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ABSTRACT

The error-sum function of alternating Sylvester series is introduced. Some elementary properties of this function are
studied. Also, the hausdorff dimension of the graph of such function is determined.
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1. Introduction

Forany xe(0,1],let d :=d,(x)eN and
T:=T(x)e(0,1] be defined as

1 1

dl(x)z{ﬂ,(x);zm_

where [ ] denote the integer part. And we define the
sequence {d, (X),n>2} as follows:

d,(x)=d, (T”’l(x)), )

where T" denotes the nth iterate of T (TO = Id(o,1]) )

X, T(0)=0. (1)

It is well known that from the algorithm (1), all
x€(0,1] can be developped uniquely into an infinite or
finite series

_ il 1
*=2) di (x)’ 3)

where ., (X)>d, (x)(d; (x)+1).

In the literature [2], (3) is called the Alternating
Balkema-Oppenheim expansion of X and denoted by
X :[d1 (x),---.d, (X),:| for short. From the algorithm,
one can see that T maps irrational element into irrational
element, and the series is infinite. While for rational
numbers, in fact, we have xe(0,1] is rational if and
only if its sequence of digits d,(x),--, is terminate or
periodic, see [1-3].

Forany xe(0,1] and n>1, define

pn(x)_ - HL
w0 27 G0

From the algorithm of (1), it is clear that

“Corresponding author.
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pn(X) N—en
X= +(-1) T"(x). “4)
T
For any xe(0,1], let X:[dl(x),---,dn(x),---] be
its Alternating Sylvester expansion, then we have
dj+1(x)2dj(x)(dj(x)+1) for any j>1. On the other
hand, any {dj,jzl}

of integer sequence satisfying
d;, (x)>d, (X)(dj (x)+1) for all j>1 is a Sylvester
admissible sequence, that is, there exists a unique
x€(0,1] suchthat d;(x)=d; forall j>1,see[9].

The behaviors of the sequence d, (x) are of interest
and the metric and ergodic properties of the sequence
{dn (x),n>1} and T have been investigated by a
number of authors, see [1-3].

Forany xe(0,1], define

s(x)::g(x-z:T(xx))} )

and we call S(x) the error-sum function of Alternating
Sylvester series. By (4), since d,, (x)=d, (x)(d, (x)+1)
for all n>1, then |S(X)|S1 and S(x) is well defined.
In this paper, we shall discuss some basic nature of
S(x), also the Hausdorff dimension of the graph of
S(x) is determined.

2. Some Basic Properties of S(x)

In what follows, we shall often make use of the symbolic
space.
Forany n>1, let

foralllSkSn}.
Define
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Forany o=(0,,0,,,0,)eD,, write

:L_L+...+(_1)”’1L’ (6)
o, O, On
BG:L—L+--~+(—1)”_1 ! 7
o, O, o, +1

Weuse J_ to denote the following subset of (0,1],
J, ={xe(0,1]:d,(x)=0,,
dz(X):02,~~-,dn(X)=0'n}.

From theorem 4.14 of [8], we have J, =(A,,B,]
when n is even, and J,=(B,,A,] when n is odd.
Finally, define

®)

| ={Aﬁ, B,,o€ Dn,nzl.} 9)
Lemmal.Forany n>1 and xe(0,1],
1) lim S(x)=0; (10)
x—0"
17
2) —X<S <0; 11
) 30 (x) (11)

i=1

3) S(x)zzn:(x— i (X)J+(—1)nS(T”(x)). (12)

Proof. 1) Since d;,, (x)=d;(x)(d;(x)+1) and

d,(x)=1, so when n>3,we can get

2 2n71
d,, >d>>..>d2"",

n+l1

accordingly

n-2

d,>d;"" = (d?(d, +1)2)

wewrite a(x)=d, (x)’(d,(x)+1)",s0 d, >a(x)"".

1

Now 600~

} implies

—X, for 0<Tn(X)Sl

o 1 3 1
- \/a(x) a(x)z—I’

let x—>0", we have dl(x)—>+oo and a(x)—>+oo,
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thus
S(x)—>0
2) From 1) we know that

2 2n—l
d,, >d>>..>d"",

n+l1

from the definition of d;(x) we also know that d, >1,
so d,>d (d +1)>2,

dn+1 > d22"71 2 4n—l’
thus
s 1 1 & 1 17
S 2 _1 —2_—— _—
(925 Dg 25 S5

3) Sinceas n>m,

B0 _Pa() (o Prn (T ()
6,(%) 6 (%) G (T" (%))

Il
.M:
T

I'=1\{1}.

Proposition 2. Forany xel’, if
x=[d, (), 0y, (x)], then S(x)is left continuous
but not right continuous. If x =[d, (x),---,d,, ()], then
S(x) is right continuous but not left continuous.

Proof. For any n>1 and oeD,, write x =A_,
X, =B, ,where A, B_ aregiven by (6) and (7).

Casel, n=2k+1, then

IZL_LJF... 1 (13)
o 0, Ok
1 1 1
Xy =———+:+ (14)
o, 0, O +1
and J,=(B,,A,]. For any x eJ, , since when
Tt = O (o +1),
APM
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1 1 1 1
_——+...—_+
o, 0, O O+

1 1 1 1

:———J'-...—_

o, 0, Oy O (0'2k +1)
ot 1

o, O, o, +1

This situation is included in Case II, so we can take
Oyt > Oy (0 +1) and

1
!
X =X - for some @ > 0, (0, +1).

i.e.
Xl,:[O-l’“"sz’o-zkﬂ’[a]'”:'
' 2l 2 pi (Xl’)] ( ' p2k+2 (XI’)]
S(x)—-S(x )= X — 4| x =222 A7)
()-86) ( a () ) 1 e ()

_pi(xl) + 242 (1
qi(X])J S(T (l))

2k +1 + ' + '
S +T 2(X1)+S(T2k Z(Xl))
By (2),
1 1
—<T" < for0<T
d., ()1 () d. (s ()<t
which implies
1 1 1
Tn+1 X) = _Tﬂ X) < —
B0 a0 a0
1
dn+1(x)(dn+1(x)+l)
and
1
O T2k+2 ' )
< (X')<a(a+l)
Let a—>+o , we get T*7?(x)—>0 and

S(T*(x)) >0, thus

lim S(x)=S(x),

X[ X

and this implies S(X) is left continuous at X, .
Let

X/ =X + 1 for some
a
a2 (0 —1) o, ((O'zk+1 ~1) 0y +1),
ie= [Gp"'vo'zwazkﬂ _17(62k+1 _l)azkw[a]s'”}s

then
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J+[X{,_ p2k+1 (X{:)J
Uai1 (Xl)

5B - Bl
B[22t
- 2";2 e _ll)azm ST () =S (T (X)),

Let a — 400, we have

lim S (x) =8 (x ) ~——

X% (O-2k+1 _l)o-zkﬂ

and this implies S(x) is not right continuous at X, .
For

1 1 1
)(2 =t 4
0 0,

(15)

Tyt +1
following the same line as above, we have
1
lim S(x})=5(%)-—————.
X% Faient (T +1)

CaseII n=2k
Let

(16)

)

Following the same line as above, we have

lim S(y;)=

Yioyr

S(y1)+( !

O — I)sz ’

S(y,)+ !

lim S(y,)= _
e (yz) O'zk(sz-l-l)

V2-¥2
and S(y,),S(y,) is right continuous.
Corollary 3. For any n>1 and oeD,
a,=max{A B}, a,=min{A,B_}
xeld_,if n=2k+1, then

a,)<S(x)<S(e),
)= () -—

Ook+1 (sz +1) .
From the corollary, for any o€ D,

, write
. Then for any

s"(

where S’ (a

n

Supx,ye.]a |S (X)— S (y)| = m

=ni(J,)
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where A(J,) is the Lebesgue measure of J, .

Theorem 4. S(x)is continuouson (0,1]\1".

Proof: Forany xe(0,1]\1" and x=1, let
X:(dl(x),~~ ,dn(x),m) be its Alternating Sylvester
exFanswn For any n=>1, write

( )RS ,dn(x)). By (Corollary 3), for any
ye Jcr , we have
[S()=S(V)[<(MA(3 ) >0, as >

Write I, ={C,}, where

11 1
C,=———+-+

o, 0, O k41

Theorem 5. If 0<a<b<1,S(a)<y<S(b), then
there exists ce(a,b)\{l,},suchthat S(c)=y.

Proof. Set g(x ) S(x ) y, then g(x) has the same
continuity as S(x). Write

E:{X|g X <0,Xe[a,b]}, X, =supE.

trivially, a € E, then the set is well defined.
If b=[0,,0,,+,0y,,], then by the left continuity of
S(b), we have
lim g(x)=g(b)>0,

x—b™

As a result, there exists a ¢, >0 such that for any
xe(b-5,,b),g(x)>0.

If b=[0,,0,,--,0,], since g(b) is not left con-
tinuous, then 38,>0 such that for any xe(b-4,,b),
g(x)>0,thatis x,#b.

Following the same line as above, we can prove
X, >a.

Now we shall prove that g(X,)<0. We can choose
X, € E such that X, —Xx;, if X, =[0,0,,,0.]
then

g(x%,)= lim g(x,)<0,

Xn X0

if x,=[0,,0,,+,05], then

1 .
J (X0)+ (UZk —I)UZk B X:er:a J (XH)S 0
In both case g(x,)<0. Following the same line as
above, we can prove g(X,)=0, and
Xoi[anaza'“sgzkﬂ .
Therefore, there exists ce(a,b)\{l,} , such that
S(c)=y.

+o0 9— 7'[2
Th 6. S d k+1 s
eorem I X+ J' R
and js x)dx = -0.1250.
Proof.
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f;S(x)dx = iﬁ S(x)dx

&=l d+1

= ifm[(x‘d—]—sﬁ(x))]dx

dp=1 d|+1 1

—Zjd' xdx — ZI"I L Zjdl S(T

di=l d,+1 A=l d +1 1

di=l d,+1

1

Let Tx=u=
d, (x)

—X,then du=-dx thus

- —+

ZJ' ]+1
thus,
3 “1 9-a°
S d k+1 -
I X+Zf 2 Edf 6

Through the MATLAB program we can get the de-
finite integration

1
|8 (x)dx=-0.1250.

3. Hausdorff Dimension of Graph for S(x)
Write

Gr(s) ={(x,S(x)), X e(O,l]}.

Theorem 7. dimy, Gr(S)=1.

Proof. For any n>1, {JUXS(JG),UED} is a
covering of Gr(S). From (Cor 3), J_xS(J,) can be
covered by n squares with side of length /1(\]0). For
any £>0,

H‘+6‘(Gr(s))<hmmfz (V2) " (2(3,))"

n—oo

Sli{}riigfn( 2)1 2,n:;n(\/§)l+g

= liminf n(v2 )l 27—,

n—o

Thus, dim, Gr(S)<1
Since

|Proj(x,S(x))—Proj(y,S(y))|sd (x.S(x).(v.S(Y)).

then

1=A((0,1])=H"(0,1]=

so dimy, Gr(S)=1.

H' (Proj (G, ($))) <! (G, (5)),
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Figure 1. The graph of S(x).
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