                         (11.5) 

with the limiting curve by substitution of “>” by the equality sign “=” in (11.5). 
In the other necessary condition (11.4) it is better to substitute the displacement 
parameter β  by the expectation value N  of the number operator since it is 
then easier to compare the results with coherent states with the same N . 

We express now the displacement parameter β  in (10.9) by the expectation 
value N  of the number operator N using (10.5) 

2
2

2 0,
1

N
ζ

β
ζ

= − ≥
−

                    (11.6) 

where we have omitted the index β  in ( )N
β

 since we use it in the following 
also for coherent states. If we do so then we obtain from (10.9) with abbreviation 

0 2χ χ ϕ≡ −  

( ) ( ) ( )
( )

( )( )

( )
( ) ( )( ) ( )( ){ }

2 2 2
2 0†2 2

2 2 22

2 2
022

1 cos
2

1 11

1 2 1 cos .
1

a a a a N

N N

β β

ζ ζ ζ χ ζζ

ζ ζζ

ζ
ζ ζ ζ χ ζ

ζ

+   −
 − = − −
 − −+  

= + − − + −
−

†

 (11.7) 
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Figure 4. Polar diagram ( )fζ χ=  of sub- and super-Poissonian statistics in 

dependence on the complex squeezing parameter in non-unitary approach ie χζ ζ=  

and with displacement parameter ie ϕβ β=  with fixed 0ϕ =  (in positive axis 

direction) and therefore 0 2χ χ ϕ χ≡ − = . Sub-Poissonian statistics is only possible 

within the inner circle ( )0cosζ χ= . Within this circle the ellipse-like curves with 
constant N  separate regions of sub-Poissonian statistics from regions of 
super-Poissonian statistics where sub-Poissonian statistics is within the ellipse-like inner 
regions to the crescent-like outer regions with super-Poissonian statistics. The center 

0ζ =  ( χ  arbitrary) corresponds to coherent states of arbitrary N . Constant ζ  (cir-

cles around coordinate origin) correspond for fixed β β=  to constant N  touching 
the separatrices with the same N  at 0χ = . Using the squeezing parameter ζ ′  in the 
unitary approach (see (5) and (6)) this scheme would take on the whole complex plane 
and, in particular, for parameters ζ  with 1ζ →  one has a large stretching of 

corresponding parameters ζ ′  with ζ ′ →∞  and the inner circle ( )cosζ χ=  becomes 

( )( )Arth cosζ χ′ = . 
 

Setting this expression equal to zero one obtains an equation for states which 
belong neither to sub- nor to super-Poissonian statistics. This is a third-order 
equation for ζ  in dependence on N  and on the angle 0χ  as follows 

( ) ( ) ( )03 2 02 1 cos 2 cos
0.

2 1 2 1

N N
N N

χ χ
ζ ζ ζ

+
− − + =

+ +
       (11.8) 

As a third-order equation for ζ  with real coefficients in dependence on N  
and 0χ  it may possess, in principal, three real or one real and two complex 
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conjugate solutions but for our purpose the real solutions have to be positive 
ones and have to be restricted to 1ζ < . The results are presented in Figure 
4 as polar diagram of ie χζ ζ= . The ellipse-like regions of the inner smaller 
circle (11.5) in Figure 4 belong to sub-Poissonian and the outer crescent-like 
regions to super-Poissonian statistics in dependence on N  shown as 
separatrices. 

Figure 5 shows that between sub- and super-Poissonian statistics may lie 
statistics which are very far from a Poisson statistics, in case of 1ζ →  even 
maximally far (distance d to nearest coherent states goes to 2 ). Alternatively 
to Figure 5 one may demonstrate the existence of displaced squeezed vacuum 
states with ( )2 0N N∆ − =  also in the following way. One begins with an 
arbitrarily chosen displacement parameter ζ  and looks according to condition 
(11.4) for displacement parameters β  above the minimal possible one for  

 

 

Figure 5. Probabilities np  for squeezed coherent states (joined points) with 25N =  and ( )2 0N N∆ − =  such as for a 

coherent state (orange points) with 25N =  and nearest distance d to coherent states β  with *N ββ=  or a β= . 
Additionally, the displacement parameter β  is given. The last partial figure with small squeezing parameter ζ  is in its 

photon statistics already “visibly” near to a coherent state with 25N =  but the nearest distance to a coherent state (with 
* 24.8387N ββ= = ) is not yet very small and shows that this measure is very sensible. All four partial figures belong to states with 

photon statistics which is neither sub- nor super-Poissonian but also not a Poisson statistics. For 0ζ = , 0
π0,
2

ζ χ χ= = = ±  

(but, in principle, arbitrary) one has exactly a coherent state (see also Figure 4, center of diagram). 
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which one has sub-Poissonian statistics if β  possesses the same or the opposite 
direction of ζ  (amplitude squeezing). Then by rotating the phase ie χ  of ζ  
from 0χ =  (amplitude squeezing) up to πχ =  (phase squeezing) leaving 
constant the modulus ζ  (see Figure 1, right partial figure) the photon 
statistics makes the transition from sub- to super-Poissonian statistics and one 
comes unavoidable to a value of the phase χ  where ( )2 0N N∆ − =  but which 
does not belong to Poisson statistics. The same effect one has if we rotate the 
displacement parameter β  leaving constant the squeezing parameter ζ  in 
modulus and phase (see Figure 3). If the time evolution of a squeezed state is 
determined by a Hamiltonian H which is a linear combination of 2 ?,a a  and  

of ( )† †1
2

aa a a+  then there may appear a complicated picture of changing with  

time from sub- to super-Poissonian statistics or from amplitude to phase 
squeezing since then also the modulus of the squeezing parameter changes with 
time. 

Clearly, one may make the division of photon statistics in sub- and super- 
Poissonian ones but both categories are very inhomogeneous concerning the 
comprised states and the set of states which are neither sub- nor super- 
Poissonian ones is also very large and inhomogeneous and the prefixes “sub” 
and “super” are here problematic. There are hardly to expect clear differences 
and correlations in experiments with states of both statistics or, moreover, even 
qualitatively different behavior. In general, a photon statistics is determined by a 
countable infinite number of parameters (e.g., np  or moments of the 
distribution) and for states which belong neither to sub- nor to super-Poissonian 
statistics only one from this countable infinite set is fixed ( ( )2 0N N∆ − = ) and 
this can be considered in dependence on arbitrary N . Therefore, also the 
classification of states with sub-Poissonian photon statistics as nonclassical states 
is highly problematic. In the same way it is also problematic to define the states 
with no regions of negativity of the Wigner quasiprobability as the classical 
states since then the set of these states is too large and inhomogeneous to be 
useful for comparative purpose (all squeezed coherent states belong then to 
them). Better seems to be for this purpose to use the nearest distance to a 
coherent state as quantitative measure but this measure cannot change its sign 
and is in every case positive or zero [20] [21]. In this definition it is evident that 
the category of states with large distance to the nearest coherent states is very 
inhomogeneous and large. 

12. Conclusions 

A main purpose of this article was to discuss the distinction of cases of sub- and 
super-Poissonian statistics within the displaced squeezed vacuum states where 
the non-unitary approach is preferable. For this case it was necessary to calculate 
the expectation values of powers of the number operator for these states. We 
have chosen for this purpose mainly its calculation from the number-state 
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representation and posed this in a more general connection to the calculation of 
properties of these states. For squeezed coherent states, practically, all interesting 
parameters can be calculated in exact and not very difficult way and, therefore, 
this category of states is very suited to demonstrate in examples more principal 
definitions for all states. 

The means developed in this article can be applied without substantial 
changes to squeezing of the number state 1  and then to its displacement since  

the operator 
*

2exp
2

aζ 
− 
 

 in its disentanglement (2.7)) acts on 1  by 

reproducing it (case 3
4

k =  in (A.4)). This becomes more complicated if we  

apply it to the number states n  with 2≥n  and to extend the theory to these 
cases. 
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Appendix A 
Squeezing Operators and Their Disentanglement 

Squeezing of states in the narrow sense is connected with the Lie group 
( ) ( ) ( )1,1 2, 2,SU Sp SL≅ ≅   with 3 real parameters (or one complex and one 

real in our representation) of squeezing operators [7] [8] [9]. Its complex 
extension ( ) ( )2, 2,Sp SL≅   contains 3 complex parameters (or 6 real ones) 
and comprises also the ( )2SU  group in the right specialization. In this 
Appendix we give a short but general and systematic representation of the action 
of ( )1,1SU  squeezing operators in quantum optics. We cannot take care 
without making too clumsy notations in some cases to the notations in the main 
text but this concerns mostly the notations of the squeezing parameters with and 
without prime (or in non-unitary and unitary approaches) and one must pay 
attention to this when going from formulae of this Appendix to that of the main 
text. 

We define operators ( ), ,S ξ η ζ  with 3 complex parameters which are 
operators in ( )2,SL   as follows 

( ) { }0, , exp i2S K K Kξ η ζ ξ η ζ− +≡ + −             (A.1) 

where ( )0, ,K K K− +  are three abstract operators of the Lie algebra ( )2,sl   to 
the Lie group ( )2,SL   satisfying the commutation relation [7] [8] [9] [34] 

[ ] [ ] [ ]0 0 0, 2 , , , , ,K K K K K K K K K− + − − + += = − = +    (A.2) 

with Casimir operator C 

( ) [ ]2 2 2 2
0 1 2 0

1 , , 0.
2 iC K K K K K K K K C K− + + −≡ − − = − + =    (A.3) 

One basic discrete realization of these operators in quantum optics of a single 
mode is 

( )( )2 2 21 1 i ,
2 4

K a Q P QP PQ− ≡ = − + +


 

( ) ( )† † 2 2
0

1 1 ,
4 4

K aa a a Q P≡ + = +


 

( )( )†2 2 21 1 i ,
2 4

K a Q P QP PQ+ ≡ = − − +


 

( ) 3 1 31 , , or ,
16 4 4

C k k I k k ≡ − = − = = 
 

           (A.4) 

where ( )†,a a  is a pair of boson annihilation and creation operators (A.1) and 

3
4

k =  belongs to squeezed number states 1  (and their displacement) not  

dealt with in this article. Each realization of the commutation relations (A.2) is 
appropriate for the following derivations but for the two-dimensional 
fundamental representation it is important to know two basic operators for 
which ( )†,a a  are particularly convenient in combination with the realization 
(A.4). Squeezing with ( )1,1SU  operators within two modes and genuinely 
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different from single-mode squeezing is also possible [8] [15]. A further 
realization of ( )1,1SU  for a single mode is connected with coherent phase 
states. 

The transition from ( )2,SL   to ( ) ( )2, 1,1SL SU≅  can be made by 
specializing the parameters ( ), ,ξ η ζ  in (A.1) according to 

( ) ( )

( )( )

*
* * 2 2

†* *

, , exp i
2 2 2

, ,

ζ η ζζ η η ζ

ζ η η ζ

 
= = + + − 

 

= − − = − −

S a aa a a a

S

† † †

     (A.5) 

with complex parameter ζ  and real parameter η . The operators 

( )* *, ,S ζ η η ζ=  are then unitary operators 1S S− = †  in the  
infinite-dimensional unitary representation in Hilbert space and we have  

( ) ( )† † †
0 0, , , ,K K K K K K− + + −= . Instead of ( ),K K− +  one may introduce  

Hermitean operators ( )1 2,K K  by 1 2iK K K≡


  but we do not write down all 
relations for these new operators that is easy to make and is diligent work. 

We now consider the generation of the two-dimensional fundamental 
representation of the group ( )2,SL   by calculating the matrix with elements 
( ), , ,κ λ µ ν  in the following relation 

( )( ) ( )( ) ( ) ( )1† † † †, , , , , , , .S a a S a a a a a a
κ λ

ξ η ζ ξ η ζ κ µ λ ν
µ ν

−  
= = + + 

 
 (A.6) 

This step is essentially a Bogolyubov transformation. It can be represented by 
(e.g., [18]) 

( ) ( ) ( )

( ) ( ) ( )

2

sh sh
ch i

.
sh sh

ch i

.

ε ε
ε η ξκ λ ε ε

µ ν ε ε
ζ ε η

ε ε

ε ξζ η

 
−    =     + 

 

≡ −

         (A.7) 

For 2 0ε > , ( ε  real) we call this transformation squeezing-like and for 
2 0ε < , ( ε  imaginary) rotation-like. In last case it is better to write the 

hyperbolic functions by trigonometric functions. The special case 0ε =  

21 i ,
, ,

, 1 i
κ λ η ξ

ξζ η
µ ν ζ η

−   
= =   +   

              (A.8) 

could be called cone-like. The matrices (A.7) are unimodular 

1,
κ λ

κν λµ
µ ν
 

= − = 
 

                   (A.9) 

but in general, not unitary. 
The inversion of (A.7) which is unique can be simply written 

( ) ( ) ( )Arsh Arsh Arsh
, i , ,

2
ϑ ϑ ϑκ νξ λ η ζ µ

ϑ ϑ ϑ
−

= = =     (A.10) 

with the following relations between the abbreviations ε  and ϑ  
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( )
2 2

Arch Arsh 1 Arsh Arsh ,
2 2 2

κ ν κ ν κ ν
ε λµ ϑ

   + + −        = = − = + ≡                
 

( )
2 2

sh 1 .
2 2

κ ν κ νϑ ε λµ+ −   ≡ = − = +   
   

            (11) 

From ( )Arch z  the sign of ( )2Arsh 1z −  does not follow uniquely but 

( )2

2

Arsh 1

1

z

z

−

−
 is then uniquely determined if one chooses the same sign of 

2 1z −  in numerator and denominator. 
We now write down some special correspondences between the operators 
( ), ,S ξ η ζ  and its two-dimensional matrices in the fundamental representation 

( ) ( ) 2 1,
,0,0 exp exp , ,

0, 12
S K a

ξξ
ξ ξ −

  = → ⇔   
   

 

( ) ( ) ( )
i

† †
0 i

e , 0
0, ,0 exp i 2 exp i ,

2 0, e
S K aa a a

η

η

η
η η

−  = → + ⇔   
   

 

( ) ( ) †2 1, 0
0,0, exp exp , .

, 12
S K aζ

ζ ζ
ζ+
  = − → − ⇔   

   
    (A.12) 

The triangular operators ( ),0,0S ξ  and ( )0,0,S ζ  and their correspondent 
two-dimensional matrices form a group for themselves and in the same way the 
operators ( )0, ,0S η  together with its matrices. However, the operators 
( ),0,S ξ ζ  do not form a group its extension to a group needs all operators 
( ), ,S ξ η ζ . 
We may decompose the matrices in (A.7) into products of special matrices, in 

particular, in the following for us important ways 

1 0 01
10 11 0

1 0 0 1
11 0 0 1

0 1 0 1
1 10 0 1

κκ λ λκ
µµ ν
κ κ

κ λ
µ κ
κ κ
κ λ

κµκ
κ

         =            
   
   =
   
   
       =         

 

1 1 010
0 1 10
1 1 01 0

10 1 0
11 01 0

, 1.
10 1 0

λν
ν µ

ν ν
λ
ν ν µ

ν ν
λ

κν λµν ν
µν ν

       =            
   
   =       
   
       = − =           

       (A.13) 
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As consequences we obtain the following disentanglements of the general 
operator ( ), ,S ξ η ζ  into products of partial operators 

( ) ( )

( ) ( )( )

( )( )

0

0

0

, , exp i2

exp exp exp 2log

exp exp 2log exp

ξ η ζ ξ η ζ
µ λκ κ
κ
µ λκ
κ κ

− +

+ −

+ −

≡ + −

 = − − 
 
   = − −   
   

S K K K

K K K

K K K

 

( )( ) ( )

( )( ) ( )

( )( )

( ) ( )( )

0

0

0

0

exp 2log exp exp

exp 2log exp exp

exp exp 2log exp

exp exp exp 2log .

λκ µκ
κ
µν λν
ν

λ µν
ν ν
λ µν ν
ν

+ −

− +

− +

− +

 = − −  
 

 = − 
 

   = −   
   
 = − 
 

K K K

K K K

K K K

K K K

     (A.14) 

For the operators ( )0, ,K K K− +  we may insert the realization (A.4) of 
( )1,1SU  but every other realization of ( )2,SL   is also appropriate. 

In the special case 0η =  of operators ( ), ,S ξ η ζ  the matrices (A.7) 
specialize 

( )
( ) ( )

( ) ( )

sh
ch

,0, ,
sh

ch

S

ξζ
ξζ ξ

ξζκ λ
ξ ζ

µ ν ξζ
ζ ξζ

ξζ

 
 
    ⇔ = 
  
 
 
 

    (A.15) 

that leads to the disentanglement relations 

( ) ( )
( ) ( ) ( )( )
( ) ( )( ) ( )

0

0

2

2

,0, exp

th sh 2
exp exp ch

2

th th
exp ch exp

ξ ζ ξ ζ

ξζ ξζ
ζ ξ ξζ

ξζ ξζ

ξζ ξζ
ζ ξζ ξ

ξζ ξζ

− +

−

+ −

−

+ −

= −

   
   = −
   
   
   
   = −
   
   

K

K

S K K

K K

K K

 

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( )

0

0

0

2

2

2

sh 2 th
ch exp exp

2

sh 2 th
ch exp exp

2

th th
exp ch exp

th sh 2
exp exp ch

2

ξζ ξζ
ξζ ζ ξ

ξζ ξζ

ξζ ξζ
ξζ ξ ζ

ξζ ξζ

ξζ ξζ
ξ ξζ ζ

ξζ ξζ

ξζ ξζ
ξ ζ ξζ

ξζ ξζ

−

+ −

− +

− +

− +

   
   = −
   
   
   
   = −
   
   

   
   = −
   
   
   
   = −
   
   

K

K

K

K K

K K

K K

K K
02

,
K

 (A.16) 
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where again we may insert the realization (A.4). In addition to the operators 
K−  and K+  we have involved then on the right-hand side also the operator 

0K . 
If we make in (A.15) the transition to the variables in the non-unitary approach 

( )
( ) ( )Arth Arth

,0, ,0, ,S S
ξζ ξζ

ξ ζ ξ ζ
ξζ ξζ

 
 →
 
 

      (A.17) 

then the matrix in (A.15) makes the transition to 

1
1 1,

,
, 1

1 1

ξ
ξζ ξζκ λ

µ ν ζ
ξζ ξζ

 
 − −   →       − − 

               (A.18) 

as it is easily to see. 
The next considerations are the effort to split the general operator ( ), ,S ξ η ζ  

into products of a proper squeezing operator ( ),0,S ξ ζ′ ′  and a proper rotation 
operator ( )0, ,0S η′ . The general two-dimensional matrix (A.7) can be split also 
in the following two ways 

0,
,

0

0
.

0

κ κκν λκ λ ν ν
µ ν ν νµ κν

κ κ

κ νκν λ
ν κ

κν µ κν
νκ

  
      =        
  

  
  
  =
  
  
  

            (A.19) 

This corresponds explicitly to the two possibilities ( 2ε ξζ η≡ − ) 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
2 2

2

2
2 2

2

sh
ch ish sh

ch
sh

ch i

sh
ch ish sh

ch
sh

ch i

sh
ch i

0
sh

ch i

sh
ch i

0
sh

ch i

ε
ε ηε ε εε η ξ

εεε
ε ηκ λ ε

µ ν ε
ε ηε εεζ ε η

εε ε
ε η

ε

ε
ε η

ε
ε

ε η
ε

ε
ε η

ε
ε

ε η
ε

 
 −
 +
 

+    = =      +
 + 
 −
 

 
 −
 
 

+ 
 ×
 
 +
 
 
 −
 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2

2

2
2 2

2

sh
ch i

0
sh

ch i

sh
ch i

0
sh

ch i

sh
ch ish sh

ch
sh

ch i
.

sh
ch ish sh

ch
sh

ch i

ε
ε η

ε
ε

ε η
ε

ε
ε η

ε
ε

ε η
ε

ε
ε ηε ε εε η ξ

εεε
ε η

ε
ε

ε ηε εεζ ε η
εε ε

ε η
ε

 
 −
 
 

+ 
 =
 

+ 
 
 − 
 
 
 +
 +
 

− 
 ×
 

− 
 +
 + 
 

  (A.20) 

and if we introduce abbreviations 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

i

i

i

i

sh
ch

e 0
0 esh

ch

sh
ch

e 0 .
0 e sh

c

η

η

η

η

ζ ζ
ξ ζ ξ

ξ ζκ λ
µ ν ζ ζ

ζ ξ ζ
ξ ζ

ζ ζ
ξ ζ ξ

ξ ζ
ζ ζ

ζ ξ ζ
ξ ζ

−

−

 ′ ′
 ′ ′ ′
 ′ ′    =       ′ ′   

′ ′ ′  ′ ′ 
 ′′ ′′
 ′′ ′′ ′′
 ′′ ′′ 

=    ′′ ′′  
′′ ′′ ′′  ′′ ′′ 

h

     (A.21) 

The rotation operators are the same in both cases and the squeezing operators 
distinguish themselves only by phase factors in the non-diagonal matrix 
elements. We have 

( ) ( )† †00

0

i i
2

0i

e 0 , 0, ,0 e .
0 e

aa a a
S

ηη

η η
− + 

⇔ = 
 

          (A.22) 

The first possibility of the splitting in a squeezing and a rotation part is 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2

2

2
2 2

2

sh sh
ch i

sh sh
ch i

sh
ch ish sh

ch
sh

ch i

sh
ch ish sh

ch
sh

ch i

ε ε
ε η ξκ λ ε ε

µ ν ε ε
ζ ε η

ε ε
ε

ε ηε ε εε η ξ
εεε

ε η
ε

ε
ε ηε εεζ ε η

εε ε
ε η

ε

 
−    = 

   + 
 
 
 −
 +
 

+ 
 =
 

+ 
 +
 − 
 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

i

i

sh
ch i

0
sh

ch i

sh
ch i

0
sh

ch i

sh
ch ,

e , 0=
0, esh

, ch

0
,

0

η

η

ε
ε η

ε
ε

ε η
ε

ε
ε η

ε
ε

ε η
ε

ζ ζ
ξ ζ ξ

ξ ζ

ζ ζ
ζ ξ ζ

ξ ζ

κ κκν λ
ν ν

ν νµ κν
κ κ

−

 
 −
 
 

+ 
 ×
 
 +
 
 

− 
 
 ′ ′
 ′ ′ ′
 ′ ′  
  
 ′ ′  
 ′ ′ ′ ′ ′ 
  
  
  =
  
  
  

      (A.23) 

with correspondences 

( ) ( ) ( ) ( )2 2
2 2

2 2

sh sh
ch ch 1 ,

ε ε
ξ ζ ε η ξζ

ε ε
′ ′ = + = +  

( ) ( ) ( ) ( )
( )2

sh sh
sh , th ,

1 sh

ε ξζ ε
ξ ζ ξζ ξ ζ

ε ξζ ε
′ ′ ′ ′= =

+
 

( ) ( )

( )

sh
sh

,
sh

Arsh

ε
ξζξ ζ ε

εξ ζ ξζ
ε

′ ′
=

′ ′  
 
 

 

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
0

2
2 2

2
i
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The parameters in the factorized matrices are ( , , ,κ λ µ ν  are such as in (A.7)) 
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        = −           
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 = 
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

 
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The second possibility with interchanged order of the splitting in a squeezing 
and a rotation part is 
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0
.

0

κ νκν λ
ν κ

κν µ κν
νκ

  
  
  =
  
  
  

                 (A.26) 

The diagonal matrix of a rotation with parameter 0η  is the stable part in the 
two factorizations (A.23) and (A.26). These considerations show that without 
disadvantage for the generality we may use the special squeezing operators 
( ),0,S ξ ζ′ ′  which are equivalent to the general operators ( ), ,S ξ η ζ  after 

splitting rotation factors. However, these special squeezing operators alone do 
not form a group. 

Appendix B 
Influence of Displacement and Squeezing of States onto the 
Wigner Quasi-Probability 

The displacement of states and the squeezing make transformations of the 
variables in the Wigner quasiprobability which can be given in a general form. 
For the derivation we use the representation of the Wigner quasiprobability by 
complex variables ( )*,α α  in the following form [22] [29] which is equivalent 
to the definition given by Wigner [27] [28] 

( ) ( )* *
*, exp , ,W a aα α ρ δ α α

α α
∂ ∂ = − − ∂ ∂ 

†       (B.1) 

where ρ  is the density operator of the state. First we investigate the displace- 
ment of a state with the density operator 0ρ  and the Wigner quasiprobability 

( )*
0 ,W α α  according to 

( ) ( )( )†* *
0, , .D Dρ β β ρ β β=                  (B.2) 

Then one finds for ( )*,W α α  

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

†* * * *
0 *

†* * *
0 *

†* * *
0 *

† * *
0 * *

†
0 *

, , , exp ,

, exp , ,

, exp ,

exp exp ,

exp

W D D a a

D a a D

D a I a I

a a

a a

α α β β ρ β β δ α α
α α

ρ β β β β δ α α
α α

ρ β β β β δ α α
α α

ρ β β δ α α
α αα α

ρ
α α

∂ ∂ = − − ∂ ∂ 

∂ ∂ = − − ∂ ∂ 

∂ ∂ = − + − + ∂ ∂ 

∂ ∂ ∂ ∂   = − − − −   ∂ ∂∂ ∂   

∂ ∂ = − − ∂ ∂ 

†

†

†

( )* *, .δ α β α β− −

(B.3) 

Therefore we obtained 

( ) ( )* * *
0, , .W Wα α α β α β= − −                  (B.4) 

This means that the Wigner quasiprobability ( )*,W α α  for the displaced 
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state is equal to the Wigner quasiprobability ( )*
0 ,W α α  for the undisplaced 

state with displaced arguments corresponding to the displacement parameters 

( )*,β β . This displacement property is one of the minimal requirements for a 
phase-space function ( )*,F α α  in quantum theory to be called a 
quasiprobability. 

In widely analogous way one may treat the squeezing of a state with density 
operator 0ρ  according to 

( ) ( )( )†* * * *
0, , , , .S Sρ ζ η η ζ ρ ζ η η ζ= = =                (B.5) 

Instead of the unitary squeezing operators ( )* *, ,S ζ η η ζ=  we will calculate 
the transformations first a little more general with the operators ( ), ,S ξ η ζ  and 
at the end we will specialize the result to *ξ ζ=  and *η η= . Therefore, we  

have first to substitute ( )( ) ( )( ) ( )
† 1* *, , , , , ,S S Sζ η η ζ ξ η ζ ξ η ζ

−
= → = − − −  and  

find 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

1* ?
0 *

1 † *
0 *

† † *
0 *

, , , , , exp ,

, , exp , , ,

exp ,

W S S a a

S a a S

a a a a

α α ξ η ζ ρ ξ η ζ δ α α
α α

ρ ξ η ζ ξ η ζ δ α α
α α

ρ ν µ λ κ δ α α
α α

−

−

∂ ∂ = − − ∂ ∂ 

∂ ∂ = − − ∂ ∂ 

∂ ∂ = − − − − + ∂ ∂ 

 

( )

( )

( )

† *
0 * *

†
0

†
0

exp ,

exp ,

exp , .

a a

a a

a a

ρ ν λ µ κ δ α α
α αα α

ρ δ νγ µγ λγ κγ
γ γ

ρ δ γ γ
γ γ

 ∂ ∂ ∂ ∂    = − − − − +    ∂ ∂∂ ∂    

 ∂ ∂ ′ ′= − − − − + ′∂ ∂ 

 ∂ ∂ ′= − − ′∂ ∂ 

  (B.6) 

Formally this can be written 

( ) ( )*
0, , ,W Wα α γ γ ′≡                         (B.7) 

with the matrix elements in explicit form given in (A.7). This corresponds to the 
transformation 

*
*

* *
*

, , ,

, , .

γ κα µα α νγ µγ ν λ
γ α α

γ λα να α λγ κγ µ κ
γ α α

∂ ∂ ∂′= + = − = −
∂ ∂ ∂

∂ ∂ ∂′ ′= + = − + = − +
′∂ ∂ ∂

     (B.8) 

In the last step in (B.6) was used that the two-dimensional delta function 
( ),δ γ γ ′  is invariant with respect to a (complex) unimodular transformation of 

the variables. This can be proved, for example, by transition to real variables and 
transformation to principal axes (see below). 

In the special case of unitary transformations with the operator  

( )* *, ,S ζ η η ζ=  we can substitute * *,κ ν λ µ→ →  and *γ γ′→  and (B.7) 
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using (B.8) can be specialized to [35] 

( ) ( ) ( )* * * * * *
0 0, , , .W W Wα α ν α µα µ α να α α′ ′= + + ≡           (B.9) 

We mention that a displacement relation of the form (B.4) is true for all 
quasiprobabilities (e.g., ( )*,Q α α  and ( )*,P α α ) whereas for squeezing of 
states the form (B.9) is only true for the Wigner quasiprobability. The reason is  

that we do not have in other cases the operator †
*a a

α α
∂ ∂

− −
∂ ∂

 as a whole in  

the exponent of only one exponential function. 
The transformation of the variables ( ) ( )* *, ,α α α α′ ′ ↔  possesses the 

property 

( ) ( )
( )

* * * * *

* * * *

d d d d d d

d d d d ,

α α ν α µ α µ α ν α

νν µµ α α α α

′ ′ ′∧ = + ∧ +

′ ′ ′ ′= − ∧ = ∧
        (B.10) 

and therefore 

* *d d i i d dd d d d .
2 2 2 2

q p q p
α α α α

′ ′∧ ∧′ ′= ∧ = ∧ =
 

        (B.11) 

This means that each area element of the Wigner quasiprobability ( )*
0 ,W α α  

is mapped in a new area element of ( )*,W α α  of the same area with 
preservation of the topology but without preservation of angles such as for 
transformations in classical mechanics. Therefore, for example, if the Wigner 
quasiprobability possesses regions of negativity (squeezed coherent states do not 
possess such regions) then after the transformation the area of negativity 
remains the same as before the transformation. The similar property is true for 
displacements and is here obvious. 

A simple proof of the invariance of the two-dimensional delta function under 
(in general, complex) unimodular transformations of the variables by a matrix  

a b
c d

 
 
 

 with 1ad bc− =  can be given by extension of coordinates ( ),x y  to  

their own complex planes according to 

( ) ( )
( )

( ) ( ) ( ) ( ), 1 .

ax by cx dy

ad bc c x cx d x y d x y
d d d d

x dy x y ad bc
d

δ δ

δ δ δ δ

δ δ δ δ

+ +

−          = + = +          
         

 = = − = 
 

    (B.12) 

This is then also correct for the representation of the two-dimensional delta 
function by complex variables. 

Appendix C 
An Identity between Jacobi Polynomials with Different Arguments 

We derive here an identity between Jacobi polynomials which we used in 
Section 5 in specialized form. 
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Starting from the right-hand side of (5.1) we make a transformation of the 
following more general expression 

( )
( )

( )

( ) ( )

1
2 2

1
2 2

2

1 1,
2 2

2
0

11
1

2 1
1

1 1
2 2

1 1

2 !P .
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α α
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α α

+

+

  −− − − − − − 
 

−
=

∂
−

∂
−

+ ∂
= + 

∂ − 

 + + ∂
= − − 

∂ − +  
 

  ∂
= −  −− ∂ 
∑

n

n

n

n

j n jn j j

j n j
j

y
y

y

y
y y

y y y

ny
n jy

         (C.1) 

This is an operator identity which in the last line is written in the entangled 
form derived in [32] and was given there in the following here slightly changed 
form 

( ) ( ) ( )
,

2
0

1 1

2 !P ,
!1

α β

α β

−
′ ′− −

−
=

′ ′ ∂
− + ∂ − + 

  ∂
= −  −− ∂ 
∑

n

j n jj
j j

j n j
j

y y y

ny
n jy y

         (C.2) 

and can be proved by complete induction. With ( ) ( ),Pn uα β  are denoted the 
Jacobi polynomials. 

The operator identity (C.1) can be applied to arbitrary functions of the 
variable y. If we apply it to the function ( ) 1f y =  we find 

( )
( )

( ) ( )

( )

1
2 2

1
2 2

1 1,
2 2

2
0

1 1,
2 2

2

11 1
1

2 !P 1
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j n jn j j
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y
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n y
y

α
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α α
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+

+

  −− − − − − − 
 

−
=

 − − − − − − 
 

∂
−

∂
−

  ∂
= −  −− ∂ 

 
= − − 

∑           (C.3) 

Up to this point it may be considered as a transformation of the (Rodrigues- 
kind) definition of specialized Jacobi polynomials given by Szegö [30] (see also 
[31]). 

The special case of Jacobi polynomials with equal upper indices ( ) ( ),Pn yβ β  is 
called Ultraspherical polynomials and they are related to the Gegenbauer 
polynomials ( )Cn yν  in the following simple way 

( ) ( ) ( ) ( )
( ) ( )

1
, 2

2 ! !
P C .

! 2 !n n
n

y y
n

ββ β β β
β β

++
=

+
              (C.4) 

They possess the following for us interesting expansions (Equations (4.5) and 
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(5.2) in [32]) 

( ) ( ) ( )
( )

( )
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( )

( ) ( )
( ) ( ) ( )

2 2
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− +
= −

− +

∑

∑

    (C.5) 

Substituting in (C.5) 1
2

nβ α= − − −  and using transformation relations for  

the factorials one finds the following representation of the Ultraspherical 
polynomials involved in (C.3) 
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     (C.6) 

In [32] (Equation (5.4)) it was derived an identity which can be written 

( ) ( ) ( ) ( )
( ) ( ) ( )
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or after the substitution ix y=  
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             (C.8) 

An identity for these polynomials and their explicit representation is 

( ) ( )
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ii2 1 P
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           (C.9) 

These relations were applied in Section 5 to get the representation of †k ka a  
by known polynomials. 

Appendix D 
Generating Functions for Hermite Polynomials 

For easy use we collect here the most important generating functions for 
Hermite polynomials. The basic generating function for Hermite polynomials is 

( ) ( )2

0
H exp 2 .

!

n

n
n

t z tz t
n

∞

=

= −∑                       (D.1) 
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The basic generating function for products of two Hermite polynomials with 
different arguments is the Mehler formula [31] (chap. 10.13, Equation (22)) 

( ) ( )
( )

( )2 2 2

1 2
0 2 2

21 1H H exp .
! 2 1

1

n

n n
n

txy t x yt x y
n t

t
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=

 − +   =   −   −
∑     (D.2) 

By setting 0y =  and using ( ) ( ) ( )
2

1 2 !
H 0

!

m

m
m

m
−

=  and ( )2 1H 0 0m+ =  one  

obtains for even Hermite polynomials and by its differentiation with respect to 
variable z for odd Hermite polynomials the following non-trivial generating 
functions 
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 −    = −   −   −
∑       (D.3) 

The generating functions for even and odd Hermite polynomials which may 
be easily derived from (D.1) are different from the generating functions (D.3). 

Appendix E 
Expectation Values for Squeezed Vacuum States 

We compile here expectation values for ordered operators calculated from the 
formulae derived in the main text of Section 5. 

For a few initial numbers of expectation values †k ka a  we calculated by (5.2) 
and (5.3) or from (6.7)-(6.11) 

†0 0 1,a a =  
2

†1 1
2 ,

1
a a

ζ

ζ
=

−
 

( )
( )

2 2

†2 2
22

1 2
,

1
a a

ζ ζ

ζ

+
=

−
 

( )
( )

4 2

†3 3
32

3 3 2
,

1
a a

ζ ζ

ζ

+
=

−
 

( )
( )

4 2 4

†4 4
42

3 3 24 8
,

1
a a

ζ ζ ζ

ζ

+ +
=

−
 

( )
( )

6 2 4

†5 5
52

15 15 40 8
.

1
a a

ζ ζ ζ

ζ

+ +
=

−
              (E.1) 
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The expectation values of symmetrically (Weyl) ordered operators calculated 
according to (5.4) are 

{ }†0 0 1,a a =  

{ }
2

†1 1
2

11 ,
2 1

a a
ζ

ζ

+
=

−
  

{ }
( )

2 4
†2 2

22

1 41 ,
2 1

a a
ζ ζ

ζ

+ +
=

−
  

{ }
( )

2 4 6
†3 3

32

1 9 93 ,
4 1

a a
ζ ζ ζ

ζ

+ + +
=

−
  

{ }
( )

2 4 6 8
†4 4

42

1 16 36 163 ,
2 1

a a
ζ ζ ζ ζ

ζ

+ + + +
=

−
  

{ }
( )

2 4 6 8 10
†5 5

52

1 25 100 100 2515 .
4 1

a a
ζ ζ ζ ζ ζ

ζ

+ + + + +
=

−
    (E.2) 

The coefficients in front of powers of ζ  in the numerators can be obtained 
forming the squares of the numbers in the Pascal triangle and, therefore, the 
polynomials in the numerator are palindromic ones. 

For the corresponding expectation values of powers lN  of the number 
operator N we found from (5.7) 

0 1,N =  
2

21
2 , 1,

11
NN

N
ζ

ζ
ζ

= ⇔ = <
+−

 

( )
( )

( )
( )

( )
2 2 2

22
2 22 2

2 2
, 2 1 ,

1 1
N N N N

ζ ζ ζ

ζ ζ

+
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− −
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2 2 4

3
32

2 2

3
32

4 10
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1

4 1
4 1 1 2 ,

1

ζ ζ ζ

ζ

ζ ζ

ζ

+ +
=

−

+
⇒ ∆ = = + +

−

N

N N N N
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2 2 4 6

4
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4
42

8 60 36
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1
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1
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( )
( )

( )
( )

( )

2 2 4 6 8

5
52

2 2 4 6

5
52

16 296 516 116
,

1

16 1 16 16
.

1

N

N

ζ ζ ζ ζ ζ

ζ

ζ ζ ζ ζ

ζ

+ + + +
=

−

+ + +
⇒ ∆ =

−

       (E.3) 

The photon distribution np  of squeezed vacuum states (2.8) is highly 
asymmetric to the mean value N  with a longer tail to higher values of n and, 
therefore, ( )kN∆  is nonnegative for all odd k (in addition to all even k for 
which this is trivial). 

We give yet the initial members of the sequences of expectation values 2la  
and † 2 1la a −  for squeezed vacuum states calculated by computer from the more 
general formulae in Section 6. We found 

( ) ( )

0

*
2

* *

2 * 2
4 3

2 2* *

1,

, ,
1 1

3 3, ,
1 1

a

a a a

a a a

ζ ζ ζ
ζζ ζζ
ζ ζ ζ

ζζ ζζ

=

= − =
− −

= = −
− −

†

†

 
( ) ( )

( ) ( )

( ) ( )

3 * 3
6 5

3 3* *

4 * 4
8 7

4 4* *
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10 9

5 5* *

15 15, ,
1 1

105 105, ,
1 1

945 945, .
1 1

a a a

a a a

a a a

ζ ζ ζ

ζζ ζζ

ζ ζ ζ

ζζ ζζ

ζ ζ ζ

ζζ ζζ

= − =
− −

= = −
− −

= − =
− −

†

†

†

             (E.4) 

The expectation values †2ka  and †2 1ka a−  follow from (E.4) using the 

general relation 
*

† †k l l ka a a a= . The obvious relation seen from (E.4) 

( ) ( )
( )

† 2 1 2 1 * 2 * 2

2

*

0, 0, 0, 0, ,

1 2 1 !!
,

1

l l l l

l l
l

l

a a a a a a

l
a

ζ ζ ζ ζ ζ ζ

ζ

ζζ

− −≡ = − ≡ −

− −
=

−

†

    (E.5) 

results from the eigenvalue Equation (2.12) written for the left-hand squeezed 
vacuum states 0,ζ  as follows 

( )† *0, 0.a aζ ζ+ =                (E.6) 

We calculated some of the members in (E.4) in independent alternative ways 
and did not find contradictions. 

Notations 

A pair of boson annihilation and creation operators ( )†,a a  is connected with  
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the Hermitean canonical operators ( ),Q P  by (
2π
h

≡  with h Planck’s action  

quantum) 

( ) ( ) ( )( )
[ ]

† † †

†

i i, , , , , i ,
22 2

, , , i .

Q P Q Pa a Q P a a a a

a a I Q P I

+ − = = + − − 
 

  = = 



 



     (1) 

Corresponding pairs of complex conjugate variables ( )*,α α  and real 
canonical variables ( ),q p  are related by 

( ) ( ) ( )( )* * *

*

i i, , , , , i ,
22 2

i d dd d .
2 2

q p q p q p

q p

α α α α α α

α α

+ − = = + − − 
 

∧
∧ =



 



    (2) 

Furthermore: [ ],A B  denotes the commutator of operators A and B and A  
the trace of an operator A (usually in Hilbert space) and [ ]A  the determinant 
of two-dimensional operators A. Expectation values of operators to pure states 
ψ  or density operators ρ  are denoted by overlining, i.e. 
A A Aψ ψ ρ≡ = . 
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