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Abstract 
Finite fields form an important chapter in abstract algebra, and mathematics 
in general, yet the traditional expositions, part of Abstract Algebra courses, 
focus on the axiomatic presentation, while Ramification Theory in Algebraic 
Number Theory, making a suited topic for their applications, is usually a se-
parated course. We aim to provide a geometric and intuitive model for finite 
fields, involving algebraic numbers, in order to make them accessible and in-
teresting to a much larger audience, and bridging the above mentioned gap. 
Such lattice models of finite fields provide a good basis for later developing 
their study in a more concrete way, including decomposition of primes in 
number fields, Frobenius elements, and Frobenius lifts, allowing to approach 
more advanced topics, such as Artin reciprocity law and Weil Conjectures, 
while keeping the exposition to the concrete level of familiar number systems. 
Examples are provided, intended for an undergraduate audience in the first 
place. 
 

Keywords 
Finite Fields, Algebraic Number Fields, Ramification Theory, Frobenius  
Element, Congruence Zeta Function, Weil Zero 

 

1. Introduction 

Finite fields are important mathematical structures, taking the learner from the 
familiar realm of congruence arithmetic to algebraic number theory territory, 
and providing new tools for mathematical physics and cryptography, for 
example. 

We aim to highlight a pedagogical tool for the introduction of higher 
dimensional finite fields, which balances the traditional “axiomatic”, top-down 
approach of Abstract Algebra, with a constructive, yet intuitive approach, using 
what we call lattice models. 

The “standard” way in an Abstract Algebra course of introducing such higher 
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dimensional finite fields, is to extends the primary finite field pF , as a quotient 
of a polynomial ring [ ] ( )pF X f X  (e.g. MIT Modern Algebra Course, [1], 
Ch. 6 etc.). The lattice model approach extends the lattice of integers first, to 
place it in the context of complex numbers, followed by the quotient modulo a 
prime. In this way it mimics the elementary case of primary finite fields 

pF Z pZ= , providing also a geometric intuition accompanied by the 
corresponding analytic-topologic tools available. 
 

 
 

Remark Before comparing the two approaches, let us note that specialization 
(everywhere!) led to a fragmentation of the mathematical curriculum too, while 
the number of course a student may take remained essentially the same. This led 
teachers and researchers alike to advocate the need for a reintegration of 
Mathematics in various ways, for example in combination with teaching History 
of Mathematics (historical motivations) [2], Preface 1st ed., p.121: “One of the 
disappointments experienced by most mathematics students is that they never 
get a course on mathematics”. As a more modest goal of our paper, we believe 
that providing bridges between usually curricular separated ares in Mathematics, 
provides a “better circulation” of the underlying knowledge, and provides the 
student with more thinking power (links/synapses). The current tendency in 
Mathematics, and in fact in in general, is analytical specialization (well justified 
by the exponential growth of knowledge); there is a need for compensatory 
synthetic integration of symbiotic topics, supporting one another. 

Comparing with the concept of group, the “abstract way” is to define the 
algebraic structure with one binary operation, and then derive their properties 
from “axioms”, perhaps too soon, before the student has enough examples to 
develop the “feeling” and intuition of what they are. The two dual, symbiotic 
types of groups, are the non-commutative groups of transformations, which 
always act on some space, and those we call Abelian, which in fact are “discrete 
vector spaces” on which the first kind act upon. The “unified” approach through 
generalization and abstraction has its price: treating alike the two becomes the 
norm, and the differences in interpretation neglected. 

In this modern algebraic way of introducing algebraic structures abstractly, 
through general definitions, and then quickly deriving their properties, one 
would immediately ask the question of existence and uniqueness. The latter can 
be addressed in complete generality, without even knowing if they exist. 
Existence is proven, of course, by constructing finite fields explicitly. 

 

 

1We further invite the reader to see the whole first paragraph. 
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For primary finite fields pF , in characteristic p, this is easy: the well known 
Abelian groups Z nZ , taught while doing congruence arithmetic, or rather 
viewed as rings Z nZ , are easily shown to be fields, when n p=  is a prime 
number; but the other high dimensional finite fields are d

pF  are harder to 
construct, and the “future algebraist”, the student, learns by heart the recipes for 
constructing field extensions. 

Pedagogically, examples should be provided first, worked with them to the 
point the student begins to like them, and then “frame them” in the appropriate 
axiomatic context. 

The lattice models of finite field presented in this paper represent construc- 
tion of d

pF , generalizing the above simple case of wrapping the 1-dimensional 
lattice Z, with period corresponding to the prime ideal pZ . By using higher 
dimensional lattice, instead of the standard adjunction of “roots” construction, 
we provide a geometric interpretation, with a corresponding graphical represen- 
tation which brings geometry up-front, to enjoy and play with ... if time allows 
it! 

Of course, there is a price to pay: some new number systems need to be 
introduced along the way, still extensions using the standard algebraic construc- 
tion, but so important that they need to be made well known well before the 
theory of finite fields takes off: Gaussian and Eisenstein integers [3] [4], and 
their generalizations (cyclotomic extensions). 

And yet here again, one can borrow the geometric interpretation of complex 
numbers as representing 2D-rotations, and still provide enough geometric 
intuition, to overcome the abstract “magical act” of adjoining new symbols; at 
least this is the opinion of one of the authors. 

The article is organized as follows. The next section §0, introduces finite fields 
abstractedly, as in most textbooks of abstract algebra. Section §0 constructs finite 
fields as congruence rings of integers in number fields (algebraic extensions of 
the rationals). The geometric interpretation is emphasized. We conclude §0 
discussing briefly some important topics at hand, like Frobenius elements and 
Weil zeros. 

2. Finite Fields: The “Abstract Way” 

We will recall the basic facts about finite fields, as introduced in most standard 
texts of abstract algebra. To keep it self-contained, and simple, we use a brief 
presentation available on the web [5]. See [6] for additional theoretical details 
and [7] for a computational approach. 

Definition 2.1 A finite field is a field which is finite! 
The additive order of the unit 1 1 0+ + =  is called the characteristic of the 

finite field. It is always a prime p. For example 3 3F Z Z=  has characteristic 
3p = . 

Recalling some basic properties are in order. 
Proposition 2.1 A finite field F of characteristic p has nq p=  elements. It is 
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a vector space of dimension n over the primary field pF : [ ], :n F F p= . 
Theorem 1 (i) (Existence and Uniqueness) For each p and n there exists a 

finite field of characteristic p with np  elements. 
(ii) Two such finite fields with the same number of elements are isomorphic. 
It is therefore natural to denote a generic finite field as qF , with nq p= , as if 

it is a specific one. By abuse of notation, yet well justified by the uniqueness 
modulo isomorphism, we write pF Z pZ= , without further comments (LHS is 
a “any” finite field of characteristic p, while the RHS is the preferred, specific 
construction of one such field). 

The “standard” way to construct higher dimensional finite fields with a given 
number of elements np , and of course prescribed characteristic p, uses the 
standard algebraic construction of field extensions via polynomial rings and 
their quotients by ideal generated by irreducible polynomials. 

We reproduce here the Example 1.88, from [6], p. 34. 
Example 2.1 Let the prime field be 3F . As an example of the formal process 

of root adjunction, consider the irreducible polynomial 
( ) [ ]2

32f x x x F x= + + ∈ . Let θ  be a “root” of f; that is, θ  is the residue class 
( )x f+  in [ ] ( )3L F x f= . The other root of f in L is 2 2θ + , since 

( ) ( ) ( )2 22 2 2 2 2 2 2 2 0.f θ θ θ θ θ+ = + + + + = + + =  

We obtain the algebraic extension ( )3=L F θ  consisting of the nine elements 
0,1,2, , 1, 2, 2 , 2 1,2 2θ θ θ θ θ θ+ + + + , i.e. an instance of 23

F . 

3. What Are Number Fields?  

The algebraic structure we call field was first introduced by Dedekind [8] ([2], 
Ch. 12). The usual number systems Q, R and C are the traditional examples of 
fields. When solving algebraic equations defined by polynomials, we are “forced” 
to extend our number system, and adjoin formal roots of polynomials as new 
“numbers”. We can treat these either as new symbols, and construct the new 
number system, for example { }2, , 1C x iy x y R i= + ∈ = − , as real linear com- 
binations of 1 and the symbol i subject to the relation 2 1i = − , or more formally, 
in the abstract (algebra), as quotients of polynomials modulo the ideal generated 
by the polynomial defining the relation: 

[ ] [ ]{ }2 1 , , ,C R X X a bI a b R I X= + = + ∈ =  

Here [ ]X  denotes the congruence class of X modulo the ideal, satisfying the 
required relation: 2 21 1 0I X + = + =   (since 2 21 0 1X mod X+ ≅ + ). 

We will call this construction the standard algebraic construction of a field 
extension. 

Now “integers” play a central role in arithmetic, in various rings, and they 
satisfy the structure of lattices. Initially we may call “integers” the subring of a 
field extension which emerges as a corresponding field of fractions, but field 
extensions require more care when defining the concept of algebraic integer of a 
field extension. 
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Definition 3.1 A latice   is a Z-submodule of a ring. 
In particular a lattice is a finitely generated abelian group, and can be 

interpreted and visualized as a “discrete (finite dimensional) vector space” (by 
abuse of language, when there are still relations among generators). 

Two good examples of such lattices of algebraic integers are the Gaussian 
integers and Eisenstein integers [3] [4].  

3.1. Gaussian Integers 

Complex numbers are a familiar example of field extension of the reals. To keep 
the theory algebraic, and to investigate it from an arithmetic point of view, 
neglect the Cauchy reals as non-realistic numbers [9], and consider the quadratic 
extension ( )1Q −  over the rationals Q. Even better, since these fields are 
fields of fractions, focus on the extension of integers: [ ]Z i 2. 

The ring [ ] { },Z i m in m n Z= + ∈  is called the ring of Gaussian integers. The 
rational primes p may factor in this larger arithmetic number system: 

The prime 2 is special, and “ramifies” as ( )212 1i i−= + 3. 
1 4p mod≅  splits into a product of conjugate primes, for example 

( )( )5 2 2i i= + − ; 
1 4p mod≅ −  is inert, i.e. it remains a prime in [ ]Z i ; for example 3p = . 

For more facts about Gaussian integers see [3]. For a more technical account, 
including relations to Galois theory, see [10]. 

3.2. Eisenstein Integers 

Similarly, taking a cubic root of unity ω  instead of the 4-th root of unity i, we 
obtain the Eisenstein integers [ ]Z ω , with its own primes and classes of rational 
primes ramifying ( 3p = ), and splitting or being inert, according to a similar 
condition 1p ≅ ± , but this time modulo 3. Alternatively, one may look at the 
analog of Fermat’s Two Squares Theorem, about representing primes 

2 2p m n= + , except this time we use a different quadratic form (norm): 
2 2x xy y− + , instead of the usual one ( )2 2x y N x iy+ = +  in [ ]Z i . 

For more details, see [4]. 

3.3. From Number Fields to Finite Fields 

Now the idea for constructing higher dimensional finite fields, is to consider the 
congruence rings of algebraic integers, modulo a prime, the obvious analog of 
the construction of primary finite fields pF Z pZ= . 
As a quick example, [ ] 3Z i Z  yields 23

F , while [ ] ( ) 52 5Z i i Z Z Z F+ ≅ = . 
Besides being a more natural construction, it provides the geometric back- 

ground for a better understanding of finite fields as Klein geometries (Galois 
fields)4. 

 

 

2In general the extension of integers might not coincide with the algebraic integers of the corres-
ponding field extension. 
3Recall that we have more units here: 1, 1, ,i i− − . 
4...not to mention the connection with Galois Theory, splitting polynomials and Frobenius elements. 
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4. Lattice Models: The “Geometric Way”  

We will proceed by way of example. Recall that the primary fields pF  can be 
constructed as ing quotients Z pZ , where p is a prime number, the charac- 
teristic. geometrically, Z can be viewed as a 1-dimensional lattice, or as an 
infinite oriented graph5. 

The prime p defines a period, and the covering map ( )k k mode pφ =  is a 
discrete geometric analog of the familiar covering map of the circle 1x mod , 
sometimes used to define angles, sine and cosine. Algebraically, φ  is a group 
(ring) homomorphism: the quotient map of the ring Z by the ideal pZ . 

Now let’s consider a 2D-example: the Gaussian integers, as a lattice, modulo a 
prime ideal  . 

Since [ ]Z i  is a principal ideal domain (PID), we need only consider 
[ ]Z i π=  with Gaussian prime π  “sitting” over a rational prime p: 

( )N pπ = . 
For example 2 i+  is a Gaussian prime over 5, completely splitting it: 
( )( )5 2 2i i= + − . Recall that other rational primes of the form 1 4p mod≅ −  

are inert, i.e. are Gaussian primes too and ( ) 2N p p= . 
There is also the special case of the ramified prime 26, which factors with 

multiplicity: ( ) ( )22 1 I i= + ⋅ −  [3]). 
Remark The factorization may also be written in an initially misleading way 

as ( )( )2 1 1i i= + − , but 1 i+  and its conjugate 1 i−  are the “same” prime, 
modulo a unit 1, i± ± . 

Consider the same algebraic quotient map ( )z z modφ π= . Since π  is 
prime, the quotient ring [ ] ( )K Z i π=  is a field of characteristic p, i.e. fp

F . 
The norm ( ) fN pπ =  gives the dimension : pf K F =   . 

Excepting the case of the ramified prime 2p = , we have the following two 
cases. For inert (rational) primes 3 4p mod≅ , pπ =  is the only prime over p, 
and 2f = ; otherwise p ππ=  splits and ( )N pπ = . 

Example 4.1 Let 5p =  and 2 iπ = + . Then [ ] ( )K Z i π=  is a lattice 
model of 5F  (the abstract finite field with 5 elements). We can see its canonical 
residue classes as the Gaussian integers in the fundamental region of the lattice 

{ },a b a b Zπ π= + ∈ , for example with ,a b  non-negative integers, such that 
( )N z p<  (again considering the projection on the integers). 
Another example of lattice model, providing an alternative construction to the 

“standard” algebraic extension from Example 0.1, is the following. 
Example 4.2 Consider again [ ]Z i  as a quadratic extension and 3p =  the 

rational inert prime. Then the quotient lattice [ ] ( )3Z i  has 23q =  elements, 
representing the finite field 23

F . 

5. Applications to Weil Zeros  

There are several topics of Algebraic Number Theory which may benefit from 

 

 

5The interested reader may lookup partial ordered set, POSet for short, too, as a generalization. 
6Divides the discriminant of the quadratic extension ( ) :Z i Z   . 
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the introduction of finite fields as quotients of lattices of algebraic integers: 
a) Ramification Theory, in the context of Galois Theory of such extensions; 
b) The Frobenius element, as a generator of the Galois group of the 

corresponding extensions, controlling the factorization of prime ideals in 
extensions of number fields; 

c) Quadratic Reciprocity using the connection between the Frobenius element 
and Legendre symbol in congruence rings of number fields; finally, 

d) Applications to Weil Conjectures, and notably to the finite characteristic 
Riemann Hypothesis via the characteristic polynomial of a lift of the Frobenius 
element, having eigenvalues the Weil zeros of the Weil polynomial, i.e. the 
reciprocal of the numerator of the Hasse-Weil Congruence Zeta Function [11]. 

The first three applications are essentially described in [12]. In this article we 
will focus on this later important application to Algebraic Geometry, which can 
be accessed relatively easily, in a computational oriented way, using for example 
SAGE as a mathematical software. In this brief note, we will only point the way. 
For an exposition, see the classical texts, for example [13] [14]; additional 
explanations and computations can be found in the lecture notes of the first 
author [15]. 

5.1. Solving Algebraic Equations over Finite Fields  

Quadratic equations were studied since ancient times, e.g. Appolonius’ theory of 
conic sections. Replacing the usual number system with finite fields places the 
problem in the context of Algebraic Geometry. 

Following [14], Ch. 8, consider the solution ( )qX F  of the equation 
2 dy x D= +  over the finite field qF  with nq p=  elements. It is an algebraic 

affine curve of degree d. Denote the corresponding number of elements nN , 
and the associated congruence zeta function7 

( ) ( )
( )( ) ( ) ( )

2

/
1

, 1 ,
1 1

g

X Fp i
i

P T
Z T P T T

T pT
ω

=

= = −
− − ∏  

where ( )1 2g d= −  is called the genus of the curve, and iw  are algebraic 
numbers we will call the Weil zeros of the Frobenius polynomial  
( ) ( )2 1gh u u P u= 8. We will not go in depth explaining the terminology, and just 

use it to exemplify the relation with factorization of primes and lattice models of 
finite fields. 

Example 0.4 The cubic ( 3d = ) curve 2 3:X y x D= + , is an elliptic curve of 
genus 1g = , which should be pictured topologically (over complex numbers) as 
a torus (when completed with the point at infinity: the projective curve). 

Regarding the fixed prime p, whether pF  has m-roots of unity or not 
decides the form of ( )P T  and nN . In what follows we will assume | 1m p − , 
i.e. pF  has m-roots of unity9 Then ( ) ( )( )1 1P T wT wT= − −  is a quadratic 
polynomial and the number of affine points is n n n

nN p w w= − − , where w  

 

 

7Conform Weil Conjectures/Deligne Theorem. 
8

iw  are reciprocal of the zeros of the “Frobenius polynomial” ( )P T . 
9Cauchy Theorem for the multiplicative group ( ),qF × ⋅  
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denotes complex conjugation [13], Ch. 18§2, p. 302 (where the +1 stands for the 
point at infinity; see also [14], p. 292). 

Remark Later we will see how Weil zeros iw  are related to Gauss and Jacobi 
sums, which are valued in the cyclotomic numbers of roots of unity of order 
( )1l l −  and 1l −  respectively, if | 1l m p= −  is a prime. 
Part of Weil Conjectures [16] is that ww p= , i.e. the Riemann Hypothesis 

holds in finite characteristic [14]. Moreover, introducing the defect pa w w= + , 
( ) 21 pP T a T pT= − + . 
Remark The coefficients of the Betti polynomial ( )P T  are related to Weil 

zeros as a consequence of a deeper connection with the characteristic 
polynomial of the Frobenius element ( )h u : ( )pa Tr Frob= , ( )p det Frob= . 

Example 5.2 The elliptic curve 3m =  [13], p. 306, has 1N p w w= + + , 
where the Weil zeros split the prime p ww=  in the cyclotomic extension 
( )3Z ζ  of Eisenstein integers (assuming 3 | 1p − ). In terms of primary primes 

,π π , 2 3modπ ≅  (associated to ,w w ), we have [13], Th. 4, p. 305 (affine 
points; ( )6 1l l= ⋅ −  with 3l = ): 

( )( ) ( )
6

42 4 , .p
DN p Re xρ π ρ π
π

 = + =  
 

 

As a concrete example take 1D = . 
If 13p =  then 1 3π ω= − +  is a primitive prime, and together with 

21 3π ω= − +  split p: 

( )( )2:13 1 3 1 3 : .p ω ω ππ= − + − +  

Since ( ) 24ρ ω= , the Weil zero is w ωπ= − , associated to π  (Units: 

{ }21, ,ω ω± ± ± ). 
Now the number of affine (finite) points in pF  is: 

( ) ( )2
1 13 2 13 2 13 2 11,N Re ωπ ω ω= + = + + = − =  

consistent with a direct check and counting argument: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }13 4,0 , 10,0 , 12,0 , 0, 1 , 2, 3 , 5, 3 , 6, 3 .X F = ± ± ± ±  

Example 5.3 As another example consider 5D =  and 19p = . Note that 
5 3π ω= +  is primary and splits p: 

( )( )219 5 3 5 3 , 5 3 2 3.modω ω ω= + + + ≅  

From the above formula we obtain the number of points ([17], p. 8)10: 

26.=5519== 2
1 ωωππ ++++++pN  

Then ( )2 7pa Re π= − = −  and Weil zeros are w π= −  and its conjugate: 

( ) ( )( ) ( )2
11 1 1 7 19 , 1 27.projP T wT wT T T N P= − − = + + = =  

Remark One may use SAGE (recently renamed as CoCalc) [18] to conve- 
niently compute Dirichlet characters (like ρ  above), and Jacobi sums, which 

 

 

10We need Jacobi sums for this: see §5.3. 
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are instrumental in computing the number of points. 
Well, what does this problem of counting the number of solutions, with its 

associated congruence zeta function, have to do with lattice models of finite 
fields!? For this we need to recall some facts about the Galois group of an 
extension, and the relation with the Frobenius element, which will turn out to be 
present as the numerator of the zeta function. 

5.2. Frobenius Element 

Following [19], consider a number field extension ( )Q Qξ  which is Galois, 
and how a rational prime p decomposes in it, with π  such a prime factor 
(assuming a principal ideal domain case for simplicity). Then the Galois group 
of the number field extension ( )( )Gal Q Qξ  is related to the Galois extension 
of the corresponding (lattice models of) finite fields: 

( ) ( ) ( )1 1,q pI p D p Gal F Fπ π→ → → →  

where ( )D pπ , the decomposition group consists in Galois automorphisms 
preserving the ideal generated by π , each of its elements therefore inducing an 
automorphism of the corresponding finite fields extension ( )q pGal F F , in a 
surjective manner. The kernel of this projection, the inertia group, will not be 
used in what follows. 

If p is unramified, then the kernel (the inertia group) is trivial, and the above 
surjection becomes an isomorphism. Then one can “pull-back” the Frobenius 
automorphism px x  of ( )q pGal F F , where we recall that [ ]qF Z ξ π=  
and pF Z p=  are lattice models of finite fields constructed in number fields 
viewed (embedded) as subfields of the complex numbers. 

Definition 5.1 In the context above (π  prime in [ ]Z ξ  over the unramified 
rational prime p), the Frobenius element [ ]( )p ZFrob Aut Zπ ξ∈  is the unique 
Galois automorphism which induces the Frobenius automorphism ( ) pFr x x=  
in the finite field extension q pF F , of lattice models. 

At this stage the Frobenius elements may depend on the choice of prime π  
over p. But these Frobenius elements are conjugate to each other, so if the Galois 
group is Abelian, then the Frobenius element is unique, and will be denoted by 

pFrob . 
Example 5.4 Consider [ ]Q i , with i a forth root of unity, and its Gaussian 

integers [ ]Z i . The only ramified prime is 2; otherwise 1p ≅ , 4mod  or 
course, splits, or 1p ≅ −  is inert. 

The decomposition group ( )D p  is trivial in the split and ramified cases, and 
equals ( )( ) 2:G Gal Q i Q Z= ≅  (multiplicative group { }1,1− ) otherwise. 

Thus the Frobenius element is 1 when 1p ≡  and 1−  otherwise, i.e.  
1

pFrob
p

 −
=  
 

 is given by the Legendre symbol (the unique multiplicative  

character of order 2). 
Alternatively, we can compute the lift to [ ]Z i  of the Frobenius px , from the 
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“abstract” setup, using our lattice model, to the ring of algebraic integers11: 

( ) [ ].p pa ib a bi mod pZ i+ ≡ +  

Since 
1pi i

p
 −

=  
 

 “on the nose”, i.e. not just mod p , we conclude that the  

lift has the following closed formula in terms of the multiplicative quadratic 
residue character ( ) ( )2 z z pρ = : 

( ) ( )
1

2
1 1, , 1 .

p
k

p pFrob a ib a b Frob k
p p

σ
−   − −

+ = + = = = −   
   

 

The last form was written in terms of the generator of G, here complex 
conjugation. 

Example 5.5 The above example can be generalized to quadratic extensions 

( )Q d , where d is square free ([19], p. 3). The Frobenius element, in Z pZ × , 
is ( )pFrob d p= , so that ( ) ( )1pFrob a db a p db+ = + − , i.e. 

( )1ord p
pFrob σ −=  as before. 

Example 5.6 In the cyclotomic case ( )nQ ξ , the primes that ramify are those 
which divide n. The Galois group is isomorphic to the multiplicative group of 
roots of unity, and therefore isomorphic to ( ),Z nZ × ⋅ , with a Galois element 

: m
mσ ξ ξ , with m Z nZ ×∈  relatively prime to n. 
In the non-ramified case p Z nZ ×∈ , the Frobenius element is, again as 

expected: 

( ) ( )
0, , 2

, .kk p
p k n k p n p n

k n
Frob c c Frob Frobξ ξ ξ ξ

= −

 
= = 

 
∑ ∑


 

As another quadratic extension example, consider ( )Q ω , corresponding to a 
cubic root of unity 3 1ω = , and its Eisenstien integers [ ]Z ω . Then the 
corresponding Frobenius element is, similarly to the Gaussian integers case: 

( ) ( )3 .pFrob a b a p bω ρ ω+ = +  

Remark At this stage, one may further look into the correspondence between 
how the prime p factors into [ ]Z ξ , and how the primitive polynomial ( )f x , 
of ξ  factors in [ ]pF x , reflecting the commutativity of the diamond diagram 
from the introduction. 

It is conceptually important to piece together these Frobenius elements as a 
map depending on the prime p, called the Artin map: : pFrob p Frob

12. For 
cyclotomic extensions, If we identify the Galois group ( )( )nGal Q Qξ  with 

( ),nZ × ⋅ , then the Artin map is simply the “identity” map: 

( ) , .p np Frob p mod n p Z ×= ∈
 

For example, with 4m =  and p an odd prime, the Galois group is generated 

 

 

11It is enough to consider the extension of Z, and not the full algebraic closure in ( )Q i , which inci-
denltally, here coincide. 

12In a more general setup [12], Ch. 5, ( ) L KFrob p
P

 =  
 

 is called the Artin symbol. 
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by conjugation G σ= , since 4 2Z Z× ≅ , and ( ) 4Frob p p mod=  as an  

element of 4Z × . This is essentially the Legendre symbol 
4
p , when identifying  

4Z  with the 4-th roots of unity, via exponentiation (the Galois group identifi- 
cation). 

Once we know the Frobenius element, its characteristic polynomial can be 
computed easily: 

( )( ) ( ).p pP Frob t det Frob tI= −  

For example, in the cyclotomic setup, with 4m =  (Gaussian integers), the 
matrix of ( )1 p

pFrob σ −=  in the basis 1, i  is: 

1 0
: 1 4 :

0 1pSplit p mod Frob  
≡ =  − 

 

1 0
: 1 4 :

0 1pInert p mod Frob  
≡ − =  

 
 

and the characteristic polynomials are, respectively: 

( ) ( ) ( )2 21 , 1 .P T T P T T= − = −  

Similarly, for a quadratic extension, for example 3m =  (Eisenstein integers), 
the matrices of the Frobenius elements I  and σ , and their matrices are 
essentially the same (but computed in a different basis 1,ω ). 

Now let’s see how the Frobenius element, or rather its lift and the corre- 
sponding characteristic polynomial is related to the Hasse-Weil congruence zeta 
function. 

5.3. Weil Zeros and Jacobi Sums 

We will only document the facts with an example, following [13] [14] [20] [21], 
and leave the general case for a separate study. 

Let ( )2 2 1y x x= +  define an elliptic curve over qF . Since the RHS of its 
defining equation ( )f x , splits in [ ]Z i , we will work with Gaussian integers in 
the number fields side of the “picture”. 

For 3 4p mod≅ , the prime is inert in [ ]Z i , which corresponds to the factor 
2 1x +  being irreducible in pF  and the Frobenius element complex 

conjugation. 
Theorem 5, [13], p. 307, with 1D = − , yields the number of projective 

points13, according to the type of prime: 

( )( )4: 1 , : 1 2 1 ,p pInert N p Split N p Re ρ π= + = + − −  

where π  is a primary prime splitting p and 4ρ  is a character of order 4. 
We will focus on the split case 1 4p mod≅  (Ramification Theory 

parameters: 2g = , 1e = , 1f = ). 
To have a “nice” description of the lift of Frobenius pFr  on C preserving our 

 

 

13The +1 stands for the point at infinity. 
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curve, and not some “deformation” of identity (the Frobenius element) 
( ) ( ) ( )( ), , , ,q qx y x f x y y g x y+ +  [20], p. 10, we use Weierstrass coordinates. 
The elliptic curve is then the quotient of C  by our lattice [ ]Z iΛ =  of 
(Gaussian) algebraic integers: 

( ) ( ) ( ) [ ] ( ): , , , ,e z Z i Eτ ×+ → ⋅ ≅C C C C  

where here 2 iτ π= . Then the Frobenius lift ( )pFr z z c= ⋅  is multiplication by 
some lattice element [ ]c a ib Z i= + ∈  [20] [21]. 

Remark Alternatively, we could lift the Frobenius to the p-adic completion, 
and taking advantage of Hasse principle for finding the above “perturbations” 
( ),f x y  and ( ),g x y . 
If the curve is defined by a polynomial in the powers of the variables (Weil 

curves), e.g. Riemann surfaces 2 sy x D= +  ([14] p. 292) and Fermat curves 
m m mx y z+ =  ([13] [22]), then Jacobi sums provide a powerful tool to compute 

the number of points. 
Then 1p pN p a= + − , with the defect given by the Jacobi sum 

( )2 42 ,pa ReJ c c= , which also yields the Weill zeros ,w w  of the (reciprocal of) 
“Betti polynomial”14: 

( ) ( )
( )( )

( ) ( )( )

,
1 1

1 1 , .

p
p

p

L T
Z T

T pT

L T wT wT ww q

=
− −

= − − =

 

Then ( )2 4,w J c c= −  is primary [13] and our lift of Frobenius is given by 
c w π= = , conform with [21], with ( )p pa Tr Fr=  and ( )pp det Fr=  
(Riemann Hypothesis, part of the Weil Conjectures; see also [11], Lecture #8, 
Hasse’s Theorem): 

( ) 2: , 1 .p p pCharPoly Fr det Fr u Id u a u p u T − = − + =   

Rewriting the number of points as in [20] 2 1N q d q= − + , and the Weil 
zero as eiw qθ= , one may interpret the “Betti coefficient” ( )eid Re θ=  via a 
comparison with the Jacobi sum, as phase of the 2-cocycle of the Fourier 
coefficients of the Dirichlet characters (Gauss sums)... but this is another story! 

Remark A similar discussion applies to our previous example of elliptic curve 
2 3y x D= −  ([13], p. 304; [17], p. 7), with Eisenstein integers replacing Gaussian 

integers. 
Remark For higher dimensional extensions fp

F , needed when the genus of 
the curve excedes 1g = , can be implemented via cyclotomic extensions [ ]mZ ξ , 
such that the dimension ( )n mφ=  factors as g f⋅  with ( )f ord p=  is the 
order of multiplication by p in ×mZZ/  and g the ramification genus of the 
prime p. 

6. Conclusions and Further Developments  

There are various styles of teaching (and designing) Abstract Algebra. We 

 

 

14The numerator of the Zeta function is a local L-function having a cohomological interpretation. 
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attempted to plead that, in the case of finite fields, the abstract approach to the 
introduction of the algebraic structure (“axiomatic”/top-down design), can be 
supplemented by the specific construction we call lattice models, which in- 
troduces the number fields first, as more “familiar” to the student used to solve 
polynomial equations, and presenting np

F  as a congruence ring, in perfect 
analogy to the way we introduce the primary finite fields pF Z pZ= . 

6.1. Motivation, Goals and Contributions  

One motivation of this article for emphasizing lattice models of finite fields is 
the need for a pedagogical introduction to finite fields as part of an Abstract 
Algebra course, with strong ties with number fields (“number systems” in their 
natural habitat of complex numbers), with best results after covering Galois 
Theory, of course. As mentioned in the introduction, a discussion of the residue 
fields in the context of decomposition of primes in algebraic number fields, 
implies a long wait in providing such concrete examples of extensions of finite 
fields [23]. Bridging mathematical topics in general, is a much needed way to 
balance specialization [2], p. 12. 

In our case at hand, the bonus is some extra intuition, but more importantly, a 
rich geometric framework for bridging and interpreting other abstract algebra 
concepts, like Galois Groups, Frobenius elements, paving the road towards 
understanding General Reciprocity Laws the “right way” [24]. 

The second goal, which in fact started the current project, was to provide a 
direct approach to Weil Conjectures, to be understood not in their natural 
“habitat” of abstract Algebraic Geometry, but in the more geometric and 
topological context of complex manifolds, by using lattice models of finite fields. 
Then the Frobenius element of the number can be related to a Frobenius lift of 
the Frobenius automorphism. Then the numerator of the Weil Congruence zeta 
function is the characteristic polynomial of the lift of the Frobenius element, 
allowing to count numbers of solutions without the use of a Weil cohomology 
(e.g. Grothendieck’s approach via l-adic cohomology). 

Our main contribution in this open effort for bridging the modern abstract 
(“axiomatic”) exposition of finite fields and traditional concrete, by example, 
approach using the familiar “number systems”, is the emphasis on the concrete 
examples of finite fields we call lattice models, with the early benefit of learning 
of how primes decompose: Ramification Theory. As a “bonus”, as mentioned 
before, this bridge may constitute a shortcut to understanding Frobenius lifts, 
via Frobenius elements, in a more familiar context, towards understanding more 
advanced topics like congruence zeta function and Weil Conjectures, without 
having to “cross-over” to p-adic analysis and etale cohomology. 

Regarding other studies in this direction, we noticed only highly specialized 
articles and presentations, either focusing on ramification theory, or in 
attempting the construction of a lift of Frobenius directly, by not so accessible to 
students [20]. This provided additional motivation for starting this project. 
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6.2. Towards Other Applications: Algebraic Topology/Geometry  

Once “in motion”, if one wishes, Lefshetz formula, as well as algebraic topology/ 
geometry technics, such as Riemann-Roch/Hurwitz Th., may be used on this 
characteristic zero “side” of number fields and lattice models of finite fields, in 
the natural and familiar framework of the complex numbers. This direction of 
continuing the combined study of finite fields in concrete applications to 
Algebraic Topology and Algebraic geometry, benefitting even more from an 
intuitive understanding via graphical representations, will be the subject of 
future faculty-student research projects. 

On the concrete complementary side, SAGE/CoCalc programs [25] were 
specifically designed to allow for computer explorations of the presented topics 
of Algebraic Number Theory [18], which, in our opinion, constitute interesting 
studies, accessible for undergraduate research. Further programs for represen- 
ting graphically the corresponding lattices, Frobenius orbits etc., are envisaged as 
further developments, with student help. 
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Appendix. SAGE/CoCalc Programs 

Programs for computing the Weil zeros of 
2 3:EC y x D= +  are available from [18]. They can be easily adapted to other 

cases, for example to Riemann Surfaces or Fermat Curves. The programs can 
also be used to compute Jacobi sums, and for other Algebraic Number Theory 
studies using technology. 
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Abstract 
In the present paper, we shall give an extension of the well known Pecaric- 
Rajic inequality in a quasi-Banach space, we establish the generalized inequa-
lity for an arbitrary number of finitely many nonzero elements of a qua-
si-Banach space, and obtain the corresponding upper and lower bounds. As a 
result, we get some more general inequalities. 
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1. Introduction 

Let us first recall some basic facts concerning quasi-Banach spaces and some 
preliminary results. For more information about quasi-Banach spaces, the 
readers can refer to [1]. 

Definition 1 Let X  be a linear space. A quasi-norm is a real-valued 
function on X  satisfying the following: 

1. 0x ≥  for all x X∈  and 0x =  if and only if 0x = ; 
2. x xλ λ= ⋅  for all λ∈  and all x X∈ ; 
3. There is a constant 1K ≥  such that ( )x y K x y+ ≤ +  for all 

,x y X∈ . 
The pair ( ),X ⋅  is called a quasi-normed space if ⋅  is a quasi-norm on 

X . 
A quasi-Banach space is a complete quasi-normed space. 
A quasi-norm ⋅  is called a p-norm ( )0 1p< ≤  if 

p p px y x y+ ≤ +  

for all ,x y X∈ . In this case, a quasi-Banach space is called a p-Banach space. 
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Let X  be a normed linear space. The following is the well known Dunkl- 
Williams inequality (see [2]), which states that the for any two nonzero elements 

,a b X∈ , 

4
.

a ba y
a b a b

−
− ≤

+
                    (1) 

Many authors have studied this inequality over the years, and various 
refinements of this inequality (1) have been obtained (see e.g [3] [4] [5]). Pecaric 
and Rajic [6] got the following inequality in a normed linear space. 

{ }1, ,1 1 1

1min ,
n n n

j
j j ii nj j jij

a
a a a

aa ∈= = =

   ≤ + −      
∑ ∑ ∑



            (2) 

{ }1, ,1 1 1

1max .
n n n

j
j j ii nj j jij

a
a a a

aa ∈= = =

   ≥ − −      
∑ ∑ ∑



            (3) 

Furthermore, the authors [6] also showed that these inequalities imply some 
refinements of the generalized triangle inequalities obtained by some authors. 
For generalized triangle inequalities, note that, some authors have also got many 
related results (see [7] [8]). In this paper, we shall discuss some extensions of the 
inequalities (2) and (3) for an arbitrary number of finitely many nonzero 
elements of a quasi-Banach space. 

2. Main Results 

Note that, given a p-norm, the formula ( ), : pd x y x y= −  gives us a 
translation invariant metric on X . By the Aoki-Rolewicz theorem [9] (see also 
[1]), each quasi-norm is equivalent to some p-norm. Henceforth we can get 
similar results with p-norm. In the following, we first generalize the inequalities 
(2) and (3) with p-norm a p-Banach space. 

Theorem 2 Let X  be a p-Banach space and 1, , na a  nonzero elements of 
X . Then we have 

{ }1, ,1 1 1

1min ,

p p
n n n pj

j j ipi nj j jj i

a
a a a

a a∈= = =

    ≤ + −     
∑ ∑ ∑



        (4) 

{ }1, ,1 1 1

1max .

p p
n n n pj

j j ipi nj j jj i

a
a a a

a a∈= = =

    ≥ − −     
∑ ∑ ∑



       (5) 

Proof. First, let us prove the inequality (4): for a fixed { }1, ,i n∈  , we have 

1 1 1

1 1 1 1

1 1

1 1 1 .

pp
n n n

j j
j

j j ji ij j

pp p
n n n n ppj

j j j ip
j j j ji i j i

a a
a

a aa a

a
a a a a

a a a a

= = =

= = = =

 
 = + −
 
 

 
 ≤ + − = + −
 
 

∑ ∑ ∑

∑ ∑ ∑ ∑
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from this it follows that 

{ }1, ,=1 =1 =1

1min ,

p p
n n n pj

j j ipi nj j jj i

a
a a a

a a∈

    ≤ + −     
∑ ∑ ∑



 

which is the inequality (4). The second inequality (5) follows likewise and the 
details are omitted. 

Now, we generalize the inequalities (2) and (3) with quasi-norm in a quasi- 
Banach space. 

Theorem 3 Let X  be a quasi-Banach space and 1, , na a  nonzero 
elements of X . Then we have 

{ }1, ,1 1 1
min ,

n n n
j

j j ii nj j jij

a C a a a
aa ∈= = =

   ≤ + −      
∑ ∑ ∑



         (6) 

{ }1, ,1 1 1

1max .
n n n

j j
j ii nj j jij

a a
a a

a Ca ∈= = =

   ≥ − −      
∑ ∑ ∑



         (7) 

where C  is a constant and 1C ≥ . 
Proof. First, let us prove the inequality (6): for a fixed { }1, ,i n∈  , we have 

1 1 1

1 1
1 1

1 1 2 1 2
1 21

1 1

1 1

1 1 1 1 .

n n n
j j

j
j j ji ij j

n n
j

j
j ji ij

n n
j

j j
j ji i ij

a a
a

a aa a

a
C C a

a aa

a
C C C a C C a

a a a aa

= = =

= =

= =

 
 = + −
 
 

 
 ≤ + −
 
 

  
 ≤ + − + −       

∑ ∑ ∑

∑ ∑

∑ ∑

 

where 1, 1,2iC i≥ = . Hence, in order to get the inequality (6), let us set  

1
n

jjC C
=

=∏ , where 1jC ≥  for all 1 j n≤ ≤ . Thus, from the above inequality it  

follows that 

1 1 1

1 1 1 1

1 1

1 .

n n n
j j

j
j j ji ij j

n n n njj
j j i

j j j ji i i

a a
C C a

a aa a

aa CC C a a a
a a a

= = =

= = = =

≤ + −

 
= + − = + −  

 

∑ ∑ ∑

∑ ∑ ∑ ∑
 

From this it follows that 

{ }1, ,1 1 1
min ,

n n n
j

j j ii nj j jij

a C a a a
aa ∈= = =

   ≤ + −      
∑ ∑ ∑



 

which is the inequality (6). 
In order to proof the second inequality (7), we proceed in a similar way. For a 

fixed { }1, ,i n∈  , we get, 
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1 1 1

1 11

1 1

1 1 1 .

n n n
j j

j
j j ji ij j

n n
j

j
j ji i j

a a
a

a ax a

a
a

C a a a

= = =

= =

 
 = − −
 
 

 
 ≥ − −
 
 

∑ ∑ ∑

∑ ∑

 

where 1 1C ≥ . From this it follows that 

1 1
1 1 1

1 2
1 1

1 2
2

1 1

1 1

1 1 .

n n n
j j

j
j j ji ij j

n
j

j
j i i

n

j
j ij

a a
C C a

a aa a

a
C C a

a a a

C C a
aa

= = =

=

=

 
 ≥ − −
 
 

 
≥ − −  

 

 
 − −
 
 

∑ ∑ ∑

∑

∑

 

where 1, 1,2iC i≥ = . Hence, in order to proof the inequality (7), let us set  

1
n

jjC C
=

=∏ , where 1jC ≥  for all 1 j n≤ ≤ . Thus, from the above inequality it  

follows that 

1 1 1

1 1

1 1

1 .

n n n
j j

j
j j ji ij j

n n

j j i
j ji i

a a
C C a

a aa a

Ca a a
a a

= = =

= =

≥ − −

= − −

∑ ∑ ∑

∑ ∑
 

Thus, from the above inequality we can get 

{ }

1 1 1

1, , 1 1

1 1

1max .

n n n
j j

j i
j j ji ij

n n
j

j ii n j ji

a a
a a

a C aa

a
a a

a C

= = =

∈ = =

≥ − −

   ≥ − −      

∑ ∑ ∑

∑ ∑


 

This completes the proof. 

3. Conclusion 

In this paper we establish a generalisation of the so-called Pecaric-Rajic 
inequality by providing upper and lower bounds for the norm of the linear  

combination 1
n j
j

j

a
a=∑ , where 1, , na a  nonzero elements of X . Further- 

more, we also obtain the corresponding inequalities in a p-Banach space with p- 
norm. We should also indicate that when 1C =  in Theorem 3, the inequalities 
(2) and (3) can be obtained as a particular case of the results established in 
Theorem 3. Thus, we get some more general inequalities. 
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Abstract 
In this article we continue the consideration of geometrical constructions of 
regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the 
construction of the regular heptagon ( 7n = ). We discuss the possible factori-
zation of the cyclotomic polynomial in polynomial factors which contain not 
higher than quadratic radicals in the coefficients whereas usually the factori-
zation of the cyclotomic polynomials is considered in products of irreducible 
factors with integer coefficients. In considering the regular heptagon we find a 
modified variant of its construction by rhombic bicompasses and ruler. In de-
tail, supported by figures, we investigate the case of the regular tridecagon 
( 13n = ) which in addition to 7n =  is the only candidate with low n (the 
next to this is 769n = ) for which such a construction by rhombic bicom-
passes and ruler seems to be possible. Besides the coordinate origin we find 
here two points to fix for the possible application of two bicompasses (or even 
four with the addition of the complex conjugate points to be fixed). With only 
one bicompass one has in addition the problem of the trisection of an angle 
which can be solved by a neusis construction that, however, is not in the spirit 
of constructions by compass and ruler and is difficult to realize during the ac-
tion of bicompasses. As discussed it seems that to finish the construction by 
bicompasses the correlated action of two rhombic bicompasses must be ap-
plied in this case which avoids the disadvantages of the neusis construction. 
Single rhombic bicompasses allow to draw at once two circles around two 
fixed points in such correlated way that the position of one of the rotating 
points on one circle determines the positions of all the other points on the 
second circle in unique way. The known case 17n =  embedded in our me-
thod is discussed in detail. 
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1. Introduction 

From ancient time on it was a problem of serious and of recreational 
mathematics which of the regular n-gons may be constructed by compass and 
ruler (straightedge without marks) and all “simple” constructions were known 
without a proof of the completeness of their possibilities up to the appearance of 
Gauss (in German: Gauß) on the scene at the very beginning of the 19-th 
century. Gauss showed that the basic numbers n for such constructions are the 
prime Fermat numbers ( )22 1, 0,1,2,

l

lF l= + =   with the long known cases 
corresponding to 0 3n F= =  and 1 5n F= =  and with the first unknown and 
surprising case at this time 

22
2 2 1 17n F= = + =  (e.g., [2]-[13] and the more 

popular articles of Gardner [14] [15]). This results from the solution of the 
cyclotomic equations for these cases. A little later the general theory was 
developed for the solvability of polynomial equations with integer or rational 
coefficients in radicals (now called Galois theory) to which the cyclotomic 
equation is a special case. Some prehistory to this connected with names such as 
Lagrange, Ruffini and Abel is told by Stewart [5] (chap. 8). The construction by 
compass and ruler requires not higher than quadratic radicals. In [1] it was 
shown that the regular heptagon ( 7n = ) can be constructed by rhombic 
bicompasses and ruler. The rhombic bicompasses are two correlated compasses 
with, at least, 3 connected arms of equal length which can be fixed in two 
different points and which allow then the motion of the arms in two correlated 
circles around the fixed points with one degree of freedom. The addition of 
such bicompasses as device for geometric constructions is, in our persuasion, 
certainly in the spirit of the ancient geometers and extends our possibilities for 
constructions. Exact constructions with rhombic bicompasses are possible   
if the fixed points are determined by not higher than quadratic radicals  
(nested square roots) and, therefore, are constructible by compass and ruler. 
To apply rhombic bicompasses and ruler for the construction of regular n- 

gons it is necessary that the cyclotomic polynomials 1
1

nz
z
−
−

 can be factorized  

into products of polynomial equations of 3-rd degree with not higher than 
quadratic radicals in their coefficients. In Sections 3, 9 and 11 we suggest 
arguments that this restricts the possible applications for odd n to prime 
numbers n equal to 23 2 1

l

ln G= = ⋅ +  in analogy to the Fermat numbers lF  
that means to 7n =  for 0l =  and next to 13n =  for 1l =  and discuss these 
cases in detail. 

In present article we investigate the factorizations of the cyclotomic 
polynomials for low odd n (up to 19n = ) in polynomial factors of 3-cycles 
(polynomial equations of 3-rd degree with 3 involved roots) which contain not 
higher than quadratic radicals in the coefficients and explain how this can be 
obtained in explicit form. We also give in explicit form for low n the factori- 
zation with only quadratic radicals in the coefficients but with other than 3- 
cycles and determine some general rules for this. For odd order  
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( )2 1, 1,2,n m m= + =   in a first step the factorization of the cyclotomic 
polynomial in a product of two polynomials of m-th degree with not higher than 
quadratic radicals in the coefficients is generally possible. Concerning the 
regular heptagon ( 7n = ) we add a further modification of its construction by 
rhombic bicompasses and ruler and we discuss in detail the interesting case 

13n =  where some problems remain open. For the well-known case 17n =  we 
find in fully explicit form the factorization of the cyclotomic polynomial in 8- 4- 
and 2-cycles with nested quadratic radicals in the coefficients. For odd and even 
n we express the the polynomials for the determination of the Cosines of the 
angles of the circle-division problem by Chebyshev polynomials of first and 
second kind and derive more information about this in an appendix. 

The cyclotomic polynomials ( )np z  for the complex corner points of a 
regular n-gon to circumradius 1r =  at the coordinate origin as it is well known 
are 

( ) ( ) ( )( )*1, i , , i , .n
np z z z x y x y z x y x y= − ≡ + ≡ ≡ − ≡ −      (1.1) 

The n complex solutions ( )2πexp i , 0,1, 2, ,modulokz z k k n
n

 = = = 
 

  of the 

cyclotomic equation 

( )( ) ( )1 2
00 1 1 1 , 1 ,n n n

nz z z z z z z− −= − = − + + + + ≡ =        (1.2) 

solve the problem of the circle division into n equal sectors and determine the 
corner points 

( )( )

1 *

1

2πexp i , ,

, 0,1, 2, , mod ,

k k k

k l
k l k l

z k z z
n

z z z z k n

−

+
+

 ≡ = 
 

= = = 

       (1.3) 

of the regular n-gon in the complex plane. 
In the following we describe the procedure to obtain factorizations of the 

cyclotomic equation with not higher than quadratic radicals in the coefficients 
and give the explicit results for odd n up to 19n = . In particular, we discuss in 
detail the cases 7n =  and 13n =  which possess a relation to the application 
of bicompasses and ruler. In the case 17n =  which we also discuss in some 
detail we demonstrate how our method acts in a case known since Gauss. The 
results for all corner points of the regular 17-gon are given in an explicit form 
(see and compare also [9] [11] [12]). 

2. The Cosine of the Angles for the Cyclotomic Polynomials 
in Odd Case n m2 1= +  

We consider in this Section the case of the Cosine of the angles for the odd case 
( )2 1, 1,2,n m m= + =   of the regular n-gon and introduce the Cosine of angles 

for z on the unit circle by 

( )
1 *

cos .
2 2

z z z zx θ
−+ +

= = ≡                 (2.1) 

https://doi.org/10.4236/apm.2017.79032


A. Wünsche 
 

 

DOI: 10.4236/apm.2017.79032 475 Advances in Pure Mathematics 
 

The cyclotomic polynomials ( )2 1mp z+  can be transformed to 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

2 1
0

1 1 1

1
1

( )
1 2 cos 1 2 T cos

1

1 2 T U U ,

m m m
k km

km
k k k

m

k m m
k

p z
z z z k

z z

x x x

θ θ−+

= = =

−
=

= + + = + = +
−

= + = +

∑ ∑ ∑

∑
 (2.2) 

where ( )Tn x  are the Chebyshev polynomials of first kind and ( )Un x  the 
Chebyshev polynomials of second kind (e.g., [16] [17] [18]). The well-known 
property of the Chebyshev polynomials 

( )( ) ( ) ( )( ) ( )( )
( )

sin 1
T cos cos , U cos ,

sinn n

n
n

θ
θ θ θ

θ
+

= =      (2.3) 

is used. The relation between ( )Un x  and ( )Tn x  in the second line of (2.2) 
together with many other relations for the Chebyshev polynomials may be 
proved by complete induction using the addition theorems for the trigonometric 
functions. 

For a few first polynomials ( ) ( )1U Um mx x−+  concerning the odd regular 
n-gons ( 2 1n m= + ) one finds explicitly together with possible factorizations 
with integer or rational coefficients (i.e. in   or  ) in case of prime or 
composite n: 

One peculiarity is that the polynomials ( ) ( )1U Um mx x−+  take on their sim- 
plest form with lowest integer coefficients by the substitution 2x u=  (similarly 
to the polynomials ( )Um x  themselves; but not ( )Tn x ). These polynomials 
possess factorizations with integer coefficients for composite numbers 

2 1n m= + . The polynomials ( ) ( )1U Un nz z−+  are sometimes denoted by 
( )Vn z  (see Appendix A). 

The Cosines ( )1
2πcos cosk k
n

θ  =  
 

 of the angles 1kθ  are obtained from the  

solutions ( )cosx θ=  of the equation 

Table 1. Cyclotomic polynomials for odd n and variable ( )cos
2
ux θ= ≡  and integer 

factorization. 

( )

( )( )

( )( )( )

1

2

3 2

4 3 2

3

5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

2 4 3 2

8 7

U U ; 2 2cos
2 2

1 0 1
3 1 1
5 2 1
7 3 2 1
9 4 3 2 1

1 3 1

11 5 4 3 3 1
13 6 5 4 6 3 1
15 7 6 5 10 6 4 1

1 1 4 4 1

17 8

m m

u un m u x

u
u u
u u u
u u u u

u u u

u u u u u
u u u u u u
u u u u u u u

u u u u u u u

u u

θ−

   + ≡ =   
   

+
+ −
+ − −
+ − − +
= + − +

+ − − + +
+ − − + + −
+ − − + + − −
= + + − − − + +

+ − 6 5 4 3 2

9 8 7 6 5 4 3 2

7 6 15 10 10 4 1
19 9 8 7 21 15 20 10 5 1

u u u u u u
u u u u u u u u u

− + + − − +
+ − − + + − − + +

         (2.4) 
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( )
( ) ( ) ( ) ( )

*
2 1

1U U 0, cos ,
21

m
m mm

p z z zx x x
z z

θ+
−

 +
= + = ≡ ≡ −  

 (2.5) 

with exclusion of the solution 0 0 1z x= = . From the geometrical meaning of the 
polynomials as providing the doubled Cosines of the angle division problem as 
roots for odd 2 1n m= +  within the unit circle it is fully obvious that all roots of 
all polynomials in (2.4) possess only m real solutions within the limits 

1 2 1x u− ≤ = ≤ . 
Without further going into details we mention that in case of even numbers 

2 2n m= +  the cyclotomic polynomials for the Cosines of the angles kθ  can 
be represented in the form (we use ( ) ( )T Tk kx x− = ) 

( )
( ) ( )( )

( )( ) ( ) ( ) ( )

2 2
2 2 2
2

0 0 0

*

2 2
0 0

cos 2
21

T cos T U , cos .
2

m l l mm m m
m m l

m
l l l

m m

m l m l m
l l

p z z zz m l
z z

z zx x x

θ

θ θ

− −
+ −

= = =

− −
= =

+
= = = −

−

 +
= = = ≡ ≡ 

 

∑ ∑ ∑

∑ ∑
 (2.6) 

The vanishing of these polynomials provides as solutions the possible Cosines 
of the angles to the corners of the n-gons with even 2 2n m= +  with exclusion 
of the already eliminated Cosines 0 11, 1mx x += = − . 

We mention here that as (irreducible) cyclotomic polynomials ( )n zΦ  are 
mostly understood the polynomials ( ) 1n

np z z= −  divided by all products of 
(irreducible) polynomials ( )d zΦ  where d n<  runs over all divisors of n (i.e., 
irreducible in the sense of coefficients in   or in   but likely here already in 
 ) (e.g., van der Waerden [3], Stillwell [7], Shkolnik [11] (p. 40)). They are for 

2n ≥  palindromic polynomials (only ( )1 1z zΦ = −  is not palindromic) with 
real coefficients1. General explicit formulae for the polynomials ( )n zΦ  seem to 
be possible for different divisibility classes and for prime n p=  it is  

( ) ( ) 1
01

pn k
n k

p z
z z

z
−

=
Φ = =

− ∑  that means they are then of degree 1p − . Stillwell [7]  

(p. 70) mentions as a curious property of the polynomials ( )n zΦ  that the first 
polynomial ( )n zΦ  with coefficients of modulus 2 besides 1 (and 0) is ( )105 zΦ  
of degree 48 whereas all polynomials ( )n zΦ  with 105n <  possess coefficients 
only of modulus 1 or equal to 02. 

In connection with constructions by rhombic bicompasses and ruler we are  

mainly interested in factorizations of the polynomials ( )
1

np z
z −

 with not higher  

than (in general, nested) quadratic radicals in the coefficients. A general explicit 

 

 

1By definition, a polynomial ( ) 0

m k
m kk

P z a z
=

= ∑  is palindromic if for all coefficients holds k m ka a −= . 
2With a PC and program Mathematica one may astonishingly easily and quickly calculate the poly-
nomials ( )n zΦ  for “high” n in explicit form by factorization of ( ) 1n

np z z= − . It seems that such 

polynomials with coefficients of modulus 1≠  preferably appear if the composite numbers n are 
products of primes 3, 5, 7, 11, ... (e.g, 105 3 5 7n = = × × ) but not for all such products (not besides 
for 105n < , e.g., for 231n =  but for, e.g., 165,195,385n = ). For 1155 3 5 7 11n = = × × ×  the 

polynomial ( )1155 zΦ  contains a lot of coefficients of modulus 1, 2, 3 or equal to 0 and is of degree 
480. 
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formula for the factorized polynomials could not be obtained but a procedure 
will be described how such factorization in given cases leads to the result. 

3. Cycles in the Circle-Division Problem 

We explain in this Section the factorization of the cyclotomic equation for odd 
2 1n m= +  and concentrate us to the case n p=  where p is a prime number  

larger than 2p = . A solution 
2πexp ikz k
n

 =  
 

 of the cyclotomic equation  

1 0nz − =  is called a primitive root if there does not exist a positive integer  

m n<  for which 1m
kz = . It is clear that in each case 1

2πexp iz
n

 =  
 

 is a  

primitive root and that for prime numbers n p=  all solutions kz  with 
( )1,2, , 1, modk n n= −  are primitive roots (only 0 1z =  is never primitive).  

For prime n p=  the cyclotomic polynomial in the form ( )
1

np z
z −

 cannot be  

factorized into polynomials with integer coefficients. It is said that it is 
irreducible in   and therefore also in   with coefficient of the highest 
power equal to 1. Obviously, this does not mean that it is not factorizable into 
polynomials with radicals in the coefficient from which such are interesting for 
us which contain not higher than quadratic radicals since such radicals are 
constructible by compass and ruler. To obtain such factorizations one may apply 
a procedure using the little theorem of Fermat. We explain this in the following. 

According to the little theorem of Fermat (e.g., [3] [8] [9]) for prime numbers 
p and natural numbers ( )1,2, , modg p=   holds (symbol ≡ stands here for 
congruences modulo p) 

( )1 1, mod .pg p− ≡                       (3.1) 

This means that for prime numbers n p=  and for the primitive root 1z  we 
have 

1 1 1

11 1 1 1, .
n n n

n
g g kg k

k kg
z z z z z z z

− − −

−= = ⇒ = = =            (3.2) 

We choose positive integers 1,2, , 1g n= −  and form first with the solution  

1z  the sequences ( )0 1 2

0 1 21 1 1 1 1, , , ,
l

l
g g g g

g g g g
z z z z z z z z z= = = = =  up to the case 

when ( )1

11 1, mod
l

l
g

g
z z z n

+

+= = . Each such sequence we call a cycle. The 

sequence ( )1 2 11, , , , ng g g
z z z z − , latest after the next step to ng

z , leads back to the  

initial solution 1z . If l  is a divisor of 1 2n m− =  then, depending on the 
choice of g, the mentioned sequence may lead back to 1z  already after 1l +  
steps. For odd prime 2 1n m= +  the numbers 1 2, 2l l m= =  and 2l m=  are 
divisors of 1 2n m− =  and there are sequences with cycle lengths 2 belonging to 
the choice 2g m=  and such with cycle lengths m  and 2m . If one does not 
begin with the element 1z  in a cycle but with another element of this cycle then 
one obtains by the described procedure the same cycle with rotated order of the 
elements. If a root kz  is not contained in a certain cycle then we form the  
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sequences ( )0 1 2

0 2, , , ,
l

l
g g g g
k k k kg k kkg kg kg

z z z z z z z z z= = = = =  and obtain for  

prime n an equivalent cycle of the same length and so we may continue up to the 
case when all numbers 0kz z≠ , ( mod n  are comprised. 

We illustrate the factorization in cycles for our two most interesting prime 
cases 7n =  and 13: 

1. Case 7n = , basic cycles (all equalities are modulo 7 in the indices) 

( )1 1 11: , ,g z z z= =  

( )1 2 4 8 12 : , , , ,g z z z z z= =  

( )1 3 9 2 6 18 4 12 5 15 13 : , , , , , , ,g z z z z z z z z z z z= = = = =  

( )1 4 16 2 8 14 : , , , ,g z z z z z z= = =  

( )1 5 25 4 20 6 30 2 10 3 15 15 : , , , , , , ,g z z z z z z z z z z z z= = = = = =  

( )1 6 36 16 : , , .g z z z z= =                     (3.3) 

For 3g =  and 5g =  the sequences are 6-cycles which comprise all 1n −  
solutions 0 1kz z≠ =  in different order of the elements. For 2g =  and 4g =  
we find equivalent 3-cycles in different order of the elements ( )1 2 4, ,z z z  which 
can be complemented by the 3-cycle ( )3 6 5 12, ,z z z z=  to comprise all elements 

0kz z≠ . For 1 6g n= − =  we find the 2-cycle ( )1 6,z z  which can be 
complemented by the other possible 2-cycles ( )2 5,z z  and ( )3 4,z z  for which 
one does not find a factorization in polynomials of 2-nd degree with only 
quadratic radicals in the coefficients. In the trivial case 1g =  one finds in every 
case only the 1-cycle with element ( )1z  which can be complemented by 
1-cycles ( )kz  of the other roots. 

2. Case 13n = , basic cycles (all equalities are modulo 13 in the indices) 

( )1 1 11: , ,g z z z= =  

( )
1 2 4 8 16 3 6 12 24 11 22 9

18 5 10 20 7 14 1

2 : , , , , , , , , ,
, , , ,

g z z z z z z z z z z z z
z z z z z z z

= = = =

= = =
 

( )1 3 9 27 13 : , , , ,g z z z z z= =  

( )1 4 16 3 12 48 9 36 10 40 14 : , , , , , , ,g z z z z z z z z z z z= = = = =  

( )1 5 25 12 60 8 40 15 : , , , , ,g z z z z z z z z= = = =  

( )
1 6 36 10 60 8 48 9 54 2 12 72 7

42 3 18 5 30 4 24 11 66 1

6 : , , , , , , , ,
, , , , ,

g z z z z z z z z z z z z z
z z z z z z z z z z

= = = = = =

= = = = =
 

( )
1 7 49 10 70 5 35 9 63 11 77 12 84 6

42 3 21 8 56 4 28 2 14 1

7 : , , , , , , , ,
, , , , ,

g z z z z z z z z z z z z z z
z z z z z z z z z z

= = = = = = =

= = = = =
 

( )1 8 64 12 96 5 40 18 : , , , , ,g z z z z z z z z= = = =  

( )1 9 81 3 27 19 : , , , ,g z z z z z z= = =  

( )1 10 100 9 90 12 120 3 30 4 40 110 : , , , , , , ,g z z z z z z z z z z z z= = = = = =  

https://doi.org/10.4236/apm.2017.79032


A. Wünsche 
 

 

DOI: 10.4236/apm.2017.79032 479 Advances in Pure Mathematics 
 

( )
1 11 121 4 44 5 55 3 33 7 77 12 132 2

22 9 99 8 88 10 110 6 66 1

11: , , , , , , , ,
, , , , ,

g z z z z z z z z z z z z z z
z z z z z z z z z z

= = = = = = =

= = = = =
 

( )1 12 144 112 : , , .g z z z z= =                   (3.4) 

We have here cycles of lengths 1,2,3,4,6,12  which all are divisors of 
1 2 12n m− = = . For example, we find the following four 3-cycles  

( ) ( ){ } ( ) ( ){ }1 3 9 4 10 12 2 5 6 7 8 11, , , , , , , , , , ,z z z z z z z z z z z z  covering all primitive roots 
where the two pairs of 3-cycles in braces form two 6-cycles. The 3-cycles follow 
from the subdivision of the 12-cycles in two step by division of 2 leading first to 
two 6-cycles and then in last step by division of 2 to four 3-cycles. The 
subdivision of the cyclotomic equation of 12-th degree in a product of six 2- 
cycles with quadratic equations containing 6 paired roots 

( )( )*
13, , 1, 2, ,6k k k kz z z z k− −= ≡ =   does not lead to the explicit form of the 

quadratic equations since the resolution of the 12-degree cyclotomic polynomial 
in one step by division of 3 is not possible with coefficients in form of quadratic 
radicals independently from the order in which the division by 3 is made, from 
12 4 2→ →  or 12 6 2→ → . Therefore the three 4-cycles 
( ) ( ) ( )1 5 8 12 2 3 10 11 4 6 7 9, , , , , , , , , , ,z z z z z z z z z z z z  obtained from choice 5g =  and 

8g =  are also not to find in form of polynomial equations with only quadratic 
radicals as coefficient. Each of these three 4-cycles contains only one of the roots 
of the four 3-cycles. 

If we look to the cycles in (3.3) and (3.4) we find in case of 1g ≠  for the sum 
of the powers of g within the cycle 

( )
1

0

1 , mod , 1 .
1

ll
j

j

gg n n g
g

+

=

−
= ≡ ≠

−∑              (3.5) 

This is a general property which we will prove now. According to the 
definition of a cycle of length l  the power lg  is the last in the cycle before the 
next power 1lg +  leads back the root 1z  to 1 1lg

z z+ =  and 1lg +  is congruent to 
1 modulo n. Since the sum on the left-hand side in (3.5) is a positive integer and 

1 0g − ≠  is also a positive integer the right-hand side in (3.5) is a positive 
integer and due to the given congruence a multiple of n. From this follows for 
the product of roots within a cycle with the primitive root 1z  

1

0
2 1

1
1

1 1 1 01
0 1

1.
l lj

j
j l l

ggl
g

gg g g g
j g

z z z z z z z z z
+

=
+

−
−

−
= −

∑
= = = = = =∏           (3.6) 

The same is the case with each cycle of the length l  containing an arbitrary 
primitive root kz . A consequence is that we know at once the constant term in 
the factorized cyclotomic polynomials that is of importance when we begin from 
behind (low-order k-terms proportional to kz ) to find the factor polynomials in 
factorizations. 

The question about the cyclotomic polynomials ( )2 1

1
mp z
z
+

−
 of degree 2m   

https://doi.org/10.4236/apm.2017.79032


A. Wünsche   
 

 

DOI: 10.4236/apm.2017.79032 480 Advances in Pure Mathematics 
 

Table 2. Fermat numbers lF  and related numbers lG  and factorization into prime 
numbers. 

2

2

2 2

0 1 2 3 4 5

2 1 3 5 17 257 65537 4294967297
641 6700417

3 2 1 7 13 49 769 196609 12884901889
7 7 28087 19 35692249

l

l

l

l

l

F
prime factors

G
prime factors

≡ +
⋅

≡ ⋅ +
⋅ ⋅

    (3.7) 

 
which can be split into products of polynomials of 3-rd degree (3-cycles) leads 
basically, analogously to Fermat numbers 22 1

l

lF = + , to numbers  
23 2 1

l

lG = ⋅ +  which have to be prime numbers. Table 2 shows the few initial 
possibilities up to 5l = . 

For the next three cases 6,7,8l =  the numbers lF  and lG  are composite 
numbers as the computer shows but these numbers grow very fast and my PC 
(with program “Mathematica 10”) did not provide a result for the next case 

9l =  of both numbers in acceptable time. However, it is now known that all 
numbers lF  from 9l =  up to 19l =  are composite without knowing all 
prime factors in all these cases (see [9], end of chap. 5). Since the number 

2 49G =  is composite it is not a possible candidate for construction of the 
regular 49-gon by rhombic bicompasses and ruler. 

We mention here that if one admits angle trisection by a neusis construction 
attributed to Archimedes [2] [9] as an additional element of constructions which 
in our persuasion is not in the spirit of ancient constructions by compass and 
ruler then one comes to possible numbers for the solubility of the circle division 
problem of the form ( ), 2 3 1, , 0,1, 2,k l

k lP k l= + = 
 if they are prime numbers 

and which are called Pierpont numbers (from 1895, see [19] [20]). These 
numbers are more general ones than the Fermat numbers lF  and also than the 
numbers lG  in Table 2 (see also end of Section 11). 

4. Factorization of Cyclotomic Polynomial for n = 3 with Real 
Coefficients 

In case of 3n =  the cyclotomic polynomial ( )3

1
p z
z −

 can be represented 

( )( )
3

2
1 2

1 1 i 3 1 i 31 .
1 2 2

z z z z z z z z z
z

  − − +
= + + = + + = − −    −   

  (4.1) 

It is written down here for the analogy to higher less trivial cases. 

5. Factorization of Cyclotomic Polynomial for n = 5 with 
Quadratic Radicals 

In case of 5n =  the cyclotomic polynomial ( )5

1
p z
z −

 possesses the factorization  

with two 2-cycles which has the form 
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( )( )( ) ( )( )( )

5
4 3 2

2 2

1 4 2 3

1 1
1

1 5 1 51 1
2 2

.

z z z z z
z

z z z z

z z z z z z z z

−
= + + + +

−
  − +

= + + + +    
  

= − − − −

          (5.1) 

The complex conjugate roots ( )1 4,z z  and ( )2 3,z z  modulo 5 are here paired 
in one of the two 2-cycles and therefore the coefficients in form of quadratic 
radicals possess real values. The case of the regular pentagon is also commonly 
known and we do not consider it in detail. 

6. Factorization of Cyclotomic Polynomial for n = 7 with 
Quadratic Radicals 

In case of 7n =  the cyclotomic polynomial ( )7

1
p z
z −

 possesses the following  

factorization with two 3-cycles with only quadratic radicals in the coefficients 

( )( )( )( ) ( )( )( )( )

7
6 5 4 3 2

3 2 3 2

1 2 4 3 5 6

1 1
1

1 i 7 1 i 7 1 i 7 1 i 71 1
2 2 2 2

.

z z z z z z z
z

z z z z z z

z z z z z z z z z z z z

−
= + + + + + +

−
  − + + −

= + − − + − −    
  

= − − − − − −

 (6.1) 

The factorization in this case with only quadratic radicals in the coefficients 
and concerning the corners of the regular heptagon was discussed in [1]. It is 
easy to determine this factorization with quadratic radicals in the coefficients  

from 1 2 4
1 i
2

z z z y+ + = − +  and * * *
6 5 3 1 2 4

1 i
2

z z z z z z y+ + = + + = − −  with imagi- 

nary party to find from the polynomial using 6
1 1kk z
=

= −∑  and 1 2 4
1 2 4 1 1z z z z + += = . 

The “primitive” roots ( ), 1, ,6kz k =   of the polynomials (6.1) form two 
3-cycles ( )1 2 4, ,z z z  and ( )6 12 5 24 10 3, ,z z z z z z= = =  modulo 7 in the indices. 
The quadratic radical for the sum 1 2 4z z z+ +  together with the circle division 
in 7 equal parts is shown in Figure 1. 

In Figure 2 we illustrate possibilities for the construction of the regular 
heptagon by bicompasses and ruler and draw additionally a circle with radius 

2 2r =  around the coordinate origin ( )0,0  which is equal to the distance  

from the coordinate origin to the fixed point 1 7,
2 2

 
−  
 

 of the bicompasses.  

This circle possesses intersection points with the circle of radius 1 1r =  around 

the mentioned second fixpoint 
1 i 7

2
− +

 at 1 2 4
1 i 7 1

2
z z z z+
= = + + +  and at 

5 i 7
4

z − +
=  in the complex plane as one easily calculates. In this way we see 

that the intersection point 
1 i 7

2
+

 lies on the second arm of the absolute mini- 
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Figure 1. Regular heptagon with axes projection of corners in complex z-plane. Besides 
the coordinate origin 0z =  the second fixed point for the rhombic bicompasses is 

1 i 7
2

z − +
=  (figure from [1] made by “Mathematica 6”). 

 
mum 3-arm bicompasses (see [1]) in the right position for the construction of 
the regular heptagon that means on the line between 1z  and 1 2z z+ . Clearly, 
one has not only to believe to the optical impression but have to prove it. 

The line between 1z  and 1 2z z+  can be parameterized by 

( )*
1 2 , 0 1, ,z z rz r r r= + ≤ ≤ =                 (6.2) 

with real parameter r. For the parameter value 2 4

2

1 z zr
z

+ +
=  (numerically  

0.554958r ≈ ) one finds that the value z on the line between 1z  and 1 2z z+   

coincides with the point 
1 i 7

2
+

 according to 

1 * *2 4
2 2 2 2

2

1 1 1 ,z zr z z z z r
z

−+ +
= = + + = + + =  

2 4
1 2 1 2 4

2

1 1 i 71 .
2

z zz z z z z z
z

+ + +
⇒ = + = + + + =          (6.3) 

Thus we have to bring the second arm of the absolute minimum 3-arm  

bicompasses in the position that it intersects the point 1 7,
2 2

 
  
 

 which last can  
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be constructed by the intersection of the two mentioned circles and an 
alternative method of construction of the regular heptagon is described. 

In addition, Figure 2 shows that the point 
1 i 7

2
z +
=  lies also on the  

prolongation of the line between 2 4z z+  and 2z . This line can be para- 
meterized with real parameter s by 

( )*
2 4 , 0 1, .z z sz s s s= + ≤ ≤ =               (6.4) 

For the parameter value 1 4

4

1 z zs
z

+ +
=  (numerically 0.801938s ≈ − ) one  

finds that the value z on the prolongation of the line between 2 4z z+  and 2z   
 

 
Figure 2. Regular heptagon and construction with rhombic bicompasses and ruler in 
complex z-plane. Additionally to the fixed points for the bicompasses and corresponding 
circles of radius 1 1r =  we have drawn a circle around the coordinate origin with radius 

2 2r =  and obtain in this way a modified construction by absolute minimum 
bicompasses with 3 arms (figure made as all following figures by “Mathematica 10”). 
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coincides with the point 
1 i 7

2
+

 according to 

1 * *1 4
4 4 4 4

4

1 1 1 ,z zs z z z z s
z

−+ +
= = + + = + + =  

1 4
2 4 1 2 4

4

1 1 i 71 ,
2

z zz z z z z z
z

+ + +
⇒ = + = + + + =          (6.5) 

that affirms the mentioned intersection. 
In [1] it was already shown that the point 1z = −  lies on the line between 4z  

and 2 4z z+  which can be parameterized by 

( )*
4 2 , 0 1, ,z z tz t t t= + ≤ ≤ =                 (6.6) 

with real parameter t. With the parameter value 4

2

1 zt
z
+

= −  (numerically 

0.445042t = ) follows 

( )* *4
2 2

2

1 ,zt z z t
z
+

= − = − + =  

4
4 2 4 4

2

1 1 1,zz z z z z
z
+

⇒ = − = − − = −               (6.7) 

that proves the statement. This, alternatively, can be also used for the con- 
struction of the regular heptagon by rhombic bicompasses and ruler. We 
mention that the parameters with the notation r and t are essentially the same 
since 1r t+ = . 

The equation for the Cosines ( )* 2 2cosu z z x θ= + = =  (equation for 7n =  
in Table 1, Equation (2.4)) 

3 2
3 2U U 2 1 0,

2 2
u u u u u   + = + − − =   

   
             (6.8) 

is a 3-rd degree equation which cannot be solved only in quadratic radicals as it 
is known and its solution involves (complex) cubic radicals. Therefore, this does 
not help for the construction by compass and ruler. However, with other means 
of construction (e.g., neusis construction of angle trisection [2] [9] [14] and 
Gleason [13] (angle p-section)) this becomes possible. 

Thus the regular heptagon loses a little its horror as not constructible by 
compass and ruler between the cases of the regular trigon 3n =  and the regular 
octagon 8n =  since it is constructible by bicompasses and ruler. 

7. Factorization of Cyclotomic Polynomial for n = 9 in 
Different Ways 

Since 9n =  is a composite number we find different favorable factorizations of 
the cyclotomic polynomials. As special roots the circular division of the unit 
circle in 9 equal sectors contains the third roots of unity and we have the 
factorization 
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( ){ }

( )( ) ( )( )( )( ) ( )( )( )( ){ }

9
8 7 6 5 4 3 2

2 6 3

3 3

3 6 1 4 7 2 5 8

1 1
1

1 1

1 i 3 1 i 3 1 i 3 1 i 3
2 2 2 2

,

z z z z z z z z z
z

z z z z

z z z z

z z z z z z z z z z z z z z z z

−
= + + + + + + + +

−
= + + + +

      − + − + = + + + +                  

= − − − − − − − −

(7.1) 

where the second factor in braces is of the form of the first factor with the 
substitution 3z z→ . It requires the angle trisections of the angles to the roots  

3
3 1

1 i 3
2

z z − +
= =  and 3 *

6 2 3
1 i 3

2
z z z− −
= = = . This is possible by the neusis  

construction known from ancient time [2] [9] which, however, is not in the 
spirit of constructions by compass and ruler. The last is impossible for almost all  

arbitrary angles including the angle 2π
3

. Therefore, as known, the circle  

division problem in case of 9n =  cannot be solved by compass and ruler since  

the third root of an arbitrary complex number (here of 3,6
1 i 3

2
z − ±

= ) cannot  

be constructed in this way. This can be also seen from the equation of Table 1  

(Equation (2.4)) for the doubled Cosines 
2π2cos ,
9ku k =  

 
 ( )1, 2, ,8k =   as  

the solutions of the following polynomial equation in factorized form 

( )( )3
4 3U U 1 3 1 0.

2 2
u u u u u   + = + − + =   

   
            (7.2) 

From the coefficients of the vanishing cubic polynomial follows 

2π 4π 8π 2π 4π 8π 1cos cos cos 0, cos cos cos ,
9 9 9 9 9 9 8

           + + = = −           
           

 (7.3) 

where the second relation does not provide independent in formation in 
comparison to the first. The cubic equation 3 3 1 0u u− + =  can be solved by 
cubic but not by quadratic radicals alone. 

The ‘standard’ factorization into two polynomials of 4-th degree is 

( ) ( )( )( )( ){ } ( ) ( )( )( )( ){ }

9
4 3 4 3

6 1 4 7 3 2 5 8

1 1 i 3 1 i 3 1 i 3 1 i 31 1
1 2 2 2 2

.

z z z z z z z
z

z z z z z z z z z z z z z z z z

  − − + + −  = + + + + + +  
−     

= − − − − − − − −

 (7.4) 

In the factor polynomials of 4-th degree are contained two 3-cycles ( )1 4 7, ,z z z  
and ( )2 8 32 5, ,z z z z≡  paired with one of the third roots 3z  and 6z  of unity. 
Other genuine than 3- and 6-cycles do not exist in case of 9n =  but it happens 
that the root 0 1z =  appears in the determination of the cycles according to the 
general procedure (it is then no more a cycle) that for prime n is impossible. 

A similar interestingly simple factorization by two polynomials of 4-th degree 
follows directly from (7.1) by the product 
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( ) ( )

( ) ( )( )( )( ){ } ( ) ( )( )( )( ){ }

9
4 3 4 3

3 1 4 7 6 2 5 8

1 1 i 3 1 i 3 1 i 3 1 i 3
1 2 2 2 2

.

z z z z z z z
z

z z z z z z z z z z z z z z z z

  − − + + −  = + + − + + −  
−     

= − − − − − − − −

 (7.5) 

and means the exchange of the factors 3z z−  and 6z z− . It is possible due to 
9n =  as a composite number. 

8. Factorization of Cyclotomic Polynomial for n = 11 with 
Quadratic Radicals 

In case of 11n =  one has only the following factorization by 5-cycles which 
leads to polynomials with quadratic radicals in the coefficients 

( )( )( )( )( )( )
( )( )( )( )( )( )

11
10 9 8 7 6 5 4 3 2

5 4 3 2

5 4 3 2

1 3 4 5 9

2 6 7 8 10

1 1
1

1 i 11 1 i 11 1
2 2

1 i 11 1 i 11 1
2 2

.

z z z z z z z z z z z
z

z z z z z

z z z z z

z z z z z z z z z z

z z z z z z z z z z

−
= + + + + + + + + + +

−
 − +

= + − + − −  
 
 + −
⋅ + − + − −  
 

= − − − − −

⋅ − − − − −

      (8.1) 

The 5-cycle in the first factor is formed by the roots  
( )( )1 3 9 27 5 15 4 12 1, , , , ,z z z z z z z z z= = =  and the second factor by the complex 

conjugate roots ( )( )2 6 18 7 21 10 30 8 24 2, , , , ,z z z z z z z z z z= = = = , all (mod 11). 
The equation for the doubled Cosines ( )* 2 2cosu z z x θ= + = =  (case 

11n =  in Table 1 (Equation (2.4)) as a genuine 5-th order equation without 
special symmetries is not possible to solve in radicals as it is known. 

9. Factorizations of Cyclotomic Polynomial for n = 13 with 
Quadratic Radicals 

The case 13n =  is very interesting due to factorization of the cyclotomic 
equation by polynomials of 3-rd degree with only quadratic radicals in the 
coefficients in 3-cycles. This makes it possible for the application of the rhombic 
bicompasses and ruler for the construction of the regular tridecagon (13-gon). 

The first factorization by two 6-cycles provides two factor polynomials of 6-th 
degree with real coefficients 

( )( )( )( )( )( ){ }
( )( )( )( )( )( ){ }

13 12
6 5 4 3 2

=0

6 5 4 3 2

1 3 4 9 10 12

2 5 6 7 8 11

1 1 13 1 13 1 13= 2 2 1
1 2 2 2

1 13 1 13 1 132 2 1
2 2 2

.

k

k

z z z z z z z z
z

z z z z z z

z z z z z z z z z z z z

z z z z z z z z z z z z

 − − + − = + + − + + + 
−   

 + − + ⋅ + + − + + + 
  

= − − − − − −

⋅ − − − − − −

∑

 (9.1) 
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Each of the two factor polynomials of 6-th degree can be again factorized in 
two polynomials of 3-rd degree with only quadratical radicals in the coefficients 
and the involved zeros we find from the four 3-cycles with the first involving the 
element 1z  explicitly given in (3.4) 

( ) ( )

( ) ( )

( ) ( )

( )

13
3 2

3 2

3 2

3 2

1 13 i 2 13 3 13 1 13 i 2 13 3 131 1
1 4 4

1 13 i 2 13 3 13 1 13 i 2 13 3 13
1

4 4

1 13 i 2 13 3 13 1 13 i 2 13 3 13
1

4 4

1 13 i 2 13 3 13 1 13 i 2 13 3 1

4

z z z z
z

z z z

z z z

z z

 − − − − + −−  = + − − −  
 

 − + − − − −  ⋅ + − −  
 

 
 + − + + + + ⋅ + − − 
 
 

+ + + + − +
⋅ + −

( )

( )( )( )( ) ( )( )( )( ){ }
( )( )( )( ) ( )( )( )( ){ }

1 3 9 4 10 12

2 5 6 7 8 11

3
1

4

.

z

z z z z z z z z z z z z

z z z z z z z z z z z z

 
 −  
 

 

= − − − − − −

⋅ − − − − − −

 (9.2) 

This means that the fixed points of the two rhombic bicompasses besides the 
coordinate origin 0z =  are the following quadratic radicals 1 3 9z z z z= + +  
and 2 5 6z z z z= + +  or their complex conjugates 

( )
* * *

1 3 9 12 10 4

13 1 i 2 13 3 13

4
0.651388 i0.522416,

z z z z z z
− + −

+ + = = + +

≈ +

 

2
1 3 9 1 3 9

5 13 0.697224, 0.835000,
2

z z z z z z−
+ + = ≈ + + ≈  

( )
* * *

2 5 6 11 8 9

13 1 i 2 13 3 13

4
1.15139 i1.72542,

z z z z z z
− − + +

+ + = = + +

≈ − +

 

2
2 5 6 2 5 6

5 13 4.30278, 2.07431.
2

z z z z z z+
+ + = ≈ + + ≈       (9.3) 

Together with the circle division problem the two principally possible fixed 
points (without the complex conjugate ones) for the bicompasses are shown in 
Figure 3. 

The sums and differences of the fixed points are also expressible by only 
quadratic radicals. We find for the sums algebraically and numerically 

( ) ( )1 3 9 2 5 6
1 i 13 2 13 0.5 i2.24784,

2
z z z z z z − + +
+ + + + + = ≈ − +  
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Figure 3. Two variants of rhombic bicompasses in case of a regular 13-gon. The two fixed 
points of the rhombic bicompasses are 0z =  and 1 3 9z z z z= + +  in first picture and 

0z =  and 2 5 6z z z z= + +  in second picture (see text). 
 

( ) ( )1 3 9 2 5 6
13 1 2.30278,

2
z z z z z z +
+ + + + + = ≈  

( ) ( )1 3 9 7 8 11
1 i 13 2 13 0.5 i1.20301,

2
z z z z z z − − −
+ + + + + = ≈ − −  

( ) ( )1 3 9 7 8 11
13 1 1.30278,

2
z z z z z z −
+ + + + + = ≈         (9.4) 

and for the differences 

( ) ( )1 3 9 2 5 6
13 i 13 2 13 1.80278 i1.20301,

2
z z z z z z − −
+ + − + + = ≈ −  

( ) ( )1 3 9 2 5 6
13 13 2.16731,

2
z z z z z z −
+ + − + + = ≈  

( ) ( )1 3 9 7 8 11
13 i 13 2 13 1.80278 i2.24784,

2
z z z z z z + +
+ + − + + = ≈ +  

( ) ( )1 3 9 7 8 11
13 13 2.88145.

2
z z z z z z +
+ + − + + = ≈    (9.5) 

All these numbers and radiuses are constructible by compass and ruler. The 
points ( ), 0 mod 13kz k ≠  alone and combinations of only two such points in 
form of k lz z+  are not constructible by compass and ruler since they contain 
cubic radicals. 

This is illustrated in Figure 4 and Figure 5 where the two additional 
possibilities with the complex conjugate fixed points are obtained by reflection 
of each partial picture at the horizontal line through the coordinate origin. This 
provides 4 possibilities for the common combination of the two rhombic 
bicompasses where two of them are obtained again by reflection on the 
horizontal line through the coordinate origin. The two essentially different ones  
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Figure 4. First of two variants of correlated rhombic bicompasses in case of a regular 
13-gon. 
 
are illustrated in Figure 4 and Figure 5. 

According to Table 1 (Equation (2.4)) the doubled Cosines  

( )2π 2π2cos 2cos 13 ,
13 13

u k k   = = −   
   

 ( )1, 2, ,6k =   are the roots of the 6-th  

degree polynomial equation with 6 real-valued solutions 

6 5 4 3 2
6 5U U 5 4 6 3 1 0.

2 2
u u u u u u u u   + = + − − + + − =   

   
      (9.6) 

The polynomial on the left-hand side of this equation can be factorized in two 
polynomials of 3-rd degree with only quadratic radicals in the coefficients in the 
following way [13] 

6 5 4 3 2

3 2 3 2

5 4 6 3 1

13 1 13 3 13 1 13 3 .
2 2 2 2

u u u u u u

u u u u u u

+ − − + + −

  − − + +
= − − + + − −    
  

  (9.7) 

This corresponds to the following relations for sums of the Cosines  

( )2π 2πcos cos 13
13 13

k k   = −   
   
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Figure 5. Second of two variants of correlated rhombic bicompasses in case of a regular 
13-gon. 
 

2π 6π 8π 13 1cos cos cos ,
13 13 13 4

−     + + =     
     

 

4π 10π 12π 13 1cos cos cos ,
13 13 13 4

+     + + = −     
     

           (9.8) 

and for products of the same Cosines 

2π 6π 8π 13 3cos cos cos ,
13 13 13 16

−      = −     
     

 

4π 10π 12π 13 3cos cos cos .
13 13 13 16

+      =     
     

              (9.9) 

One may obtain these relations from relations (9.3) for the fixed points of the 
rhombic bicompasses. Relations (9.9) do not give additional independent 
information to relations (9.8). This can be seen if one transforms the products 
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in (9.9) into sums using addition theorems for trigonometric functions. The 
same is true for the relations obtainable from the coefficients in front of u in 
(9.7). 

Equation (9.6) together with (9.7) means that the cyclotomic equation for 
13n =  can be exactly solved by not higher than cubic radicals. This, however, is 

not appropriate for the construction by compass and ruler which allows only 
quadratic radicals. The same conclusion can be drawn for the full solutions kz  
of the corner points of the regular 13-gon by setting equal to zero the four 3-rd 
degree polynomials in (9.2) of the factored cyclotomic polynomial (9.1). 

The real construction of the regular 13-gon by rhombic bicompasses and ruler 
seems to be rather complicated. One may distinguish two principal cases: 

1. The use of only one of the two possible bicompasses shown in the two 
pictures in Figure 3. 

2. The use of the two rhombic bicompasses in correlated way in one of the two 
principally different variants as illustrated in Figure 4 and Figure 5. 

The problem in first case is that during the application of the bicompasses, for 
example, to points 1z  and 3z  in first partial picture in Figure 3 one has to 
find the position when the angle between 1z  and 3z  is the doubled angle 
between 0 1z =  and 1z  that is equivalent to solve the trisection of the angle 
between 0z  and 3z . The same problem arises if we use the points 1z  and 9z  
or 3z  and 9z  instead of 1z  and 3z . In principal, an angle trisection can be 
made by a neusis construction attributed as already said to Archimedes [2] [9] 
but it is not in the spirit of construction by compass and ruler and, furthermore, 
it is unclear how it could be combined at the same time with the action of the 
bicompasses. We could not find a possibility also in case if we use in addition to 
one of the bicompasses the corresponding bicompasses with the complex 
conjugate fixed point. 

The second case with correlated bicompasses seems to be, in principal, 
possible. In case of the regular heptagon we found points from the pictures on 
the arms of the bicompasses or on their prolongation which can be expressed by 
not higher than quadratic radicals and proved this property then algebraically. 
In case of the 13-gon we go a similar way but start from an opposite point of 
view. We look for possibilities of points on the lines between corners of bicom- 
passes which can be represented by not higher than quadratic radicals. We 
consider the bicompasses which in the right position determine the corner 
points ( )1 3 9, ,z z z  of the regular 13-gon (see Figure 4). A first possibility is then 
to look on the line between 1z  and 1 6z z+  with 6z  on the other bicompasses 
which can be parameterized with real parameter r by 

( )*
1 6 , .z z rz r r= + =                   (9.10) 

With the choice of a real parameter 3 9 6

6

z z zr
z

λ+ +
=  with real parameter λ   

we find 
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( )* * *3 9 6
3 3

6

, ,
z z zr z z r

z
λ

λ λ λ
+ +

= = + + = =  

( )
3 9 6

1 6 1 3 9 6 6
6

13 1 i 2 13 3 13
,

4
0.

z z z
z z z z z z z z

z
λ

λ λ

λ

− + −+ +
⇒ = + = + + + = +

⇒ =

 (9.11) 

The points 6zλ  with real 0λ ≠  are, in general, and contrary to 1 3 9z z z+ +  
not representable by only quadratic radicals and, therefore, we set 0λ =  in 
(9.11). 

An analogous second possibility to the described one is to look on the line 
between 3z  of the first bicompasses and 3 5z z+  with 5z  of the second 
bicompasses which can be parameterized with real parameter s by 

( )*
3 5 , .z z sz s s= + =                    (9.12) 

Then with the choice of parameter 1 9

5

z zs
z
+

=  we find 

* *1 9
4 4

5

,
z zs z z s

z
+

= = + =  

1 9
3 5 3 1 9

5

.
z zz z z z z z

z
+

⇒ = + = + +                 (9.13) 

A third equivalent possibility is to look on the line between 9z  on the first 
bicompasses and 9 2z z+  with 2z  on the second bicompasses. It can be 
parameterized with real parameter t by 

( )*
9 2 , .z z tz t t= + =                   (9.14) 

With the choice 1 3

2

z zt
z
+

=  we obtain 

* *1 3
1 1

2

,
z zt z z t

z
+

= = + =  

1 3
9 2 9 1 3

2

.
z zz z z z z z

z
+

⇒ = + = + +                 (9.15) 

All three possibilities lead to the fixed point 1 3 9z z z+ +  of the first bicompasses 
expressible by quadratic radical through which or through their prolongations 
the considered parameterized lines have to go. There are also further equivalent 
possibilities to use instead of the constructible points 

1 3 9z z z+ +  and 2 5 6z z z+ +  their sums and differences which we did not 
investigate up to now in detail. 

For the real construction one has to establish a correlation between the two 
bicompasses with fixed points ( )1 3 90, z z z+ +  and ( )2 5 60, z z z+ +  in such a 
way that when one of these bicompasses is in the right position the second at the 
same time has also to be in the right position for the angle division in thirteen 
equal parts. This means that we have to guarantee that the second of the 
bicompasses acts in concerted way with the first. It seems that one can use for 
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such a coupling, for example, that the point 3 9z z+  of the first bicompasses lies 
exactly on the line (arm) between 0z =  and 6z  of the second bicompasses 
(see Figure 4). This is already clear from symmetry and does not need to be 
proved. One has to guarantee that the point equivalent to 3 9z z+  in the right 
position of the bicompasses may glide along the line from 0z =  to 6z  in the 
right position during the action of the two bicompasses. Then the point 2z  of 
the second bicompasses makes a bisection of the angle formed by the points 1z  
and 3z  of the first bicompasses during their action when they arrive the right 
position. To determine this bisection seems to be possible during the action of 
the bicompasses. There are equivalent possibilities to realize the construction by 
the two bicompasses. 

A weak point is the gliding of a point (here 3 9z z+ ) on a line (here between 
0z =  and 6z ) as an admissible action in the spirit of geometric constructions 

from ancient time on. This is somehow problematic and requires more 
discussion in future as we are able to give here at this time. 

There are also some not exact coincidences looking onto the figures one could 
think to be exact coincidences and which in the study of languages would be 
called ‘false friends’. They may be used for approximate constructions of the 
13-gon but it is not our intention to find and discuss them in detail. We mention 
only a few ones which are evident from the figures. The point 12z  lies on the 
circle with radius equal to 1 around the coordinate origin but not at the same 
time on the circle with radius equal to 1 around 1 3 9z z z+ +  that is already 
optically to sense in Figure 4 and Figure 5. The projection of the point 1 3z z+  
onto the real x-axis is not exactly equal to 1 as it seems to be from Figure 4 and 
numerically we find 1 3 1.005993 i1.457432z z+ ≈ +  where the deviation of the 
real part from 1 is widely above the numerical errors of calculation and it is 
nothing more to prove in this case. This is also clear since 1 3z z+  is not 
representable by quadratic radicals. The line from coordinate origin 0 to fixed 
point 2 5 6z z z+ +  does not bisect the angle between 4z  and 5z  as from para- 

meterized line set equal to the bisected angle ( )2 5 6
9πexp i
13

t z z z  + + =  
 

  

with numerically calculated complex (but not real) 0.482028 i0.00757137t = +  
follows. 

10. Factorization of Cyclotomic Polynomial for n = 15 with 
Quadratic Radicals 

According to the composite number 15n =  the cyclotomic equation contains 
the cases of the cyclotomic equations for 1 3n =  and 2 5n =  as factors and 
possesses the form 

( )( )( )
( )( )( ) ( )( )( )( )( )
( )( )( )( )( )( )( )( )( )

15 14
2 4 3 2 8 7 5 4 3

0

5 10 3 6 9 12

1 2 4 7 8 11 13 14

1 1 1 1
1

.

k

k

z z z z z z z z z z z z z z
z

z z z z z z z z z z z z

z z z z z z z z z z z z z z z z

=

−
= = + + + + + + − + − + − +

−

= − − − − − −

⋅ − − − − − − − −

∑

 (10.1) 
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The last factor is the irreducible part of the cyclotomic polynomial ( )np z  
(with coefficients in  ) and is denoted by ( )15 zΦ  can be decomposed in two 
complex conjugate factors according to 

( )

( )( )( )( )( )
( )( )( )( )( )

8 7 5 4 3
15

4 3 2

4 3 2

1 2 4 8

7 11 13 14

1

1 i 15 1 i 152 1
2 2

1 i 15 1 i 152 1
2 2

.

z z z z z z z

z z z z

z z z z

z z z z z z z z

z z z z z z z z

Φ = − + − + − +

 + −
= − − − +  
 
 − +
⋅ − − − +  
 
= − − − −

⋅ − − − −

    (10.2) 

In this factorizations we have two 4-cycles with the zeros ( )1 2 4 8, , ,z z z z  and 
( )14 13 11 7, , ,z z z z  with 1 2 4 8 14 13 11 7 1z z z z z z z z= = . From the given factorizations and 
from other considerations follow some known possibilities to solve the circle 
division problem for 15n =  with compass and ruler and we do not further 
discuss this. 

11. Factorizations of Cyclotomic Polynomial for n = 17 with 
Quadratic Radicals 

The possibility of the solution of the circle division problem in case 17n =  
together with the solution of the general problem from ancient time for which n 
it can be solved at all by compass and ruler was discovered by the young Gauss 
and is represented in numerous books (e.g., [7] [9] [11] and others). The 
representation here of this known case illustrates our approach and facilitates its 
understanding in the unknown cases, in particular for 13n = . 

A first factorization of the cyclotomic polynomial which is palindromic in two 
palindromic polynomial factors with quadratic radicals in the coefficients is 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
( )( )( )( )( )( )( )( ){ }
( )( )( )( )( )( )( )( ){ }

17 16

0

8 7 6 2

5 3 4

8 7 6 2

5 3 4

1 2 4 8 9 13 15 16

3 5 6 7 10 11 12 14

1
1

1 17 5 171
2 2

7 17 2 17
2

1 17 5 171
2 2

7 17 2 17
2

.

k

k

z z
z

z z z z z

z z z

z z z z z

z z z

z z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z z z

=

−
=

−

 − −= + + + + +


− + + + − 


 + +⋅ + + + + +


+ + + + + 


= − − − − − − − −

⋅ − − − − − − − −

∑

(11.1) 

The first factor, for example, involves the zeros  
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1 2 4 8 16 32 15 64 30 13, , , , , , modulo17z z z z z z z z z z≡ ≡ ≡ . The two palindromic factor 
polynomials of 8-th degree can be decomposed each in the product of two 
polynomials of 4-th degree which are also palindromic in the following way: 
first factor 

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )( )( )( )( ) ( )( )( )( )( )

8 7 6 2 5 3 4

4 3 2

4 3 2

1 4 13 16 2 8 9 15

1 17 5 17 7 171 2 17
2 2 2

1 17 2 17 17 7 17 2 17 17
1

4 4

1 17 2 17 17 7 17 2 17 17
1

4 4

,

z z z z z z z z

z z z z

z z z z

z z z z z z z z z z z z z z z z

− − −
+ + + + + + + + −

 − − − − + + = + + + + 
 
 
 − + − − − + ⋅ + + + + 
 
 

= − − − − − − − −

 (11.2) 

second factor 

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )( )( )( )( ) ( )( )( )( )( )

8 7 6 2 5 3 4

4 3 2

4 3 2

3 5 12 14 6 7 10 11

1 17 5 17 7 171 2 17
2 2 2

1 17 2 17 17 7 17 2 17 17
1

4 4

1 17 2 17 17 7 17 2 17 17
1

4 4

.

z z z z z z z z

z z z z

z z z z

z z z z z z z z z z z z z z z z

+ + +
+ + + + + + + + +

 + − + + − − = + + + + 
 
 
 + + + + + − ⋅ + + + + 
 
 

= − − − − − − − −

 (11.3) 

In the factorization we have a product of 4 palindromic polynomials of 4-th 
degree each of which can be decomposed again in a product of 2 palindromic 
polynomials of now 2-nd degree with only quadratic radicals in the coefficients 
according to the general formula3 

2
4 3 2 2

2
2

4 81 1
2

4 8 1 .
2

a a bz az bz az z z

a a bz z

 + − +
 + + + + = + +
 
 
 − − +
 ⋅ + +
 
 

       (11.4) 

This provides the further splitting in products of pairs of two palindromic 
polynomials of 2-nd degree as follows: 
first factor 

 

 

3A palindromic polynomial of 8-th degree cannot be decomposed, in general, in a product of 2 pa-
lindromic polynomials of 4-th degree with not higher than quadratic radicals in the coefficients such 
as in formulae (11.2) and (11.3) and this is only possible under certain restrictions to the coefficients 
of the 8-th degree palindromic polynomial. There are, however, also some interesting relatives to pa-
lindromic polynomials of n-th degree without special names. These are, in particular, polynomials 
where the coefficients in front of n kz −  are equal to ( )1 k

±  to that of kz  or where they are com-

plex conjugate to the coefficients in front of kz  with possible additional factors ( )1 k
± . 
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( )( )( )( ) ( )( )( ) ( )( )( )

( ) ( )

( ) ( )

1 4 13 16 1 16 4 13

2

2

1 17 2 17 17 2 17 3 17 2 85 19 17
1

8

1 17 2 17 17 2 17 3 17 2 85 19 17
1 ,

8

z z z z z z z z z z z z z z z z

z z

z z

− − − − = − − − −

 
− − − − + − + 

= + + 
  
 
 

− − − + + − + 
⋅ + + 
  
 

 (11.5) 

second factor 

( )( )( )( ) ( )( )( ) ( )( )( )

( ) ( )

( ) ( )

2 8 9 15 2 15 8 9

2

2

1 17 2 17 17 2 17 3 17 2 85 19 17
1

8

1 17 2 17 17 2 17 3 17 2 85 19 17
1 ,

8

z z z z z z z z z z z z z z z z

z z

z z

− − − − = − − − −

 
− + − − + + + 

= + + 
  
 
 

− + − + + + + 
⋅ + + 
  
 

 (11.6) 

third factor 

( )( )( )( ) ( )( )( ) ( )( )( )

( ) ( )

( ) ( )

3 5 12 14 3 14 5 12

2

2

1 17 2 17 17 2 17 3 17 2 85 19 17
1

8

1 17 2 17 17 2 17 3 17 2 85 19 17
1 ,

8

z z z z z z z z z z z z z z z z

z z

z z

− − − − = − − − −

 
+ − + − − + − 

= + + 
  
 

 
+ − + + − + − 

⋅ + + 
  
 

 (11.7) 

fourth factor 

( )( )( )( ) ( )( )( ) ( )( )( )

( ) ( )

( ) ( )

6 7 10 11 6 11 7 10

2

2

1 17 2 17 17 2 17 3 17 2 85 19 17
1

8

1 17 2 17 17 2 17 3 17 2 85 19 17
1 .

8

z z z z z z z z z z z z z z z z

z z

z z

− − − − = − − − −

 
+ + + − − − − 

= + + 
  
 

 
+ + + + − − − 

⋅ + + 
  
 

 (11.8) 

The bigger brackets in the short and in the explicit expressions correspond to 
each other in their ordering in the written form of the formulae. 

The coefficients in all the polynomials of second degree in (11.5)-(11.8) in 
front of z are real ones and the half of the negatively taken value provides the 
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Cosine of the corresponding angle. From first factor in first polynomial in (11.5),  

for example, one find 
2πcos
17

 
 
 

, that means the Cosine of the angle to the first  

corner of the 17-gon which is explicitly 

( ) ( )1 17 2 17 17 2 17 3 17 2 85 19 172πcos .
17 16

− + + − + + − +  = 
 

 (11.9) 

This is identical in content (but not in form) with the expression derived by 
Gauss in Section 365 of Disquisitiones Arithmetica as given in the citation by 
Edwards [6] on p. 32 and here cited according to him (see also Stewart [5] (p.  

232)). All values for ( )2πcos , 1,2, ,8
17

k k  = 
 

  can be taken from the corres-  

ponding coefficients in the quadratic factor polynomials in (11.5)-(11.8). 
Let us give for completeness and for the factorization of the polynomial  

8 7U U
2 2
u u   +   

   
 for 17n =  in Table 1 (Equation (11.4)) with coefficients in  

form of quadratic radicals the complete expressions for the doubled Cosines for 
all primitive roots ku . From (11.5) and (11.6) follows for 

( )2π 2π2cos 2cos 17
17 17ku k k   ≡ = −   

   
 

( ) ( )
1,4

1 17 2 17 17 2 17 3 17 2 85 19 17
,

8
u

− + + − ± + − +
=  

( ) ( )
2,8

1 17 2 17 17 2 17 3 17 2 85 19 17
,

8
u

− + − − ± + + +
=  (11.10) 

where the first of the two indices in ,k lu  corresponds to the upper sign and the 
second to the lower one in “ ± ” and, analogously, from (11.7) and (11.8) 

( ) ( )
3,5

1 17 2 17 17 2 17 3 17 2 85 19 17
,

8
u

− − + + ± − + −
=  

( ) ( )
6,7

1 17 2 17 17 2 17 3 17 2 85 19 17
.

8
u

− − − + ± − − −
=  (11.11) 

The factorization of 16
0

l
l z
=∑  taken together with (11.5)-(11.8) can be formally 

written 

( )

( )( )

17 816
2

0 1

1 1 ,
1

2π2cos , mod17 ,
17

l
k

l k

k

z z z u z
z

u k k

= =

−
= = − +

−

 ≡ ∈ 
 

∑ ∏


         (11.12) 

where the explicit form of the coefficients ( ), 1, 2, , 8ku k m= =  given in (11.10) 
and (11.11) are taken from (11.5) and (11.8). If we insert the expressions ku  for 
u into the cyclotomic Equation (2.5) for 8, 2 1 17m n m= = + =  using Table 1 
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(Equation (2.4)) 

( )
( ) ( )

8 7 6 5 4 3 2
8 7

17 1 *
8

U U 7 6 15 10 10 4 1
2 2

, ,
1

u u u u u u u u u u

p z
u z z z z

z z
−

   + = + − − + + − − +   
   

= ≡ + = +
−

 (11.13) 

then its vanishing is identically satisfied. We checked this algebraically by 
computer with “Mathematica”4 and we checked also numerically by computer 
that the order of the braces and big brackets in different parts of the Formulae 
(11.2) and (11.3) and in Formulae (11.5)-(11.8) remains preserved. 

Since in case of the regular 17-gon all Cosines of the angles are expressed by 
quadratic radicals the multiplication of arbitrary factors ( )( )k lu u u u− −  leads 
again to polynomials with only quadratic radicals in the coefficients. Therefore, 
the factorization of cyclotomic polynomials such as (11.13) with quadratic 
radicals in the coefficients admits many possibilities but only a few lead to 
simple expressions. In a first step one may obtain the following factorization of 
the polynomial of 8-th degree on the right-hand side of (11.13) into the product 
of two polynomials of 4-th degree with quadratic radicals as coefficients 

( )

( )

8 7 6 5 4 3 2

4 3 2

4 3 2

7 6 15 10 10 4 1
1 17 3 17 2 17 1

2 2

1 17 3 17 2 17 1 .
2 2

u u u u u u u u

u u u u

u u u u

+ − − + + − − +
 − +

= + − + + −  
 
 + −
⋅ + − + − −  
 

     (11.14) 

This is certainly the simplest of the possible factorizations of the 8-th degree 
polynomial in two polynomials with quadratic radicals as coefficients. The first 
factor polynomial contains the factors ( )1 4 2 8, , ,u u u u u u u u− − − −  and the 
second the remaining factors ( )3 5 6 7, , ,u u u u u u u u− − − − . Further factori- 
zations of the polynomials of 4-th degree into products of polynomials of 2-nd 
degree with quadratic radicals in the coefficients are to obtain in analogous way 
using Formulae (11.2)-(11.3) and since each factorization in factors ku u−  
contains only quadratic radicals this is even possible in different ways. We do 
not write down all this. 

The general possibilities for the construction of regular n-gons by compass 
and ruler according to the rules of ancient time which young Gauss finally found 
and proved and which the problem solved forever are the following (e.g., [7] [9]). 
The basis form such Fermat numbers 22 1

l

lF ≡ +  which are prime numbers 

ip . We denote them by 1 2, ,p p  . An n-gon is constructible by compass and 
ruler if it is a power 2k  (for angle bisections) multiplied by an arbitrary 
product of distinct prime Fermat numbers ip  that means 

1 2
2 .k

i in p p=                       (11.15) 

 

 

4The used program “Mathematica 10” does not automatically provide the solutions of (11.13) in the 
explicit form of the ku  but affirms immediately the satisfaction of the equation if we insert there 

separately their explicit values. 
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As it is well known the first 5 Fermat numbers which are  

0 1 2 3 43, 5, 17, 257, 65537F F F F F= = = = =  and are all prime numbers but the 
next Fermat number 5F  is composite (e.g., [7] [9]; see also Table 2 in Section 
3). The analogous case of numbers 23 2 1

l

lG = ⋅ +  for geometric constructions 
by bicompasses and ruler are given also in Table 2. 

By combinations of constructions by compass and ruler with constructions by 
bicompasses and ruler one finds further possibilities to solve the circle division 
problem geometrically. For example, by combination of the constructions of the  

angles 2π
3

 or 2π
5

 with the angles 2π
7

 or 2π
13

 by bicompasses one may  

construct 

( ) ( )
12 2π2π 227 3 2π 7 5 2π2π 2π 2π 2π 3521 , ,

2π 2π3 7 21 5 7 3510 12
21 35

  
     = = = =   

   
      

 

   

( ) ( )
3

4

2π 2π10 213 3 2π 13 5 2π2π 2π 2π 2π39 65, .
2π 2π3 13 39 5 13 652 18
39 35

   
      = = = =   
   
      

 

   (11.16) 

We see that in connection with (repeated) angle bisections admitted by  

powers of 2 in front of 2π
n

 the circle division problem can be principally also 

solved, for example, for 21,35,39,65n = . More generally, if the angles 2π
m

 and 

2π
n

 are constructible, one may consider the combinations 2π 2πk l
m n

+  with  

modk m  and modl n  in analogous way. 

12. Is Factorization of Cyclotomic Polynomial for n = 19 with 
3-Cycles and with Only Quadratic Radicals Possible? 

In case of 2 1 19n m= + =  we find as a first factorization of the cyclotomic 
polynomial 

( )( )( )( )( )( )( )

19 18
9 8 7 6 5

0

4 3 2

9 8 7 6 5

4 3 2

1 4 5 6 7 9 11

1 1 i 19 3 i 19 5 i 192
1 2 2 2

5 i 19 3 i 19 1 i 192 1
2 2 2

1 i 19 3 i 19 5 i 192
2 2 2

5 i 19 3 i 19 1 i 192 1
2 2 2

k

k

z z z z z z z
z

z z z z

z z z z z

z z z z

z z z z z z z z z z z z z z z

=

− − + −= = + − + +
− 

+ − + − − + − − 


 + − +⋅ + − + +


− + − − − + − − 


= − − − − − − −

∑

( )( ){ }
( )( )( )( )( )( )( )( )( ){ }

16 17

2 3 8 10 12 13 14 15 18 .

z z z

z z z z z z z z z z z z z z z z z z

− −

⋅ − − − − − − − − −

(12.1) 
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A further factorization of the two polynomial factors in three 3-cycles each 
with only quadratic radicals in the coefficients is not possible since such an 
ansatz leads to cubic equations for the coefficients. Therefore the construction of 
the 19-gon is not possible by compass and ruler as well as it is not possible by 
rhombic bicompasses and ruler. 

13. Some General Rules for the Factorization of the Special 
Palindromic Polynomials ∑ m m k

k z2 2
0

−
=  in Two Factors 

with Quadratic Radicals in the Coefficients 

If one looks through the first factorizations of the cyclotomic polynomials  
( ) 22 1 2

0 ,
1

mm m k
k

p z
z

z
+ −

=
=

− ∑  ( )0,1,2,m =   for odd 2 1n m= +  into the product of  

two ‘similar’ polynomials of m-th degree with only quadratic radicals in their 
coefficients as explicitly given up to 19, 9n m= =  one finds at once some 
regularities. First, one may distinguish two categories for odd n first where the 
coefficients in the both factor polynomials possess real coefficients and second 
where they possess complex conjugate coefficients. It depends on the two cycles 
of length m and on their content of roots. If each such factor involves together 
with each root also the conjugate root modulo n then all coefficients are real 
ones. This is the case up to 19n =  only for 5n =  and 17n =  which are 
prime Fermat numbers and for 13n = . In all other cases up to 19n =  as one 
can see from the given explicit factorization the coefficients in the two factor 
polynomials are complex conjugate to each other. One may take this into 
account if one knows the involved roots of the two cycles which lead to this 
factorization. From the coefficients in front of 2nz −  and 3nz −  of the cyclotomic  

polynomial ( )
1

np z
z −

 which are equal to 1 as for all its coefficients one can deter- 

mine both coefficients 1ma −  and 2ma −  in the two factors of their principal form 
( )1 2

1 2 1 mm m m
m mz a z a z− −
− −− + + + − . One may begin to determine the coeffi- 

cients in the factorized form also from the low-order powers of z or better at 
once from both sides, from the high-order and from the low-order powers of z. 
From the consequence (3.6) of the Fermat theorem follows, at least, for prime 
numbers 2 1n m= +  that in the first factorization of the cyclotomic polynomial  

( )2 1

1
mp z
z
+

−
 into a product of two polynomials of degree m with quadratic radicals  

only that the coefficients of the powers to 0 1z =  can also be only 1±  
depending on m as an even or odd number. In next steps one has to look what 
follows from the symmetries and have to introduce unknown quantities for the 
coefficient which can be successively determined from the multiplication of the 
two factorized polynomials which have to give the initial cyclotomic polynomials. 
It is obvious how in the second-highest and second-lowest coefficients appear 
the square roots n  of n (for prime n) but for coefficients more to the middle 
of the polynomials it is difficult to derive general formulae. 
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14. The Number 
1 i 7

2
− +

 as the Second of the Basis 

Vectors of a Klein Lattice in the Complex Plane with 
Unique Prime Factorization 

We make now a small digression. Conway and Smith [21] describe from p. 15 on 
the lattices in the complex plane with respect to the factorization into products 
of prime complex lattice vectors. The unique factorization of Gaussian integers 
and also of Eisenstein integers can be found in number-theoretic works (e.g.,  
[8]) but all possible lattices where such a unique factorization into products of 
prime factors is possible was up to now seldom to find. According to Conway 
and Smith [21] there are only 9 such lattices (up to rotations and scalings) and 
the proof for the completeness of these lattices with such a property goes back to 
Heegner and independently to Baker and Stark. What is very interesting for us 
although not directly connected with the unique prime factorization is that next 
to the Gaussian integers (possible basis ( )1,i  and the Eisenstein integers  

(possible basis 1 i 31,
2

 − +
  
 

 the Klein integers (‘Kleinian ring’) with possible 

basis 1 i 71,
2

 − +
  
 

 possesses this property [21]. The complex number 

1 i 7
2

− +
 plays a main role as second of the fixed points besides the coordinate  

origin in our construction of the regular heptagon by rhombic bicompasses and 
ruler (see Section 6). The Klein lattice is formed by the set ,m nz z=  of all lattice 
points z∈  [21] 

( ),
1 i 7 , , 0, 1, 2, .

2m nz m n m n
 − +

= + = ± ±  
 

       (14.1) 

The norm of the lattice points ,m nz  that is the squared modulus ( ) 2N z z=  
of an arbitrary complex number z is 

( )
2

2 2
,

7i 2 0,
2 2m n
nN z m n m mn n= − + = − + ≥        (14.2) 

which is a non-negative integer. 
Similar pictures as they are known for the distribution of the Gauss primes 

and for the Eisenstein primes in the complex plane (see, e.g., Conway and Smith 
[9], p. 224 (in English Ed.) and [21], p. 18 and particularly beautiful (larger) in 
the book of Guy [22], pp. 56, 57) would be also very interesting for the Klein 
primes (with 7-fold symmetry 7vC  as subgroup of permutation group 7S ). 

15. Conclusions 

Present article results mainly from investigations to the problem for which n a 
regular n-gon besides the regular heptagon ( 7n = ) may be constructed by 
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rhombic bicompasses and ruler. We found that the next possible case is the 
regular tridecagon ( 13n = ) although some problems of the realization of the 
construction remained open. The technical design of rhombic bicompasses, in 
particular, if the arm length should be variable within certain limits, we do not 
consider as our problem to which we may contribute. We posed our mathe- 
matical problem into the general frame of the solution of the cyclotomic 
equation and of the factorization of the cyclotomic polynomials for arbitrary n 
where only concerning the factorization with integer or rational coefficients (in 
  or  ) of the (irreducible) factor polynomials exists a well-known theory. It 
is a special case of the Galois theory of the solvability of polynomial equations in 
radicals. Our approach to the factorization in case of 13n =  and in the other 
cases with odd n to get factorization with coefficients which do not contain 
higher than quadratic radicals or cannot be resolved at all by radicals is similar 
to the usual approach in case of the 17-gon. The first task was to find the 
different cycles that is illustrated in detail for the cases 7n =  and 13n = . The 
factorization with only quadratic radicals in the coefficients is then straight- 
forward using known details for the coefficients and determining the unknown 
from the general restrictions for the coefficients in systematic way. 

Our bicompasses underlie hard restriction since they possess equal arm 
lengths and bundles of (maximum) three arms are connected with the two fixed 
points to guarantee to draw at once two circles of equal radius with correlation 
of points on the circles with one degree of freedom. The question is whether or 
not it is possible to solve other geometric construction problems with them as 
the described ones. However, the trisection of an arbitrary angle which is not 
possible with compass and ruler seems to be also not possible by bicompasses 
and ruler. It is due to the form of the equation for the Cosines of the trisected 
angle which is of third degree with vanishing coefficient in front of the 2-nd 
degree power which determines the two fixed points. The fixed points coincide 
in this case and the motion with one degree of freedom of the bicompasses is the 
rotation of a regular hexagon around the only fixed point. One position of this 
hexagon determines with 3 of its corner points the right position for the 
trisection of the angle but it cannot be determined which of the positions is the 
right. The restrictions to the bicompasses can be weakened. For example, the 
arm lengths can be varied and the number of arms between the fixed points may 
be increased to increase the degree of freedom. All this is a wide field and we are 
maybe only at the beginning of it. 

In my previous article [1] I made some remarks about rare biological objects 
with 7-fold symmetry in heavy contrast to ubiquitous 5-fold symmetry in many 
plant families (please, amend there the scientific name for oleander into Nerium 
oleander). In the meanwhile I looked through the book of Ernst Haeckel 
Kunstformen der Natur from (1899-1904)5 with the wonderful drawings and 

 

 

5Edited by O. Breidbach with inclusion of some earlier publications of Ernst Haeckel and biographi-
cal notes under the title  Kunstformen der Natur, Kunstformen aus dem Meer, Prestel-Verlag, 3. 
Auflage, München 2016. 
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with the aim to see whether or not are there biological objects with 7-fold 
symmetry and found two such objects: 1. table 34 (object 2) a colony forming 
alga from genus Pediastrum of the green algae Chlorophyta of kingdom Protista 
(or Plantae? due to other authors), 2. table 85 (fourth object in last column) a 
colonial ascidian (sea squirt) Cynthia of subphylum Tunicata to phylum 
Chordata of kingdom Animalia. 
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Appendix A. Two Linear Combinations of the Chebyshev 
Polynomials of First and Second Kind 

In Section 2 we came accross a class of polynomials for which sometimes the 
new notation ( )Vn x  is introduced. In this connection there are defined the 
following two relatives of the Chebyshev polynomials (see [16], p. 60 without 
notations ( )Vn x  and ( )Wn x  and, e.g., [18], p. 442) 

( )( )
1sin
2

V cos ,
1sin
2

n

n θ
θ

θ

  +    =
 
 
 

 

( )( )
1cos
2

W cos ,
1cos
2

n

n θ
θ

θ

  +    =
 
 
 

                (A.1) 

called also Chebyshev polynomials of third and fourth kind. By multiplication of  

numerator and denominator of the first Equation in (A.1) with 
1cos
2
θ 

 
 

 and 

of the second equation with 
1sin
2
θ 

 
 

 and applying then the addition theorems  

for trigonometric functions one obtains 

( )( ) ( )( ) ( )
( ) ( )( ) ( )( )1

sin 1 sin
V cos U cos U cos ,

sinn n n

n nθ θ
θ θ θ

θ −

+ +
= = +  

( )( ) ( )( ) ( )
( ) ( )( ) ( )( )1

sin 1 sin
W cos U cos U cos .

sinn n n

n nθ θ
θ θ θ

θ −

+ −
= = −  (A.2) 

This can be also written in different representations (we use ( ) ( )T Tk kz z− =  
and may use ( ) ( )1 1U Un nz z− − −= −  with special case ( )1U 0z− = ) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 12 2 2 2, , ,
2 2 2 2 2 2

1

2

1 1
0

2 ! 2 ! 1V P P P
2 ! 2 ! 2

T 1 U T U U ,

n n

n n n n

n

n n n k n n
k

n n zz z z z
n n

z z z z z z

     − − −     
     

−

− − −
=

 +
 = = +
 
 

= + + = = +∑
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 12 2 2 2, , ,
2 2 2 2 2 2

1

2

1 1
0

2 ! 2 ! 1W P P P
2 ! 2 ! 2

T ( ) 1 U 1 T U U ,

n n

n n n n

n k
n n n k n n

k

n n zz z z z
n n

z z z z z z

     − − −     
     

−

− − −
=

 −
 = = −
 
 

= − − = − = −∑
 (A.3) 

where ( ) ( ),Pn zα β  denotes the Jacobi polynomials. 
The orthogonality relations and weight functions for the polynomials ( )Vn x  

and ( )Wn x  in the real interval 1 1x− ≤ ≤ +  are different from that for the 
Chebyshev polynomials ( )Tn x  and ( )Un x  and follow from the general 
orthogonality relations for the Jacobi polynomials. The weight functions are  
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1
1

x
x

−
+

 and 1
1

x
x

+
−

 for ( )Vn x  and ( )Wn x , respectively, instead of 
2

1

1 x−
  

and 21 x−  for ( )Tn x  and ( )Un x , respectively. This circumstance may 
justify the separate introduction of ( )Vn x  and ( )Wn x  but most relations for 
these polynomials can be directly obtained from that for the Chebyshev 
polynomials of first and second kind. 
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Abstract 
In this paper we establish the notion of the space of bounded ( )( ), 2 -p ⋅ varia-

tion in De la Vallée Poussin-Wiener’s sense with variable exponent. We show 
some properties of this space ( )( ) [ ],2 ,W

pBV a b⋅  and we show that any uniformly 

bounded composition operator that maps this space into itself necessarily sa-
tisfies the so-called Matkowski’s conditions. 
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Generalized Variation, De la Vallée Poussin, ( )( ), 2p ⋅ -Variation in Wiener’s 

Sense, Variable Exponent, Composition Operator, Matkowski’s Condition 

 

1. Introduction 

In 1881, C. Jordan gave the notion of variation of a function in [1], and from this 
moment, many generalizations and extensions have been given. Consequently, 
the study of notions of generalized bounded variation forms an important 
direction in the field of mathematical analysis. Another important generalization 
of the space of bounded variation in the Jordan’s sense is the notion of the space 
of functions of second bounded variation studied by Ch. J. de la Vallée Poussin 
in 1908 in [2]. It is defined as follows: 

Definition 1 Let π  be a partition of the interval [ ],a b  of the form 
{ }0 1 na t t t bπ = = < < < = , and f  be a function [ ]: ,f a b → . The  

nonnegative real number 
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( ) ( ) ( ) [ ]( ) ( ) ( ) ( ) ( )1 1 12 2

1 1 1

; , : sup ,
n j j j j

j j j j j

f t f t f t f t
V f V f a b

t t t tπ

−
+ −

= + −

− −
= = −

− −∑  

is called the second variation of f  on [ ],a b , where the supremum is taken 
over all partitions π  of [ ],a b . In the case that ( ) ( )2V f < ∞ , we say that f  
has bounded second variation on [ ],a b  and we denote it by ( ) [ ]2 ,f BV a b∈ . 

A well-known generalization of the functions of bounded variation was done 
by N. Wiener in 1924 in [3]. The p-variation of a function f  is the supremum 
of the sums of the pth powers of absolute increments of f  over non over- 
lapping intervals. Wiener mainly focused on the case 2p = , the 2-variation. 

Definition 2 Let π  be a partition of the interval [ ],a b  of the form 
{ }0 1 na t t t bπ = = < < < = , f  be a function [ ]: ,f a b →  and 1 p< < ∞ . 

The nonnegative real number 

( ) [ ]( ) ( ) ( )
1

1
1

; , : sup ,
n p

p p j j
j

V f V f a b f t f t
π

−

−
=

= = −∑  

is called the Wiener p-variation of f  on [ ],a b  where the supremum is taken 
over all partitions π  of [ ],a b . In the case that ( )pV f < ∞ , we say that f  has 
bounded Wiener p-variation on [ ],a b  and we denote it by [ ],W

pf BV a b∈ . 
The pth-variations were reconsidered in a probabilistic context by R. Dudley in 

[4] and [5], in 1994 and 1997, respectively. Many basic properties of the 
variation in the sense of Wiener and a number of important applications of the 
concept can be found in [6] [7]. The paper by V. V. Chistyakov and O. E. Galkin 
in [8] in 1998 is very important in the context of p-variation. 

The class of nonlinear problems with exponent growth is a new research field 
and it reflects a new kind of physical phenomena. In 2000 the field began to 
expand even further. Motivated by problems in the study of electrorheological 
fluids, Diening [9] raised the question of when the Hardy-Littlewood maximal 
operator and other classical operators in harmonic analysis are bounded on 
variable Lebesgue spaces. These and related problems are the subject of active 
research to this day. These problems are interesting in applications (see [10] [11] 
[12] [13]) and gave rise to a revival of the interest in Lebesgue and Sobolev 
spaces with variable exponent, the origins of which can be traced back to the 
work of Orlicz [14] in the 1930’s. In the 1950’s, this study was carried on by 
Nakano [15] [16] who made the first systematic study of spaces with variable 
exponent. Later, Polish and Czechoslovak mathematicians investigated the 
modular function spaces (see for example Musielak [17] [18], Kovacik and 
Rakosnik [19] and Kozlowski [20]). We refer to the book [13] for detailed 
information on the theoretical approach for the Lebesgue and Sobolev spaces 
with variable exponents. Recently, in [21] Castillo, Merentes and Rafeiro studied 
a new space of functions of generalized bounded variation. They introduced the 
notion of bounded variation in the Wiener sense with variable exponent ( )p ⋅  
on [ ],a b  and study some of its properties. 

Definition 3 Given a function [ ] ( ): , 1,p a b → ∞ , a partition  
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{ }0 1 na t t t bπ = = < < < =  of the interval [ ],a b , and a function 
[ ]: ,f a b → , the nonnegative real number 

( ) ( ) ( ) [ ]( ) ( ) ( ) ( )1

1
1

, , : sup ,j
n p xW W

j jp pV f V f a b f t f t
π

−

∗
−⋅ ⋅

=

= = −∑         (1.1) 

is called the Wiener variation with variable exponent (or ( )p ⋅ -variation in 
Wiener’s sense) of f  on [ ],a b  where *π  is a tagged partition of the interval 
[ ],a b , i.e., a partition of the interval [ ],a b  together with a finite sequence of 
numbers 0 1, , nx x −  subject to the conditions that for each j, 1j j jt x t +≤ ≤ . 

In case that ( ) [ ]( ); ,W
pV f a b⋅ < ∞ , we say that f  has bounded Wiener 

variation with variable exponent (or bounded ( )p ⋅ -variation in Wiener’s sense) 
on [ ],a b . The symbol ( ) [ ] ( ) [ ], ,W

p pWBV a b BV a b⋅ ⋅=  will denote the space of 
functions of bounded ( )p ⋅ -variation in Wiener’s sense with variable exponent 
on [ ],a b . 

The aim of this paper is to provide a description of the new class formed by 
the functions of bounded ( )( ), 2p ⋅ -variation in the sense of Wiener as an 
extension to the double case of the previous concept. Also, we prove structural 
properties for mappings of bounded ( )( ), 2p ⋅ -variation in the Wiener’s sense. 
Finally, we show that any uniformly bounded composition operator that maps 
the space ( )( ) [ ],2 ,W

pBV a b⋅  into itself necessarily satisfies the so-called Mat- 
kowski’s conditions. 

2. Preliminaries 

In this section we present some definitions and propositions that will be used 
through out this paper. 

Definition 4 Let 1 p< < ∞ , π  be a partition { }0 1 na t t t bπ = = < < < =  
of the interval [ ],a b , and [ ]: ,f a b →  be a function. The nonnegative real 
number 

( ) ( ) ( ) [ ]( ) ( ) ( ) ( ) ( )1 1 1
,2 ,2

1 1 1

; , : sup ,

p
n j j j jW W

p p
j j j j j

f t f t f t f t
V f V f a b

t t t tπ

−
+ −

= + −

− −
= = −

− −∑  

is called the De La Vallée Poussin-Wiener variation (or ( ), 2p -variation in 
Wiener’s sense) of f  on [ ],a b  where the supremum is taken over all  
partitions π  of [ ],a b . In the case that ( ) ( ),2

W
pV f < ∞ , we say that f  has 

bounded ( ), 2p -variation on [ ],a b  and we denote by ( ) [ ],2 ,W
pf BV a b∈ . 

For the interested readers can see some of the properties in [2] [7] and other 
related problems in [22]. 

Proposition 1 Let [ ]: ,f a b →  be a function with , 0a b >  and consider 
1 p< < ∞ . Then 

1) ( ) [ ]( ),2 ; , 0W
pV f a b =  if and only if f  is a liner function. 

2) If ( ) [ ]( ),2 ; ,W
pV f a b < ∞ , then f  is bounded in [ ],a b . 

3) ( ) [ ]( ),2 ; ,W
pV a b⋅  is a convex function. 
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Proof. 1) Suppose first that f  is a linear function. If ( )f t tα β= +  for all 
[ ],t a b∈ , with ,α β ∈ , then by Definition 4, it follows easily that  

( ) [ ]( ),2 ; , 0W
pV f a b = . 
Now, if ( ) [ ]( ),2 ; , 0W

pV f a b = , then by Definition 4 we have 

( ) [ ]( )

( ) ( ) ( ) ( )
,2

1 1 1

1 1 1

0 ; ,

sup .

W
p

p
n j j j j

j j j j j

V f a b

f t f t f t f t

t t t tπ

−
+ −

= + −

=

− −
= −

− −∑
 

Hence, for any partition { }0 1 na t t t bπ = = < < < =  of the interval [ ],a b , 
we should have that 

( ) ( ) ( ) ( )1 1 1

1 1 1

0.

p
n j j j j

j j j j j

f t f t f t f t

t t t t

−
+ −

= + −

− −
− =

− −∑  

Then, any term in the sum should be zero. Since the function pt t→  
vanishes only at zero, it follows that 

( ) ( ) ( ) ( )1 1

1 1

for all 1, 2, , 1.j j j j

j j j j

f t f t f t f t
j n

t t t t
+ −

+ −

− −
= = −

− −
  

Therefore, f  is equal to a linear function. 
2) Suppose that ( ) [ ],2 ,W

pf BV a b∈  and f  is not bounded, then there exists a 

sequence { } 1n n
t

≥
, ( ),nt a b∈ , 1n ≥  such that ( )nf t →∞  when n →∞ . Let 

{ } 1m m
t

≥  be a subsequence of { } 1n n
t

≥  such that { } 1m m
t

≥  converge to [ ],x a b∈ . 

Then, as ( ){ } 1m m
f t

≥
 is a subsequence of ( ){ } 1n n

f t
≥

, so 

( ) when .mf t n→∞ →∞  

We have that 

( ) ( ) ( ) ( )
( ) [ ]( )1 1

,2
1 1

; , , 1.
p

n n n n W
p

n n n n

f t f t f t f t
V f a b n

t t t t
+ −

+ −

− −
− ≤ ≥

− −
 

Moreover for { }ma t t bπ = ≤ ≤ ≤ ≤  we get 

( ) ( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ),2 ,2, , , , .

p
m W W

mp p
m

f t f t f t f a
V f a t V f a b

t t t a
− −

− ≤ ≤
− −

 

In consequence, ( ) [ ]( ),2 ; ,W
pV f a b = ∞ , since 

( ) ( ) ( ) ( ) ,
p

m

m

f t f t f t f a
t t t a
− −

− →∞
− −

 

as m →∞ , which is a contradiction with ( ) [ ],2 ,W
pf BV a b∈ . Therefore f  is 

bounded. 
3) Let [ ], : ,f g a b →  be two functions, [ ], 0,1α β ∈  such that 1α β+ =  

and { }0 1 na t t t bπ = = < < < =  be a partition of [ ],a b . Since pt  is convex 
and nondecreasing, we have that 
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( ) [ ]( ) ( ) [ ]( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,2 ,2

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1

; , ; ,

sup

sup

sup

W W
p p

p
n j j j j

j j j j j

p
n j j j j

j j j j j

n j j j j

j j j j j

j j j j

j j

V f a b V g a b

f t f t f t f t

t t t t

g t g t g t g t

t t t t

f t f t f t f t

t t t t

g t g t g t g t

t t t

π

π

π

α β

α

β

α

β

−
+ −

= + −

−
+ −

= + −

−
+ −

= + −

+ −

+

+

− −
= −

− −

− −
+ −

− −

 − −
 ≥ −

− −  

− −
+ −

−

∑

∑

∑

( )( ) ( )( )

( )( ) ( )( )

( ) [ ]( )

1

1 1

1 1

1

1

,2

sup

; , .

p

j j

n j j

j j j

p

j j

j j

W
p

t

f g t f g t

t t

f g t f g t

t t

V f g a b

π

α β α β

α β α β

α β

−

−
+

= +

−

−

 
 

−  

+ − +
=

−

+ − +
−

−

= +

∑

 

Then, ( ) [ ]( ),2 ; ,W
pV a b⋅  is a convex function. 

Definition 5 (Norm in ( ) [ ],2 ,W
pBV a b ) The functional  

( ) ( ) [ ],2,2 : ,W W
pp BV a b⋅ →  defined by 

( ) ( ) ( ) ( ) [ ]( )
1

,2,2 : ; ,W W p
ppf f a f a V f a b′= + +         (2.1) 

is a norm. 
In [7], the authors have shown that the linear space ( ) [ ],2 ,W

pBV a b  with the 
norm (2.1) is a Banach space and ( ) [ ] [ ],2 , ,W W

ppBV a b BV a b⊂ . 

3. Main Results 

In [23] the authors present and study the space of functions of bounded ( )p ⋅
-variation as an extension of the space [ ],W

pBV a b . In this section, our goal is to 
study the corresponding space of functions of bounded second ( )p ⋅ -variation, 
with ( )p ⋅  be a variable exponent, as an extension of ( ) [ ],2 ,W

pBV a b . 
Definition 6 Let p  be a function [ ] ( ): , 1,p a b → ∞ , π  be a partition 
{ }0 1 na t t t bπ = = < < < =  of the interval [ ],a b  and [ ]: ,f a b →  be a 

function. The nonnegative real number 

( )( ) ( ) ( )( ) [ ]( ) ( ) ( ) ( ) ( ) ( )1
1 1 1

,2 ,2
1 1 1

; , : sup ,
jp x

n j j j jW W
p p

j j j j j

f t f t f t f t
V f V f a b

t t t tπ

−

∗

−
+ −

⋅ ⋅
= + −

− −
= = −

− −∑  

is called the De La Vallée Poussin-Wiener variation with variable exponent (or 
( )( ), 2p ⋅ -variation in De La Vallée Poussin-Wiener’s sense) of f  on [ ],a b , 

where *π  is a tagged partition of the interval [ ],a b , i.e., a partition of the 
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interval [ ],a b  together with a finite sequence of numbers 0 2, , nx x −  subject 
to the conditions 1j j jt x t +≤ ≤  for each j . It is worth to note that by definition 
(we take supremum over all partitions), the number ( )( ) ( ),2

W
pV f⋅  does not 

depend on the election of the argument of the exponent. In the case that 

( )( ) ( ),2
W
pV f⋅ < ∞ , we say that f  has bounded ( )( ), 2p ⋅ -variation on [ ],a b . 
We will denote by ( )( ) [ ] ( )( ) [ ],2 ,2, ,W W

p pBV a b V a b⋅ ⋅=  the space of functions of 
bounded ( )( ), 2p ⋅ -variation in Wiener’s sense with variable exponent in [ ],a b . 
It is endowed with the functional: 

( )( )[ ] ( ) ( ) ( )( ) [ ]
,2

,2, inf 0; ; , 1 .W
p

W
pBV a b

ff f a f a V a bλ
λ⋅

+ ⋅

  ′= + + > ≤  
  

        (3.1) 

Then, 

( )( ) [ ]
( )( )[ ] [ ]

( )( )[ ],2 ,2
,2 , ,, , : : , ; .W W

p p

W
p BV a b BV a bBV a b f a b f

⋅ ⋅
⋅

   ⋅ = → < ∞  
   

  

Remark 3.1 Given a function [ ] [ ): , 1,p a b → ∞ . 
1) If ( ) 1p x =  for all [ ],x a b∈ , then ( )( ) [ ] [ ]2

,2 , ,W
pBV a b BV a b⋅ = . 

2) If ( )p x p=  for all [ ],x a b∈  and 1 p< < ∞  then 

( )( ) [ ] ( ) [ ],2,2 , ,W W
ppBV a b BV a b⋅ = , i.e., the space of bounded ( )( ), 2p ⋅ -variation in De  

la Vallée Poisson-Wiener’s sense with variable exponent is exactly the space of 
bounded ( ), 2p -variation in De la Vallée Poisson-Wiener’s sense. 

Given a function [ ] ( ): , 1,p a b → ∞ , that is, a variable exponent function, let 
us define as in the literature, 

[ ] ( ) [ ] ( ){ }{ },: essinf sup : , ; 0 ,x a bp p x x a b p xβ β−
∈= = ∈ ∈ < =  

and 

[ ] ( ) [ ] ( ){ }{ },: esssup inf : , ; 0 .x a bp p x x a b p xα α+
∈= = ∈ ∈ > =  

It is said that the exponent p is admissible if the range of p is in ( )1,∞  and 
p+  is finite. 

Let us recall a classical concept in the theory of function spaces. Let X be a 
vector space over  . A convex and left-continuous function [ ]: 0,Xρ → ∞  is 
called a convex pseudo-modular on X if for arbitrary x and y, there holds: 

1) ( )0 0xρ = , 
2) ( ) ( )x xρ α ρ=  for every α ∈  such that 1α = , 
3) ( )( ) ( ) ( ) ( )1 1x y x yρ α α αρ α ρ+ − ≤ + −  for every [ ]0,1α ∈ . 

It is possible to see that for p be an admissible function, the functional  

( )( ) [ ]( ),2 ; ,W
pV a b⋅ ⋅  is a convex pseudo-modular. 

Proposition 2 Let p  be an admissible function. Then ( )( ) [ ]( ),2 ; ,W
pV a b⋅ ⋅  is a 

convex pseudo-modular. 
Proof. We have that for any ( )( ) [ ],2 ,W

pf BV a b⋅∈ ,  

( )( ) [ ]( ) ( )( ) [ ]( ),2 ,20 ; , 0; , 0W W
p pV f a b V a b⋅ ⋅= = . Moreover, the fact that for any 
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( )( ) [ ],2 ,W
pf BV a b⋅∈ , ( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; ,W W

p pV f a b V f a bα⋅ ⋅=  whenever 1α =  

follows immediately from the definition. 
Finally, with the same kind of argument than in Proposition 1(c) it follows  

that for [ ]0,1α ∈  and ( )( ) [ ],2, ,W
pf g BV a b⋅∈  we have that 

( )( ) ( ) [ ]( ) ( )( ) [ ]( ) ( ) ( )( ) [ ]( ),2 ,2 ,21 ; , ; , 1 ; , .W W W
p p pV f g a b V f a b V g a bα α α α⋅ ⋅ ⋅+ − ≤ + −  

Definition 7 A convex and left-continuous function [ ]: 0,Xρ → ∞  is called 
semimodular on X  if 

1) ( )0 0ρ = , 
2) ( ) ( )x xρ ρ− =  for every x X∈ , and 
3) if ( ) 0xρ λ =  for every λ∈ , then 0x = . 
For p  be an admissible function, the functional ( )( ) [ ]( ),2 , ,W

pV a b⋅ ⋅  is a 
semimodular on X . 

Proposition 3 Let p  be an admissible function. Then ( )( ) [ ]( ),2 , ,W
pV a b⋅ ⋅  is a 

semimodular. 
Proof. Let ( )( ) [ ],2 ,W

pf BV a b⋅∈  and *π  be a tagged partition of [ ],a b , then 

( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )

1

*

1

*

1

*

1 1 1

,2
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

,2

sup

sup 1

sup

.

j

j

j

p x
n j j j jW

p
j j j j j

p x
n j j j j

j j j j j

p x
n j j j j

j j j j j

W
p

f t f t f t f t
V f

t t t t

f t f t f t f t

t t t t

f t f t f t f t

t t t t

V f

π

π

π

−

−

−

− + −

⋅
= + −

−
+ −

= + −

−
+ −

= + −

⋅

− − − −
− = −

− −

 − −
 = − −
 − − 

− −
= −

− −

=

∑

∑

∑

 

On the other hand, if 

( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

*

1

*

1

1

*

1 1 1
,2

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

sup

sup

sup 0,

j

j

j

j

p x
n j j j jW

p
j j j j j

p x
n j j j j

j j j j j

p x
n j j j jp x

j j j j j

f t f t f t f t
V f

t t t t

f t f t f t f t

t t t t

f t f t f t f t

t t t t

π

π

π

λ λ λ λ
λ

λ

λ

−

−

−

−

−
+ −

⋅
= + −

−
+ −

= + −

−
+ −

= + −

− −
= −

− −

 − −
 = −
 − − 

− −
= − =

− −

∑

∑

∑

 

for every λ , necessarily it follows that 0f = . 
Proposition 4 Let X  be a vector space, ρ  be a semimodular on X  and 

f X∈ . Then 
1) ( ) 1fρ ≤  if and only if 1f

ρ
≤ , 

2) if 1f
ρ
≤ , then ( )f f

ρ
ρ ≤ , 
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3) if 1f
ρ
> , then ( )f f

ρ
ρ ≥ , 

4) for every f X∈ , ( ) 1f f
ρ

ρ≤ + . 

Theorem 1 Let [ ]: ,f a b →  be a function and p  be an admissible 
function, then [ ] ( )( ) [ ]2

,2, ,W
pBV a b BV a b⋅⊂ . 

Proof. Let p  be an admissible function, *π  be a tagged partition of the 
interval [ ],a b , [ ]2 ,f BV a b∈  and 

( ) ( ) ( ) ( )1 1*

1 1

: 1 .j j j j

j j j j

f t f t f t f t
j

t t t t
σ π + −

+ −

 − − = ∈ − ≤ 
− −  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

j

j j

p x
n j j j j

j j j j j

p x p x

j j j j j j j j

j jj j j j j j j j

j j j j j j j j

j jj j j j j j

f t f t f t f t

t t t t

f t f t f t f t f t f t f t f t

t t t t t t t t

f t f t f t f t f t f t f t f t

t t t t t t

σ σ

σ σ

−

− −

−
+ −

= + −

+ − + −

∈ ∉+ − + −

+ − + −

∈ ∉+ − +

− −
−

− −

− − − −
= − + −

− − − −

− − − −
≤ − + −

− − −

∑

∑ ∑

∑ ∑
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]( ) ( ) ( ) ( ) ( ) ( )

1

1

1

1

1 1 1 1 1

1 1 1 1 1

1 12

1 1

; , .

j

j

j

p x

j j

p x
n j j j j j j j j

j jj j j j j j j j

p x

j j j j

j j j j j

t t

f t f t f t f t f t f t f t f t

t t t t t t t t

f t f t f t f t
V f a b

t t t t

σ

σ

−

−

−

−

−
+ − + −

= ∉+ − + −

+ −

∉ + −

−

− − − −
≤ − + −

− − − −

− −
≤ + −

− −

∑ ∑

∑

 

Then, 

( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) [ ]( ) ( ) ( ) ( ) ( ) ( )

1

*

1

*

1 1 1
,2

1 1 1

1 12

1 1

: sup

; , sup .

j

j

p x
n j j j jW

p
j j j j j

p x

j j j j

j j j j j

f t f t f t f t
V f

t t t t

f t f t f t f t
V f a b

t t t t

π

π σ

−

−

−
+ −

⋅
= + −

+ −

∉ + −

− −
= −

− −

− −
≤ + −

− −

∑

∑

 

The proof of the fact that 
( ) ( ) ( ) ( ) ( )1

*

1 1

1 1

sup
jp x

j j j j

j j j j j

f t f t f t f t

t t t tπ σ

−

+ −

∉ + −

− −
− < ∞

− −∑   

will be by contradiction. That is, we assume that 

( ) ( ) ( ) ( ) ( )1

*

1 1

1 1

sup
jp x

j j j j

j j j j j

f t f t f t f t

t t t tπ σ

−

+ −

∉ + −

− −
− = ∞

− −∑ . Therefore, there exists a  

tagged partition *π  such that 

( ) ( ) ( ) ( ) ( )1

1 1

1 1

.
jp x

j j j j

j j j j j

f t f t f t f t

t t t tσ

−

+ −

∉ + −

− −
− = ∞

− −∑  

Since j σ∉  and ( ) 1p ⋅ >  we get 
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( ) ( ) ( ) ( )1 1

1 1

1.j j j j

j j j j

f t f t f t f t

t t t t
+ −

+ −

− −
− >

− −
 

But this is satisfied only for a finite number of terms, because in opposite case 
we would get 

( ) [ ]( ) ( ) ( ) ( ) ( )1 12

1 1

; , 1 ,j j j j

j jj j j j

f t f t f t f t
V f a b

t t t tσ σ

+ −

∉ ∉+ −

− −
≥ − > →∞

− −∑ ∑  

which is a contradiction as [ ]2 ,f BV a b∈ . Then, taking supremum we get 

( )( ) [ ]( ) ( ) ( ) ( ) ( ) ( )1

*

1 1 1
,2

1 1 1

; , sup .
jp x

n j j j jW
p

j j j j j

f t f t f t f t
V f a b

t t t tπ

−
−

+ −

⋅
= + −

− −
= − < ∞

− −∑  

Theorem 2 Let p  be an admissible function. If ( )( ) [ ],2 ,W
pf BV a b⋅∈ , then it 

follows that for any ( ),c a b∈  

( )( ) [ ]( ) ( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2 ,2; , ; , ; , .W W W
p p pV f a c V f c b V f a b⋅ ⋅ ⋅+ ≤         (3.2) 

Proof. By the definition of ( )( ) [ ]( ),2 ; ,W
pV f a c⋅  and ( )( ) [ ]( ),2 ; ,W

pV f c b⋅  we have 

that, for each 0> , there are partitions ( ),a cπ  and ( ),c bπ  with  

( ) { }0, : , , ma c a t t cπ = = =
 and ( ) { }0, : , , rc b c t t bπ = = =

, and sequences of  

points { } 2

0

m
j j

x
−

=
 and { } 2

0

r
j j

y
−

=
 such that 1j j jt x t +≤ ≤  for 0, , 2j m= −  and 

1j j jt y t +≤ ≤  for 0, , 2j r= −  that satisfies 

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( )
1

1 1 1
,2

1 1 1

; , ,
2

jp x
m j j j j W

p
j j j j j

f t t t f t f t
V f a c

t t t t

−
−

+ −

⋅
= + −

− −
− > −

− −∑   

and 

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( )
1

1 1 1
,2

1 1 1

; , .
2

jp y
r j j j j W

p
j j j j j

f t f t f t f t
V f c b

t t t t

−
−

+ −

⋅
= + −

− −
− > −

− −∑   

Taking ( ) ( ) { }0 1, , , , r ma c c b a u u bπ π π + −= = = = 
 and the points 

{ } { } { }2 2

0 0
:

m r
j j jj j j

z x y
− −

= =
=  , we get a partition of [ ],a b  such that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1

2 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

,

j

j

j

p z
m r j j j j

j j j j j

p y
r j j j j

j j j j j

p x
m j j j j

j j j j j

f u f u f u f u

u u u u

f t f t f t f t

t t t t

f t t t f t f t

t t t t

−

−

−

+ −
+ −

= + −

−
+ −

= + −

−
+ −

= + −

− −
−

− −

− −
= −

− −

− −
+ −

− −

∑

∑

∑

 

which implies that 
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( ) ( ) ( ) ( ) ( )

( )( ) [ ]( ) ( )( ) [ ]( )

1
2 1 1

1 1 1

,2 ,2; , ; , .
2 2

jp z
m r j j j j

j j j j j

W W
p p

f u f u f u f u

u u u u

V f c b V f a c

−
+ −

+ −

= + −

⋅ ⋅

− −
−

− −

> − + −

∑

 
        (3.3) 

Letting 0→  first, and then taking the corresponding supremum in the 
left-hand side of (3.3), it follows (3.2). 

Define 
( ) [ ]( )

[ ]
( ) ( ) ( ) ( ) ( )

, , ,

; ,

: sup .

ts

ts

p x

p x

t s a b

f a b

f t f s f s f
t s s

σ

σ

σ

ω

σ
σ∈

 − − = − 
− −  

 

Lemma 1 Basic properties of the ( )( ), 2p ⋅ -variation in De La Vallée 
Poussin-Wiener’s sense Let [ ]: ,f a b →  be an arbitrary map. We have the 
following properties: 

(P1) For any [ ], , ,t s a bσ ∈ , we have that 

( ) ( ) ( ) ( ) ( )

( ) [ ]( ) ( )( ) [ ]( ),2; , ; , .
ts

ts

p x
W

p x p

f t f s f s f
f a b V f a b

t s s

σ

σ

σ
ω

σ ⋅

− −
− ≤ ≤

− −
 

(P2) Monotonicity: If [ ], ,t s a b∈  and a t s b≤ ≤ ≤ , then 

( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; ,W W
p pV f a t V f a s⋅ ⋅≤ , ( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; ,W W

p pV f s b V f t b⋅ ⋅≤ , and 

( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; , .W W
p pV f t s V f a b⋅ ⋅≤  

(P3) Semi-additivity: If ( ),t a b∈ , then 

( )( ) [ ]( ) ( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2 ,2; , ; , ; , .W W W
p p pV f a t V f t b V f a b⋅ ⋅ ⋅+ ≤  

(P4) Change of variable: If [ ] [ ]: , ,c d a bϕ →  is a monotone function, then 

( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; , .W W
p pV f c d V f c dϕ ϕ⋅ ⋅=          (3.4) 

(P5) Regularity: ( )( ) [ ]( ) ( )( ) [ ]( ) [ ]{ },2 ,2; , sup ; , ; , , .W W
p pV f a b V f s t s t a b⋅ ⋅= ∈  

Proof. (P1) We have that for any [ ], , ,t s a bσ ∈ , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ]

( ) [ ]( )

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( )

1
1 1 1

1 1 1

,2

sup ; , , ,

: ; ,

sup

; , .

ts

ts

ts

j

p x

p x

p x

p x
m j j j j

j j j j j

W
p

f t f s f s f
t s s

f t f s f s f
t s a b

t s s

f a b

f t f t f t f t

t t t t

V f a b

σ

σ

σ

π

σ
σ

σ
σ

σ

ω

−
−

+ −

= + −

⋅

− −
−

− −

 − − ≤ − ∈ 
− −  

=

− −
≤ −

− −

=

∑

 

(P2) Let a t s b≤ ≤ ≤  and the partition  

{ }0 1 1 2: m m na t t t t t s t bπ = = < < < = < < = < < =   . Then 
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( )( ) [ ]( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

*

1

*

1

*

*

1 1 1
,2

1 1 1

1 1 1

1 1 1

2 1 1

1 1 1 1

2 1

1 1

; , sup

sup

sup

sup

j

j

j

p x
m j j j jW

p
j j j j j

p x
m j j j j

j j j j j

p x
m j j j j

j m j j j j

m j j j j

j j j

f t f t f t f t
V f a t

t t t t

f t f t f t f t

t t t t

f t f t f t f t

t t t t

f t f t f t f t

t t

π

π

π

π

−

−

−

+ −

⋅
= + −

+ −

= + −

+ −

= + + −

+

= +

− −
= −

− −

− −
≤ −

− −

− −
+ −

− −

− −
≤ −

−

∑

∑

∑

∑
( ) ( )

( )( ) [ ]( )

1

1

1

,2 ; , .

jp x

j j

W
p

t t

V f a s

−

−

−

⋅

−

=

 

The other cases follow in a similar way. 
(P3) Semi-additivity: It is obtained in Theorem 2. 
(P4) It follows as in ([23], Lemma 2 (P4)). Indeed, let [ ],c d ⊂  , 
[ ] [ ]: , ,c d a bϕ →  be a (not necessarily strictly) monotone function, 0π  be a  

tagged partition of the interval [ ],c d , { }1 00

m
j j

T τ π
=

= ∈  and { } 0

m
j j

T t
=

=  with 

( )j jt ϕ τ= , then 

( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) [ ]( )( )

1

1

1

1,2

1 1

1 1 1

1 1

1 1 1

,2 ,2

,

sup

sup

, , , .

j

j

W
p

p x
m j j j j

T j j j j j

p x
m j j j j

T j j j j j

W W
p p

V f T

f f f f

f t f t f t f t

t t t t

V f T V f c d

ϕ

ϕ τ ϕ τ ϕ τ ϕ τ

τ τ τ τ

ϕ

−

−

⋅

+ −

= + −

+ −

= + −

⋅ ⋅

− −
= −

− −

− −
= −

− −

= ≤

∑

∑



 

On the other hand, if a partition { } 0

m
j j

T t
=

=  of [ ]( ),c dϕ  is such that 

1j jt t− <  for 1, ,j m=   then there exists [ ],j c dτ ∈  such that ( )j jt ϕ τ=   

and, again by the monotonicity of ϕ  

( )( ) ( ) ( )( ) ( ) ( )( ) [ ]( )( )1,2 ,2 ,2, , , , .W W W
p p pV f T V f T V f c dϕ ϕ⋅ ⋅ ⋅= ≤  

(P5) By monotonicity ( )( ) [ ]( ) ( )( ) [ ]( ) [ ]{ },2 ,2; , sup ; , ; , , .W W
p pV f a b V f s t s t a b⋅ ⋅≥ ∈  

On the other hand, for any ( )( ) [ ]( ),2 ; ,W
pV f a bα ⋅<  such that there exists a tagged 

partition { } 0

n
i i

t
=

Π =  of [ ],a b  with ( )( ) ( ),2 ; .W
pV f α⋅ Π ≥  We define π  a  

partition of the interval [ ]0 , mt t  then πΠ∈  and  

( )( ) ( ) ( )( ) ( ),2 ,2; ;W W
p pV f V fπ α⋅ ⋅≥ Π ≥ , i.e., 

( )( ) [ ]( ) ( )( ) [ ]( ) [ ]{ },2 ,2; , sup ; , ; , , .W W
p pV f a b V f s t s t a b⋅ ⋅≤ ∈  
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Lemma 2 If 1 2β β> , then ( )( ) [ ] ( )( ) [ ],2 ,2
1 2

; , ; ,W W
p p

f fV a b V a b
β β⋅ ⋅

   
≤   

   
 for all 

( )( ) [ ],2 ,W
pf BV a b⋅∈ . 

Proof. Let 1 2,β β  such that 1 2β β> . Then, consider any partition π  of 
[ ],a b , { }0 , , na t t bπ = = =  and any finite sequence of numbers 0 2, , nx x −  
subject to the conditions 1j j jt x t +≤ ≤  for each 2j n≤ − . It follows that 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

1

1 1
1 1 1 1

1 1

1 1

1 1 1

1 1

2 1 1

1
2 2

1

1

1

i

i

i

p x

i i i i

i i i i

p x

i i i i

i i i i

p x

i i i i

i i i i

i i

i i

f f f ft t t t

t t t t

f t f t f t f t
t t t t

f t f t f t f t
t t t t

f ft t

t t

β β β β

β

β

β β

−

−

−

+ −

+ −

+ −

+ −

+ −

+ −

+

+

       
− −       

       −
− −

 − −
= − − − 

 − −
≤ − − − 

   
−   

   = −
−

( ) ( )
( )1

1
2 2

1

ip x

i i

i i

f ft t

t t
β β

−

−

−

   
−   

   
−

 

as 
2 1

1 1
β β

≥ . Then, as this inequality follows for all terms in the sum 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1

1

1 11
1 1 1 1

1 1 1

1 11
2 2 2 2

1 1 1

i

i

p x

i i i in

i i i i i

p x

i i i in

i i i i i

f f f ft t t t

t t t t

f f f ft t t t

t t t t

β β β β

β β β β

−

−

+ −−

= + −

+ −−

= + −

       
− −       

       −
− −

       
− −       

       ≤ −
− −

∑

∑

 

Taking supremum in any partition, it follows that 

( )( ) [ ] ( )( ) [ ],2 ,2
1 2

; , ; , .W W
p p

f fV a b V a b
β β⋅ ⋅

   
≤   

   
 

Proposition 5 Let p  be an admissible function. The space ( )( ) [ ],2 ,W
pBV a b⋅  is 

a vectorial space. 
Proof. Let ( )( ) [ ],2, ,W

pf g BV a b⋅∈  and consider any partition  
{ }0 , , na t t bπ = = =  and any finite sequence of numbers 0 2, , nx x −  subject to 

the conditions 1j j jt x t +≤ ≤  and ,α β ∈ . By definition, there exists 1 2,β β  
such that 
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( )( ) [ ] ( )( ) [ ],2 ,2
1 2

; , 1 and ; , 1 .W W
p p

f gV a b V a b
β β⋅ ⋅

   
≤ < ∞ ≤ < ∞   

   
 

Let { }1 2
ˆ : max , 0β β β= > . By Lemma 2, it follows that 

( )( ) [ ] ( )( ) [ ],2 ,2
1

; , ; ,ˆ
W W
p p

f fV a b V a b
ββ⋅ ⋅

   
< < ∞   

  
 

( )( ) [ ] ( )( ) [ ],2 ,2
2

; , ; , .ˆ
W W
p p

g gV a b V a b
ββ⋅ ⋅

   
< < ∞   

  
 

The rest of the proof follows analyzing the possible cases. 
1) If 0α β= = , then ( )( ) [ ],2 ,W

pf g BV a bα β ⋅+ ∈ . 
2) If 0α ≠  and/or 0β ≠ . Let ( ) ˆ 0µ α β β= + > , and consider any tagged 

partition *π  of [ ],a b , { }*
0 na t t bπ = = ≤ ≤ =  which is any partition π  of 

[ ],a b  and any finite sequence of numbers 0 2, , nx x −  subject to the conditions 

1j j jt x t +≤ ≤  for each 2j n≤ − . Then, by convexity of pt , when 1 p< < ∞ , it 
follows that 

( ) ( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

1

1

1 11

1 1 1

1 1 1 1 1

1 1 1

1 1

1 1

1 1

j

j

p x

j j j jn

j j j j j

p x

n j j j j j j j j

j j j j j

n j j

j j j

f g f g f g f gt t t t

t t t t

f t f t g t g t f t f t g t g t

t t t t

f t f t f t

t t

α β α β α β α β
µ µ µ µ

α β α β

µ µ

α
µ

−

−

+ −−

= + −

− + + − −

= + −

−
+

= +

       + + + +
− −       

       −
− −

   − + − − + −   = −
− −

−
≤ −

−

∑

∑

∑
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1
ˆ

1
ˆ

1
ˆ

j

j

p x

j j j j j j

j j j j j j

n j j j j

j j j j j

p x

j j j j

j j j j

n j j j

j j j

f t g t g t g t g t

t t t t t t

f t f t f t f t

t t t t

g t g t g t g t

t t t t

f t f t f t

t t

β
µ

α
α β β

β
α β β

α
α β β

−

−

− + −

− − −

−
+ −

= + −

+ −

+ −

−
+

= +

 − − −
 + −
 − − − 
 − −
≤ −
 + − −

− −
+ −
+ − − 

−
≤ −

+ −

∑

∑
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

1

1

1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1

1
ˆ

1
ˆ

1
ˆ

j

j

j

p x

j

j j

p x

j j j j

j j j j

p x
n j j j j

j j j j j

n j j j j

j j j j j

f t

t t

g t g t g t g t

t t t t

f t f t f t f t

t t t t

g t g t g t g t

t t t t

β
α β β

α
α β β

β
α β β

−

−

−

−

−

+ −

+ −

−
+ −

= + −

−
+ −

= + −

  −    −  
 − −  + −  + − −   

 − −
 ≤ −
 + − − 

 − −
+ −

+ − −

∑

∑
( )1

.
jp x −

 
 
 

 

https://doi.org/10.4236/apm.2017.79033


O. Mejía et al. 
 

 

DOI: 10.4236/apm.2017.79033 520 Advances in Pure Mathematics 
 

Therefore, 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1 11

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1
ˆ

1
ˆ

j

j

p x

j j j jn

j j j j j

p x
n j j j j

j j j j j

n j j j j

j j j j j

f g f g f g f gt t t t

t t t t

f t f t f t f t

t t t t

g t g t g t g t

t t t t

α β α β α β α β
µ µ µ µ

α
α β β

β
α β β

−

−

+ −−

= + −

−
+ −

= + −

−
+ −

= + −

       + + + +
− −       

       −
− −

 − −
 ≤ −
 + − − 

 − −
+ −

+ − −

∑

∑

∑
( )

( )( ) [ ] ( )( ) [ ]

1

,2 ,2; , ; , .ˆ ˆ

jp x

W W
p p

f gV a b V a b
α β

α β α ββ β

−

⋅ ⋅


 
 


   

≤ + < ∞   
+ +   

 

Then, taking supremum over all partitions, we get that 

( )( ) [ ]

( )( ) [ ] ( )( ) [ ]

,2

,2 ,2

; ,

; , ; ,ˆ ˆ

1 .

W
p

W W
p p

f gV a b

f gV a b V a b

α β
µ

α β
α β α ββ β
α β

α β α β

⋅

⋅ ⋅

 +
 
 

   
≤ +   

+ +   

≤ + = < ∞
+ +

 

Therefore ( )( ) [ ],2 ,W
pf g BV a bα β ⋅+ ∈ . 

The other properties of a vectorial space follow similarly. 
Theorem 3 Let p  be an admissible function. The space ( )( ) [ ],2 ,W

pBV a b⋅  is a 
normed space. 

Proof. Let p  be an admissible function. Let us analyze all the properties of a 
norm. 

1) By definition of 
( )( )[ ],2 ,W

pBV a b
⋅

⋅ , we have that 
( )( )[ ],2 , 0W

pBV a bf
⋅

≥  for all 

( )( ) [ ],2 ,W
pf BV a b⋅∈  

2) To prove that 
( )( )[ ] ( )( )[ ],2 ,2, ,W W

p pBV a b BV a bf fα α
⋅ ⋅

=  for any α ∈ , we 

consider the possible cases: 
- If 0α = , then 

( )( )[ ] ( )( )[ ] ( )( )[ ] ( )( )[ ],2 ,2 ,2 ,2, , , ,0 0 0W W W W
p p p pBV a b BV a b BV a b BV a bf f fα α
⋅ ⋅ ⋅ ⋅

= = = =  

for any ( )( ) [ ],2 ,W
pf BV a b⋅∈ . 

- If 0α ≠ , then 

( )( )[ ] ( ) ( ) ( )( ) [ ]

( ) ( ) ( )( ) [ ]

,2
,2,

,2

inf 0; ; , 1

inf 0; ; , 1

W
p

W
pBV a b

W
p

ff f a f a V a b

ff a f a V a b

α
α α α λ

λ

α α λ
λ
α

⋅
+ ⋅

+ ⋅

  ′= + + > ≤  
  

  
   ′= + + > ≤  

      
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( ) ( ) ( )( ) [ ]

( ) ( ) ( )( ) [ ]

( ) ( ) ( )( ) [ ]

( )( )[ ],2

,2

,2

,2

,

inf 0; ; , 1

inf 0; ; , 1

inf 0; ; , 1

,W
p

W
p

W
p

W
p

BV a b

ff a f a V a b

ff a f a V a b

ff a f a V a b

f

λ
α α α

λα
α

λ
α α α

λα
α

α α α β
β

α
⋅

+ ⋅

+ ⋅

+ ⋅

  
   ′= + + > ≤  

      
  
   ′= + + > ≤  

      
   ′= + + > ≤  
   

=

 

3) Property 
( )( )[ ] ( )( )[ ] ( )( )[ ],2 ,2 ,2, , ,W W W

p p pBV a b BV a b BV a bf g f g
⋅ ⋅ ⋅

+ ≤ +  is satisfied by 

using that f g f g+ ≤ + , ( )f g f g f g+ + + ++
′ ′ ′ ′ ′+ = + ≤ +  and the 

previous proposition. 
4) Let us see that 

( )( )[ ],2 , 0W
pBV a bf
⋅

=  if and only if 0f = . 

- If 
( )( )[ ],2 , 0W

pBV a bf
⋅

= , then by definition of the norm, ( ) 0f a =  and 

( ) 0f a+′ = , and 

( )( ) [ ],2inf 0; ; , 1 0.W
p

fV a bλ
λ⋅

  > ≤ =  
  

 

Hence, we have by Proposition 3 and Proposition 4 (2) that 

( )( ) [ ]( )
( )( )[ ],2

,2 ,; , .W
p

W
p BV a bV f a b f

⋅
⋅ ≤  

Therefore, ( )( ) [ ]( ),2 ; , 0W
pV f a b⋅ = , and hence, 

( ) ( ) ( ) ( ) ( )1

*

1 1 1

1 1 1

sup 0.
jp x

n j j j j

j j j j j

f t f t f t f t

t t t tπ

−
−

+ −

= + −

− −
− =

− −∑  

Therefore, for any tagged partition *π  of the interval [ ],a b , that is a 
partition { }0 na t t bπ = = < < =  together with a finite sequence of numbers 

0 , , nx x  subject to the conditions 1j j jt x t +≤ ≤  for each j , we have that 

( ) ( ) ( ) ( ) ( )

{ }
1

1 1

1 1

0, 1, , 1 .
jp x

j j j j

j j j j

f t f t f t f t
j n

t t t t

−

+ −

+ −

− −
− = ∀ ∈ −

− −
  

So that 

( ) ( ) ( ) ( )
{ }1 1

1 1

, 1, , 1 .j j j j

j j j j

f t f t f t f t
j n

t t t t
+ −

+ −

− −
= ∀ ∈ −

− −
  

Consider the partition { }1 2a t t c t bπ = ≤ < = < ≤ . We get that 

( ) ( ) ( ) ( ) ( )lim lim 0.
c a c a

f t f c f c f a
f a

t c c a +→ + → +

− −
′= = =

− −
 

https://doi.org/10.4236/apm.2017.79033


O. Mejía et al. 
 

 

DOI: 10.4236/apm.2017.79033 522 Advances in Pure Mathematics 
 

Then 

( ) ( ) 0.
f t f a

t a
−

=
−

 

As ( ) 0f a =  is obtained that ( ) 0f t =  for all [ ],t a b∈ . 
- In other hand, if 0f = , then ( ) 0f t =  for all [ ],t a b∈ . Hence,  
( ) 0f a+′ =  and ( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , 0; , 0W W

p pV f a b V a b⋅ ⋅= = . Therefore, by definition, 

( )( )[ ],2 , 0.W
pBV a bf
⋅

=  

Theorem 4 Let p  be an admissible function. The space ( )( ) [ ],2 ,W
pBV a b⋅  is a  

Banach space endowed with the norm in (3.1). 
Let { }n n

f
∈  be a Cauchy sequence in ( )( ) [ ],2 ,W

pBV a b⋅ . Then, for all 0> ,  

there exists ( )N   such that 

( )( )[ ] ( )
,2 ,

, , .W
p

m n BV a bf f m n N
⋅

− < ∀ >   

Therefore, by definition it follows that 

( )( ) [ ] ( ),2inf 0; ; , 1 , , ,W m n
p

f fV a b m n Nλ
λ⋅

 −  > ≤ < ∀ >  
  

          (3.5) 

( )( ) ( ), , ,m nf f a m n N− < ∀ >               (3.6) 

and 

( ) ( ) ( ), , .m nf f a m n N
+
′− < ∀ >               (3.7) 

Then, by (3.5) and Proposition 4 (2) we have that 

( )( ) [ ]( ),2 ; , .W
m npV f f a b⋅ − <   

It implies that for fixed t , ( ){ }n n
f t

∈
 is a Cauchy sequence in  . Indeed, 

( )( ) ( ),2 1, ,W m n
p

f fV m n N⋅

−  ≤ ∀ > 
 




 

then for all [ ], , ,x y z a b∈ , m nf f f= −  we get 

( ) ( ) ( ) ( ) ( )

( )( ),2

1 1
p y

W m n
p

f z f y f y f x f fV
z y y x ⋅

− −  − − ≤ ≤   − −    
 

so 

( ) ( ) ( ) ( ) ( )
( ).

p y
p yf z f y f y f x

z y y x
− −

− ≤
− −

  

As 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

p yp y

p y

f z f y f z f y f y f x
z y z y y x

f z f y f y f x
z y y x

− − −
≤ −

− − −

− −
≤ −

− −
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thus 

( ) ( ) ( )
( ).

p y
p yf z f y

z y
−

≤
−

  

Therefore 

( ) ( ) ( ) ( ) ( )p y p y
f z f y z y− ≤ −  

and by property of log 

( ) ( ) ( ) ( ) ( )log log .p y f z f y p y z y− ≤ −  

Then 

( ) ( ) ( )log logf z f y z y− ≤ −  

and hence 

( ) ( ) ( )log .exp z yf z f y z y−′− ≤ = = −   

i.e. 

( )( ) ( )( ) ( ), , .m n m nf f z f f y m n N′− − − ≤ ∀ >   

Let ( ) ( ): limn nf t f t→∞=  for any [ ],t a b∈  and let π  be any partition 

{ }0: , , ka t t bπ = = =  of [ ],a b  and a sequence 0 1, , kx x −  such that  

1j j jt x t +≤ ≤  for any 1 1j k≤ < − . It follows that for all ( ),m n N>   

( )( ) ( )( ) ( )( ) ( )( ) ( )1

1 1

1 1 1

.
jp x

k m n j m n j m n j m n j

j j j j j

f f t f f t f f t f f t

t t t t

−

+ −

= + −

− − − − − −
− <

− −∑   

Then, letting n →∞ , for any ( )m N>   it follows that 

( )( ) ( )( ) ( )( ) ( )( ) ( )1

1 1

1 1 1

.
jp x

k m j m j m j m j

j j j j j

f f t f f t f f t f f t

t t t t

−

+ −

= + −

− − − − − −
− <

− −∑    (3.8) 

Therefore, as (3.8) follows for any tagged partition *π  of [ ],a b , taking 
supremum over all tagged partitions it follows that 

( )( ) [ ]( ) ( ),2 ; , , .W
mpV f f a b m N⋅ − < ∀ >          (3.9) 

Moreover, by (3.6) and (3.7), we have that 

( )( ) ( ) ( ) ( ), , , .m n m nf f a f f a m n N
+
′− < − < ∀ >    

Then, letting n →∞ , we have that 

( )( ) ( ) ( ) ( ), , .m mf f a f f a m N
+
′− < − < ∀ >           (3.10) 

Then, (3.9) and (3.10) imply that for m  sufficiently large 

( )( )[ ],2 ,
3 .W

p
m BV a bf f

⋅
− <   

Hence, as 
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( )( )[ ] ( )( )[ ] ( )( )[ ],2 ,2 ,2, , ,
,W W W

p p p
m mBV a b BV a b BV a bf f f f

⋅ ⋅ ⋅
≤ − + < ∞  

we obtain that ( )( ) [ ],2 , .W
pf BV a b⋅∈  

Theorem 5 Let p  be an admissible function. Then, we have: 
1) If ( )( ) [ ],2 ,W

pf BV a b⋅∈ , then f  is bounded in all the interval [ ],a b . 

2)  ( )( ) [ ] ( )( ) [ ],2 ,2, ,W W
p qBV a b BV a b⋅ ⋅  for functions ( ) ( ).q x p x≥  

Let us proof (a). Suppose that ( )( ) [ ],2 ,W
pf BV a b⋅∈  and f  is not bounded. 

Then, there exists a sequence { } 1n n
t

≥ , ( ),nt a b∈ , 1n ≥  such that ( )nf t →∞  

when n →∞ . Let { } 1m m
t

≥  be a subsequence of { } 1n n
t

≥  such that { } 1m m
t

≥  

converge to [ ],x a b∈ . As ( ){ } 1m m
f t

≥
 is a subsequence of ( ){ } 1n n

f t
≥

, so 

( ) when .mf t n→∞ →∞  

Case 1: Suppose that x a=  and let t  such that ma t t b≤ < <  for some 
{ } 1m m m

t t
≥

∈ , then 

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( ),2 ; ,
tp x

m W
p

m

f t f tf b f t
V f a b

b t t t ⋅

−−
− ≤

− −
 

and since su u→  is continuous 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( ),2

lim

lim ; , .

t

t

p x
mm

p x
m W

pm
m

f t f tf b f t
b t t x

f t f tf b f t
V f a b

b t t t

→∞

⋅→∞

−−
−

− −

−−
= − ≤

− −

 

On the other hand ( ) ( )mf t f t−  tend to infinity as m →∞ . Then 

( ) ( ) ( ) ( ) ( )

lim ,
tp x

m

m
m

f t f tf b f t
b t t t→∞

−−
− = ∞

− −
 

and hence ( )( ) [ ]( ),2 ; ,W
pV f a b⋅ = ∞ , which is a contradiction. 

Case 2: Suppose that x a≠  and let t  such that ma t t b< < <  for some 

{ } 1m m m
t t

≥
∈ , then 

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( ),2 ; , .
tp x

m W
p

m

f t f t f t f a
V f a b

t t t a ⋅

− −
− ≤

− −
 

Since su u→  is continuous 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )( ) [ ]( ),2

lim

lim ; , .

t

t

p x
mm

p x
m W

pm
m

f t f t f t f a
x t t a

f t f t f t f a
V f a b

t t t a

→∞

⋅→∞

− −
−

− −

− −
= − ≤

− −

 

On the other hand ( ) ( )mf t f t−  tend to infinity as m →∞  then 
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( ) ( ) ( ) ( )
( )lim

as ,
tp x

mm
f t f t f t f a

n
x t t a

→∞
− −

− →∞ →∞
− −

 

and then ( )( ) ( ),2
W
pV f⋅ = ∞ , which is a contradiction. 

Let us proof (b). Taking 
( )( )[ ],2 , 1W

pBV a bf
⋅

= , since ( )( ) [ ]( ),2 ; , 1W
pV f a b⋅ ≤ , it 

follows that 

( ) ( ) ( ) ( ) ( )1
1 1 1

=1 1 1

1,
jp x

n j j j j

j j j j j

f t f t f t f t

t t t t

−
−

+ −

+ −

− −
− ≤

− −∑  

for any tagged partition { }0: na t t bπ = = < < =  and any sequence of points 

jx  such that 1j j jt x t +≤ ≤  for 0, , 2.j n= −  Therefore, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1 1 1

1 1 1

1 1 1

1 1 1

1,

j

j

q x
n j j j j

j j j j j

p x
n j j j j

j j j j j

f t f t f t f t

t t t t

f t f t f t f t

t t t t

−

−

−
+ −

= + −

−
+ −

= + −

− −
−

− −

− −
≤ − ≤

− −

∑

∑

 

since in particular 
( ) ( ) ( ) ( ) ( )1

1 1

1 1

1
jp x

j j j j

j j j j

f t f t f t f t

t t t t

−

+ −

+ −

− −
− ≤

− −
 for any  

1 1j n≤ ≤ − . Taking supremum to both sides, we obtain that 

( )( ) [ ]( ) ( )( ) [ ]( ),2 ,2; , ; ,W W
q pV f a b V f a b⋅ ⋅≤ . Then, by definition it follows that 

( )( )[ ] ( )( )[ ],2 ,2, , ,W W
q pBV a b BV a bf f
⋅ ⋅

≤  

and the general case follows from the homogeneity of the norm.  

4. Functions in ( )( ) [ ]W
pBV a b,2 ,⋅  and Hölder Continuous 

Functions 

In this section we prove also that if a function is the composition of a bounded 
monotone function with a ( )( )1γ ⋅ + -Hölder continuous function with 
( ) ( )1 pγ ⋅ = ⋅ , then the function is in ( )( ) [ ],2 ,W

pBV a b⋅ . 
Definition 8 A function [ ]: ,g a b →  is Hölder continuous of exponent γ , 

where ( )γ ⋅  is a positive function such that ( )0 1xγ≤ ≤ , if 

( ) ( ) ( )1
1 1

ix
i i i ig t g t C t t γ −

− −− ≤ −  

for all [ ]1 ,ix a b− ∈ . The least number C  satisfying the above inequality is called 
the Hölder constant of g . 

Proposition 6 Let p  be an admissible function and [ ]: ,f a b →  such 
that f g ϕ=  , where [ ]: ,a bϕ →  is a bounded monotone function and  

[ ]: ,g a bϕ →  is ( )( )1γ ⋅ + -Hölder continuous with ( ) ( )
1

p
γ ⋅ =

⋅
. Then 
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( )( ) [ ],2 ,W
pf BV a b⋅∈ . 

Proof. Assume that ϕ  is nondecreasing. Since [ ]( ) ( ) ( ), ,a b a bϕ ϕ ϕ=    , by 
virtue of the change of variable 

( )( ) [ ]( ) ( )( ) [ ]( ) ( )( ) ( ) ( )( ),2 ,2 ,2; , ; , ; , .W W W
p p pV f a b V g a b V g a bϕ ϕ ϕ⋅ ⋅ ⋅= =        (4.1) 

If { } 0

n
i i

T t
=

=  is a partition of ( ) ( ),a bϕ ϕ    and { }jx  is a sequence of 

points ( )1,j j jx t t +∈  for 0, , 2j n= −  then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

1

1

1
1 1

1 1

1
1 1

1 1 1

1
1 1

1 1 1

1 11
1 1

1 1 1

1

1 1
1

i

i

i
i i

i i

p x
n

i i i i

i i i i i

p x
n

i i i i

i i i i i

p xx xn
i i i i

i i i i i

n x x
i i i i

i

g t g t g t g t
t t t t

g t g t g t g t
t t t t

C t t C t t
t t t t

C t t C t t

γ γ

γ γ

−

−

−
− −

− −

−
+ −

= + −

−
+ −

= + −

+ +−
+ −

= + −

−

+ −
=

− −
−

− −

 − −
≤ +  − − 

 − −
 ≤ +
 − − 

≤ − + −

∑

∑

∑

∑
( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

1

1 1 1 11 1 1
1

1 1
1

1
1

1 1
1

2

2 2 .

i

i i i ii i i

p x

n x p x x p xp x p x p x
i i i i

i

n
p p p p p

i i i i
i

C t t C t t

C t t C t t C b a

γ γ

ϕ ϕ

−

− − − −− − −

+ + + + +

−

+ −
=

−
+

+ −
=

≤ − + −

≤ − + − ≤ −

∑

∑

 

Therefore, by taking supremum over any tagged partition, it follows that 

( )( ) ( ) ( )( ) ( ) ( )1
,2 ; , 2W p p

pV g a b C b aϕ ϕ ϕ ϕ
+ ++

⋅ ≤ − < ∞    

by the boundedness of ϕ . Hence, by (4.1) 

( )( ) [ ]( ) ( )( ) ( ) ( )( ),2 ,2; , ; , .W W
p pV f a b V g a bϕ ϕ⋅ ⋅= < ∞    

5. The Matkowski’s Condition 

Let us show as an application that, any uniformly bounded composition 
operator that maps the space ( )( ) [ ],2 ,W

pBV a b⋅  into itself satisfies the Matkowski’s 
condition. 

Theorem 6 Suppose that the composition operator H  generated by h  
maps ( )( ) [ ],2 ,W

pBV a b⋅  into itself and satisfies the following inequality 

( )( ) ( )( )( ) ( )( ) [ ]( )1 2 1 2 1 2 ,2,2 ,2 , , , ,W W W
pp pHf Hf f f f f BV a bγ ⋅⋅ ⋅

− ≤ − ∈       (5.1) 

for any function [ ) [ ): 0, 0,γ ∞ → ∞ . Then, there exist functions 

( )( ) [ ],2, ,W
pBV a bα β ⋅∈  such that 

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β= + ∈ ∈                (5.2) 

Proof. By hypothesis, for x∈  fixed, the constant function ( )f t x= ,  
[ ],t a b∈  belongs to ( )( ) [ ],2 ,W

pBV a b⋅ . Since H  maps ( )( ) [ ],2 ,W
pBV a b⋅  into itself, 
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we have that ( )( ) ( )( ) ( )( ) [ ],2, ,W
pHf t h t f t BV a b⋅= ∈ . 

From inequality (5.1) and definition of the norm ( )( ),2

W
p ⋅

⋅ , we have for 

( )( ) [ ]1 2 ,2, ,W
pf f BV a b⋅∈ , 

( )( ) [ ]

( )( ) ( )( )( )

1 2
,2

1 2 1 2,2 ,2

inf 0; ; , 1

,

W
p

W W
p p

Hf HfV a b

Hf Hf f f

λ
λ

γ

⋅

⋅ ⋅

 −  > ≤  
  

≤ − ≤ −

 

and then 

( )( )
( )( )( ) [ ]1 2

,2

1 2 ,2

; , 1.W
p W

p

Hf HfV a b
f fγ

⋅

⋅

 
−  ≤ 

− 
 

                (5.3) 

Consider btsa ≤≤ <  and let { }0 1 2: , , ,m mt t tπ π= ∈  be the equidistant 
partition defined by 

( )0 1, , 1, 2, , 2 .
2j j
t st s t t j m

m−
−

= − = =   

Given ,u v∈  with u v≠ , define [ ]1 2, : ,f f a b →  by 

( )1

, if for some even ,

: , if for some odd ,
2

linear, otherwise

j

j

v x t j
u vf x x t j

=
 += =



 

and 

( )2

, if for some even ,
2: , if for some odd ,

linear, otherwise.

j

j

u v x t j
f x u x t j

+ ==  =


 

Then, the difference 1 2f f−  satisfies that ( ) ( )1 2 2
u v

f x f x
−

− =  for all 

[ ],x a b∈ . Therefore, by the inequality (5.1) 

( )( ) ( )( )( )1 2 1 2,2 ,2

,
2

W W
p pHf Hf f f

u v

γ

γ

⋅ ⋅
− ≤ −

 − 
≤  

 

 

and hence, by definition 

( )( ) [ ]1 2
,2 ; , 1.

2

W
p

Hf HfV a b
u v

γ
⋅

 
 

−  ≤  − 
     

                    (5.4) 
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From the inequality (5.4), and the definition, it follows that for any partition  

( ){ }0 2 4 2 1, , , , mt t t t −  of [ ],a b  

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )1

1 1 2 2 2 1 2 1 2 2 1

1
2 2 1

1 2 1 2 2 1 1 2 2 2 2 2

2 1 2 2

2

1.

2

j

m j j j j

j
j j

p x

j j j j

j j

h f t h f t h f t h f t

u v
t t

h f t h f t h f t h f t

u v
t t

γ

γ

−

−
− −

=
−

− − − −

− −

− − +

 − 
−  

 

− − +
− ≤

 − 
−  

 

∑

 

However, by the definition of 1f  and 2f , we have that 

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )

( ) ( )
( )

( )

1

1

1
1 2 2 2 1 2 1 2 2 1

1
2 2 1

1 2 1 2 2 1 1 2 2 2 2 2

2 1 2 2

1

1

1

1

2

2

2 2
2

2 2

4

j

j

m j j j j

j
j j

p x

j j j j

j j

p x

m

j

m

j

h f t h f t h f t h f t
u v

t t

h f t h f t h f t h f t
u v

t t

u vh v h u h

u vt s
m

h v h
m

t s

γ

γ

γ

−

−

−
− −

=
−

− − − −

− −

−

=

−

=

− − +

 − 
−  

 

− − +
−

 − 
−  

 

 + + −  
  =   − −     

+
=

−

∑

∑

∑
( )

( )1

2
2 1.

2

jp x
u vu h

u v
γ

− + −  
   ≤  − 

       

Then, since ( )11 jp x −< < ∞  and 1,2, , 2j m=  , it follows that 

( ) ( )
( )

( ) ( )
( )

1

1

1

1

1

1

2
24

2

2
24 1.

2

j

j

p x

m

j

p x

m

j

u vh v h u h

t s u v

u vh v h u h
m

t s u v

γ

γ

−

−

−

=

−

=

 + + −  
  

 −  − 
     

 + + −  
  ≤ ≤ −  − 

     

∑

∑

 

Hence, necessarily 

https://doi.org/10.4236/apm.2017.79033


O. Mejía et al. 
 

 

DOI: 10.4236/apm.2017.79033 529 Advances in Pure Mathematics 
 

( ) ( ) 2 0.
2

u vh v h u h + + − = 
 

 

So that, we conclude that ( ),h s ⋅  satisfies the Jensen equation in  . The 
continuity of h  with respect to the second variable implies that for every 

[ ],t a b∈  there exists [ ], : ,a bα β →  such that 

( ) ( ) ( ) [ ]( ), , , , .h t x t x t t a b xα β= + ∈ ∈  

Since ( ) ( ),0t h tβ = , [ ],t a b∈ , ( ) ( ) ( ),1t h t tα β= −  and  

( ) ( )( ) [ ],2, ,W
ph x BV a b⋅⋅ ∈  for each x∈  we obtain that ( )( ) [ ],2, ,W

pBV a bα β ⋅∈ . 

Now we will give the definition of uniformly bounded mapping introduced by 
J. Matkowski in [24]. 

Definition 9 Let X  and Y  be two metric (or normed) spaces. A mapping 
:H X Y→  is uniformly bounded if, for any 0t >  there exists a nonnegative 

real number ( )tγ  such that for any nonempty set B X⊂  we have 

( ) ( ) ( ).diam B t diamH B tγ≤ → ≤  

With the same kind of argument than in ([23], Theorem 7), we can see that 
any uniformly bounded composition operator acting between general Lipschitz 
function normed space must be of the form (5.2): 

Theorem 7 Let [ ]: ,h a b × →   and H  the composition operator 
associated to h . Suppose that H  maps ( )( ) [ ],2 ,W

pBV a b⋅  into itself and it is 
uniformly continuous, then there exists functions ( )( ) [ ],2, ,W

pBV a bα β ⋅∈ , such 
that 

( ) ( ) ( ) [ ]( ), , , , .h t x t x t t a b xα β= + ∈ ∈  

Proof. It follows as ([23], Theorem 7) by Theorem 6. 

6. Absolutely Continuous Functions 

We now define the analog of absolute p-continuous functions of order two in 
the framework of variable space. 

Definition 10 Given a function [ ] ( ): , 1,p a b → ∞ , by modulus of ( )p ⋅
-continuity of order two of a function [ ]: ,f a b → , we mean 

( )( ) ( )
( ) ( ) ( ) ( ) ( )1

**

1 1 1,2

1 1 1

: sup sup ,
jp x

n j j j jp

j j j j j

f t f t f t f t
f

t t t tδ
ππ δ

ω
−

−
+ −⋅

=≤ + −

− −
= −

− −∑  

where the supremum is taken over all tagged partitions 
{ }*

0 1 na t t t bπ = = < < < =  of the interval [ ],a b  together with a finite 
sequence of numbers 0 2, , nx x −  subject to the conditions 1j j jt x t +≤ ≤  for 
each j  such that the norm of *π  is at most δ . 

Lemma 3 Let p  be an admissible function. The modulus of ( )p ⋅ - 
continuity of order two is a sub-additive function. 

Proof. Let [ ], : ,f g a b → . 
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( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )

1

1

1

,2

1
1 1

1 1 1

1
1 11

1 1 1

1 1

1 1

,21

sup sup

2 sup sup

2

j

j

j

p

p x
n j j j j

j j j j j

p x
n j j j jp

j j j j j

p x

j j j j

j j j j

p pp

f g

f g t f g t f g t f g t
t t t t

f t f t f t f t
t t t t

g t g t g t g t
t t t t

f

δ

π δ π

π δ π

δ δ

ω

ω ω

−

−

+

−

+

⋅

−
+ −

≤ = + −

−
+ −−

≤ = + −

+ −

+ −

⋅−

+

+ − + + − +
= −

− −

 − −≤ − − −


− − + − − − 


= +

∑

∑

( )( ) ( )( ),2 .g⋅

 

If ( )( ) [ ],2 ,W
pf BV a b⋅∈  and ( )( ) ( ),2

0lim 0p fδ δω
⋅

→ = , we say that f  is  

absolutely ( )p ⋅ -continuous of order two, that is, ( )( ) [ ],2 ,pf C a b⋅∈ . 

Theorem 8 Let p  be an admissible function. Then ( )( ) [ ],2 ,pC a b⋅  is a closed 

subspace of ( )( ) [ ],2 ,W
pBV a b⋅ . 

Proof. We take a sequence { }n n
f

∈  of functions in ( )( ) [ ],2 ,pC a b⋅  such that 

( )( ) [ ],2lim , .W
n pn

s f f BV a b⋅→∞
− = ∈                   (6.1) 

By the sub-additivity of ( )( ) ( ),2p fδω
⋅  we have that 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ),2 ,2 ,2 .p p p
n nf f f fδ δ δω ω ω⋅ ⋅ ⋅≤ − +  

Moreover, since ( )( ) ( ) ( )( ) ( ),2
,2

pW
pV f fδω

⋅
⋅ ≥  and ( )( ) ( ) ( )( ) ( ),2 ,22W W

p pV f V f⋅ ⋅ ,  

using Proposition 2.3. in [21] and the strong limit (6.1) we have that, for each  
fixed δ , ( )( ) ( ),2 0p

nf fδω
⋅ − →  when n →∞ . Since ( )( ) ( ),2 0p

nfδω
⋅ →  when 

0δ →  by hypothesis, we obtain that ( )( ) ( ),2 0p fδω
⋅ →  when 0δ → . 
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