

Some Properties on the Error-Sum Function of Alternating Sylvester Series

Huiping Jing, Luming Shen*

Science College of Hunan Agricultural University, Changsha, China Email: Huiping J@126.com, *lum s@126.com

Received July 11, 2012; revised September 21, 2012; accepted September 29, 2012

ABSTRACT

The error-sum function of alternating Sylvester series is introduced. Some elementary properties of this function are studied. Also, the hausdorff dimension of the graph of such function is determined.

Keywords: Alternating Sylvester Series; Error-Sum Function; Hausdorff Dimension

1. Introduction

For any $x \in (0,1]$, let $d_1 := d_1(x) \in N$ and $T := T(x) \in (0,1]$ be defined as

$$d_1(x) = \left[\frac{1}{x}\right], (x) := \frac{1}{d_1(x)} - x, T(0) := 0.$$
 (1)

where [] denote the integer part. And we define the sequence $\{d_n(x), n \ge 2\}$ as follows:

$$d_n(x) = d_1(T^{n-1}(x)),$$
 (2)

where T^n denotes the *n*th iterate of $T(T^0 = Id_{(0,1)})$.

It is well known that from the algorithm (1), all $x \in (0,1]$ can be developed uniquely into an infinite or finite series

$$x = \sum_{i \ge 1} (-1)^{i-1} \frac{1}{d_i(x)},$$
where $_{i+1}(x) \ge d_i(x)(d_i(x)+1).$ (3)

In the literature [2], (3) is called the Alternating Balkema-Oppenheim expansion of x and denoted by $x = [d_1(x), \dots, d_n(x), \dots]$ for short. From the algorithm, one can see that T maps irrational element into irrational element, and the series is infinite. While for rational numbers, in fact, we have $x \in (0,1]$ is rational if and only if its sequence of digits $d_1(x), \dots$, is terminate or periodic, see [1-3].

For any $x \in (0,1]$ and $n \ge 1$, define

$$\frac{p_n(x)}{q_n(x)} = \sum_{i=1}^n (-1)^{i-1} \frac{1}{d_i(x)}.$$

From the algorithm of (1), it is clear that

$$x = \frac{p_n(x)}{q_n(x)} + (-1)^n T^n(x). \tag{4}$$

For any $x \in (0,1]$, let $x = [d_1(x), \dots, d_n(x), \dots]$ be its Alternating Sylvester expansion, then we have $d_{j+1}(x) \ge d_j(x)(d_j(x)+1)$ for any $j \ge 1$. On the other hand, any $\{d_j, j \ge 1\}$ of integer sequence satisfying $d_{j+1}(x) \ge d_j(x)(d_j(x)+1)$ for all $j \ge 1$ is a Sylvester admissible sequence, that is, there exists a unique $x \in (0,1]$ such that $d_j(x) = d_j$ for all $j \ge 1$, see [9].

The behaviors of the sequence $d_n(x)$ are of interest and the metric and ergodic properties of the sequence $\{d_n(x), n \ge 1\}$ and T have been investigated by a number of authors, see [1-3].

For any $x \in (0,1]$, define

$$S(x) := \sum_{n=1}^{+\infty} \left(x - \frac{p_n(x)}{q_n(x)} \right), \tag{5}$$

and we call S(x) the error-sum function of Alternating Sylvester series. By (4), since $d_{n+1}(x) \ge d_n(x)(d_n(x)+1)$ for all $n \ge 1$, then $|S(x)| \le 1$ and S(x) is well defined. In this paper, we shall discuss some basic nature of S(x), also the Hausdorff dimension of the graph of S(x) is determined.

2. Some Basic Properties of S(x)

In what follows, we shall often make use of the symbolic space.

For any $n \ge 1$, let

$$D_n = \{ (\sigma_1, \sigma_2, \dots, \sigma_n) \in N^n : \sigma_{k+1} \ge \sigma_k (\sigma_k + 1)$$
 for all $1 \le k \le n \}$.

Define

Copyright © 2012 SciRes.

^{*}Corresponding author.

$$D = \bigcup_{n=0}^{\infty} D_n, (D_0 := \varnothing).$$

For any $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n) \in D_n$, write

$$A_{\sigma} = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots + \left(-1\right)^{n-1} \frac{1}{\sigma_n},\tag{6}$$

$$B_{\sigma} = \frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}} + \dots + (-1)^{n-1} \frac{1}{\sigma_{n} + 1}.$$
 (7)

We use J_{σ} to denote the following subset of (0,1],

$$J_{\sigma} = \left\{ x \in (0,1] : d_1(x) = \sigma_1, d_2(x) = \sigma_2, \dots, d_n(x) = \sigma_n \right\}.$$

$$(8)$$

From theorem 4.14 of [8], we have $J_{\sigma} = (A_{\sigma}, B_{\sigma}]$ when n is even, and $J_{\sigma} = (B_{\sigma}, A_{\sigma}]$ when n is odd. Finally, define

$$I = \{ A_{\sigma}, B_{\sigma}, \sigma \in D_n, n \ge 1. \}$$
 (9)

Lemma 1. For any $n \ge 1$ and $x \in (0,1]$,

1)
$$\lim_{x \to 0^{+}} S(x) = 0;$$
 (10)

2)
$$-\frac{17}{30} \le S(x) \le 0;$$
 (11)

3)
$$S(x) = \sum_{i=1}^{n} \left(x - \frac{p_i(x)}{q_i(x)} \right) + (-1)^n S(T^n(x)).$$
 (12)

Proof. 1) Since $d_{j+1}(x) \ge d_j(x)(d_j(x)+1)$ and $d_1(x) \ge 1$, so when $n \ge 3$, we can get

$$d_{n+1} \ge d_n^2 > \dots > d_2^{2^{n-1}},$$

accordingly

$$d_n > d_2^{2^{n-1}} \ge \left(d_1^2 \left(d_1 + 1\right)^2\right)^{n-2}$$

we write $a(x) = d_1(x)^2 (d_1(x) + 1)^2$, so $d_n > a(x)^{n-2}$.

Now
$$d_{n+1}(x) = \left[\frac{1}{T^n(x)}\right]$$
 implies

$$\frac{1}{d_{n+1}(x)+1} < T^{n}(x) \le \frac{1}{d_{n+1}(x)}, \text{ for } 0 < T^{n}(x) \le 1.$$

Thus

$$S(x) = \sum_{n=1}^{+\infty} (-1)^n T^n(x) \ge \sum_{n=1}^{+\infty} (-1) T^{2n-1}(x)$$

$$\ge \sum_{n=1}^{+\infty} (-1) \frac{1}{d_{2n}(x)} \ge -\frac{1}{d_2(x)} - \sum_{n=2}^{+\infty} \frac{1}{a(x)^{2n-2}}$$

$$\ge -\frac{1}{\sqrt{a(x)}} - \frac{1}{a(x)^2 - 1},$$

let $x \to 0^+$, we have $d_1(x) \to +\infty$ and $a(x) \to +\infty$,

thus

$$S(x) \rightarrow 0$$

2) From 1) we know that

$$d_{n+1} \ge d_n^2 > \dots > d_2^{2^{n-1}},$$

from the definition of $d_i(x)$ we also know that $d_1 \ge 1$, so $d_2 \ge d_1(d_1 + 1) \ge 2$,

$$d_{n+1} > d_2^{2^{n-1}} \ge 4^{n-1}$$

thus

$$S(x) \ge \sum_{n=1}^{+\infty} (-1) \frac{1}{d_{2n}(x)} \ge -\frac{1}{2} - \sum_{n=2}^{+\infty} \frac{1}{4^{2n-2}} = -\frac{17}{30}$$

3) Since as n > m,

$$\frac{p_{n}(x)}{q_{n}(x)} - \frac{p_{m}(x)}{q_{m}(x)} = (-1)^{m} \frac{p_{n-m}(T^{m}(x))}{q_{n-m}(T^{m}(x))}$$

Thus

$$S(x) = \sum_{i=1}^{\infty} \left(x - \frac{p_{i}(x)}{q_{i}(x)} \right)$$

$$= \sum_{i=1}^{n} \left(x - \frac{p_{i}(x)}{q_{i}(x)} \right) + \sum_{i=n+1}^{\infty} \left(x - \frac{p_{n}(x)}{q_{n}(x)} + \frac{p_{n}(x)}{q_{n}(x)} - \frac{p_{i}(x)}{q_{i}(x)} \right)$$

$$= \sum_{i=1}^{n} \left(x - \frac{p_{i}(x)}{q_{i}(x)} \right) + \sum_{i=n+1}^{\infty} \left[(-1)^{n} T^{n}(x) - (-1)^{n} \frac{p_{i-n}(T^{n}(x))}{q_{i-n}(T^{n}(x))} \right]$$

$$= \sum_{i=1}^{n} \left(x - \frac{p_{i}(x)}{q_{i}(x)} \right) + (-1)^{n} \sum_{i=1}^{\infty} \left[T^{n}(x) - \frac{p_{i}(T^{n}(x))}{q_{i}(T^{n}(x))} \right]$$

$$= \sum_{i=1}^{n} \left(x - \frac{p_{i}(x)}{q_{i}(x)} \right) + (-1)^{n} S(T^{n}(x)).$$

Let

$$I' = I \setminus \{1\}.$$

Proposition 2. For any $x \in I'$, if

 $x = [d_1(x), \dots, d_{2k+1}(x)]$, then S(x) is left continuous but not right continuous. If $x = [d_1(x), \dots, d_{2k}(x)]$, then S(x) is right continuous but not left continuous.

Proof. For any $n \ge 1$ and $\sigma \in D_n$, write $x_1 = A_{\sigma}$, $x_2 = B_{\sigma}$, where A_{σ} , B_{σ} are given by (6) and (7).

Case I, n = 2k + 1, then

$$x_1 = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots + \frac{1}{\sigma_{2k+1}}$$
 (13)

$$x_2 = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots + \frac{1}{\sigma_{2k+1} + 1}$$
 (14)

and $J_{\sigma} = (B_{\sigma}, A_{\sigma}]$. For any $x'_1 \in J_{\sigma}$, since when $\sigma_{2k+1} = \sigma_{2k} (\sigma_{2k} + 1)$,

$$\frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}} + \dots - \frac{1}{\sigma_{2k}} + \frac{1}{\sigma_{2k+1}}$$

$$= \frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}} + \dots - \frac{1}{\sigma_{2k}} + \frac{1}{\sigma_{2k} (\sigma_{2k} + 1)}$$

$$= \frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}} + \dots - \frac{1}{\sigma_{2k} + 1}.$$

This situation is included in Case II, so we can take $\sigma_{2k+1} > \sigma_{2k} \left(\sigma_{2k} + 1\right)$ and

$$x'_1 = x_1 - \frac{1}{\alpha}$$
 for some $\alpha \ge \sigma_{2k+1} (\sigma_{2k} + 1)$.

i.e.

$$x'_{1} = \left[\sigma_{1}, \dots, \sigma_{2k}, \sigma_{2k+1}, \left[\alpha\right] \dots\right]$$

$$S(x'_{1}) - S(x_{1}) = \sum_{i=1}^{2k+1} \left(x'_{1} - \frac{p_{i}(x'_{1})}{q_{i}(x'_{1})}\right) + \left(x'_{1} - \frac{p_{2k+2}(x'_{1})}{q_{2k+2}(x'_{1})}\right)$$

$$- \sum_{i=1}^{2k+1} \left(x_{1} - \frac{p_{i}(x_{1})}{q_{i}(x_{1})}\right) + S(T^{2k+2}(x'_{1}))$$

$$= -\frac{2k+1}{\alpha} + T^{2k+2}(x'_{1}) + S(T^{2k+2}(x'_{1}))$$

By (2),

$$\frac{1}{d_{n+1}(x)+1} < T^{n}(x) \le \frac{1}{d_{n+1}(x)+1}, \text{ for } 0 < T^{n}(x) \le 1,$$

which implies

$$T^{n+1}(x) = \frac{1}{d_{n+1}(x)} - T^{n}(x) < \frac{1}{d_{n+1}(x)} - \frac{1}{d_{n+1}(x) + 1}$$
$$= \frac{1}{d_{n+1}(x)(d_{n+1}(x) + 1)}$$

and

$$0 < T^{2k+2}\left(x_1'\right) < \frac{1}{\alpha(\alpha+1)}.$$

Let $\alpha \to +\infty$, we get $T^{2k+2}(x_1') \to 0$ and $S(T^{2k+2}(x_1')) \to 0$, thus

$$\lim_{x_1'\to x_1^-} S\left(x_1'\right) = S\left(x_1\right),\,$$

and this implies S(x) is left continuous at x_1 . Let

$$x_{1}'' = x_{1} + \frac{1}{\alpha} \text{ for some}$$

$$\alpha \ge (\sigma_{2k+1} - 1)\sigma_{2k+1} ((\sigma_{2k+1} - 1)\sigma_{2k+1} + 1),$$

$$i.e_{1}'' = [\sigma_{1}, \dots, \sigma_{2k}, \sigma_{2k+1} - 1, (\sigma_{2k+1} - 1)\sigma_{2k+1}, [\alpha], \dots],$$

then

$$\begin{split} &S\left(x_{1}''\right) - S\left(x_{1}\right) \\ &= \sum_{i=1}^{2k} \left(x_{1}'' - \frac{p_{i}\left(x_{1}''\right)}{q_{i}\left(x_{1}''\right)}\right) + \left(x_{1}'' - \frac{p_{2k+1}\left(x_{1}''\right)}{q_{2k+1}\left(x_{1}''\right)}\right) \\ &+ \left(x_{1}'' - \frac{p_{2k+2}\left(x_{1}''\right)}{q_{2k+2}\left(x_{1}''\right)}\right) + \left(x_{1}'' - \frac{p_{2k+3}\left(x_{1}''\right)}{q_{2k+3}\left(x_{1}''\right)}\right) - S\left(T^{2k+3}\left(x_{1}''\right)\right) \\ &- \left(\sum_{i=1}^{2k} \left(x_{1} - \frac{p_{i}\left(x_{1}\right)}{q_{i}\left(x_{1}\right)}\right) + \left(x_{1} - \frac{p_{2k+1}\left(x_{1}\right)}{q_{2k+1}\left(x_{1}\right)}\right)\right) \\ &= \frac{2k+2}{\alpha} - \frac{1}{\left(\sigma_{2k+1} - 1\right)\sigma_{2k+1}} - T^{2k+3}\left(x_{1}''\right) - S\left(T^{2k+3}\left(x_{1}''\right)\right). \end{split}$$

Let $\alpha \to +\infty$, we have

$$\lim_{x_1'' \to x_1^{+}} S(x_1'') = S(x_1) - \frac{1}{(\sigma_{2k+1} - 1)\sigma_{2k+1}}$$

and this implies S(x) is not right continuous at x_1 . For

$$x_2 = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots + \frac{1}{\sigma_{2k+1} + 1},$$
 (15)

following the same line as above, we have

$$\lim_{x_2' \to x_2^{\perp}} S(x_2') = S(x_2) - \frac{1}{\sigma_{2k+1}(\sigma_{2k+1} + 1)}.$$

Case II n = 2k

Let

$$y_1 = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots - \frac{1}{\sigma_{2k}}$$
 (16)

$$y_2 = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots - \frac{1}{\sigma_{2k} + 1}$$
 (17)

Following the same line as above, we have

$$\lim_{y_1' \to y_1^-} S(y_1') = S(y_1) + \frac{1}{(\sigma_{2k} - 1)\sigma_{2k}},$$

$$\lim_{y_2' \to y_2^-} S(y_2') = S(y_1) + \frac{1}{\sigma_{2k}(\sigma_{2k} + 1)},$$

and $S(y_1), S(y_2)$ is right continuous.

Corollary 3. For any $n \ge 1$ and $\sigma \in D_n$, write $\alpha_1 = \max \left\{ A_{\sigma}, B_{\sigma} \right\}$, $\alpha_2 = \min \left\{ A_{\sigma}, B_{\sigma} \right\}$. Then for any $x \in J_{\sigma}$, if n = 2k + 1, then

$$S^*(\alpha_2) < S(x) \le S(\alpha_1),$$

where
$$S^*(\alpha_2) = S(\alpha_2) - \frac{1}{\sigma_{2k+1}(\sigma_{2k} + 1)}$$

From the corollary, for any $\sigma \in D_n$

$$\sup_{x,y\in J_{\sigma}} |S(x)-S(y)| = \frac{n}{\sigma_{n}(\sigma_{n}+1)} = n\lambda(J_{\sigma})$$

where $\lambda(J_{\sigma})$ is the Lebesgue measure of J_{σ} .

Theorem 4. S(x) is continuous on $(0,1] \setminus I'$.

Proof. For any $x \in (0,1] \setminus I'$ and $x \ne 1$, let $x = (d_1(x), \dots, d_n(x), \dots)$ be its Alternating Sylvester expansion. For any $n \ge 1$, write

 $\sigma^{(n)} = (d_1(x), \dots, d_n(x))$. By (Corollary 3), for any $y \in J_{\sigma^{(n)}}$, we have

$$|S(x)-S(y)| \le (n)\lambda(J_{\sigma^{(n)}}) \to 0$$
, as $\to \infty$.

Write $I_0 = \{C_{\sigma}\}$, where

$$C_{\sigma} = \frac{1}{\sigma_1} - \frac{1}{\sigma_2} + \dots + \frac{1}{\sigma_{2k+1}}$$

Theorem 5. If 0 < a < b < 1, S(a) < y < S(b), then there exists $c \in (a,b) \setminus \{I_0\}$, such that S(c) = y.

Proof. Set g(x) = S(x) - y, then g(x) has the same continuity as S(x). Write

$$E = \{x | g(x) < 0, x \in [a, b]\}, x_0 = \sup E.$$

trivially, $a \in E$, then the set is well defined.

If $b = [\sigma_1, \sigma_2, \dots, \sigma_{2k+1}]$, then by the left continuity of S(b), we have

$$\lim_{x \to b^{-}} g(x) = g(b) > 0,$$

As a result, there exists a $\delta_1 > 0$ such that for any $x \in (b - \delta_1, b)$, g(x) > 0.

If $b = [\sigma_1, \sigma_2, \dots, \sigma_{2k}]$, since g(b) is not left continuous, then $\exists \delta_2 > 0$ such that for any $x \in (b - \delta_2, b)$, g(x) > 0, that is $x_0 \neq b$.

Following the same line as above, we can prove $x_0 > a$.

Now we shall prove that $g(x_0) \le 0$. We can choose $x_n \in E$ such that $x_n \to x_0^-$, if $x_0 = [\sigma_1, \sigma_2, \cdots, \sigma_{2k+1}]$, then

$$g\left(x_{0}\right) = \lim_{x_{n} \to x_{0}^{-}} g\left(x_{n}\right) \leq 0,$$

if $x_0 = [\sigma_1, \sigma_2, \dots, \sigma_{2k}]$, then

$$g(x_0) + \frac{1}{(\sigma_{2k} - 1)\sigma_{2k}} = \lim_{x_n \to x_0^-} g(x_n) \le 0$$

In both case $g(x_0) \le 0$. Following the same line as above, we can prove $g(x_0) = 0$, and

 $x_0 \neq [\sigma_1, \sigma_2, \dots, \sigma_{2k+1}].$ Therefore, there exists $c \in (a,b) \setminus \{I_0\}$, such that S(c) = y.

Theorem 6.
$$\int_0^1 S(x) dx + \sum_{k=1}^{+\infty} \int_0^{\frac{1}{k(k+1)}} S(x) dx = \frac{9-\pi^2}{6}$$
,

and $\int_0^1 S(x) dx = -0.1250$.

Proof.

$$\begin{split} &\int_{0}^{1} S(x) \, \mathrm{d}x = \sum_{d_{1}=1}^{+\infty} \int_{\frac{1}{d_{1}+1}}^{\frac{1}{d_{1}}} S(x) \, \mathrm{d}x \\ &= \sum_{d_{1}=1}^{+\infty} \int_{\frac{1}{d_{1}+1}}^{\frac{1}{d_{1}}} \left(\left(x - \frac{1}{d_{1}} \right) - S(T(x)) \right) \, \mathrm{d}x \\ &= \sum_{d_{1}=1}^{+\infty} \int_{\frac{1}{d_{1}+1}}^{\frac{1}{d_{1}}} x \, \mathrm{d}x - \sum_{d_{1}=1}^{+\infty} \int_{\frac{1}{d_{1}+1}}^{\frac{1}{d_{1}}} \frac{1}{d_{1}} \, \mathrm{d}x - \sum_{d_{1}=1}^{+\infty} \int_{\frac{1}{d_{1}+1}}^{\frac{1}{d_{1}}} S(T(x)) \, \mathrm{d}x \end{split}$$

Let $Tx = u = \frac{1}{d_1(x)} - x$, then du = -dx thus

$$\int_{0}^{1} S(x) dx = \frac{1}{2} \sum_{d_{1}=1}^{+\infty} \left(\frac{1}{d_{1}^{2}} - \frac{1}{(d_{1}+1)^{2}} \right)$$
$$- \sum_{d_{1}=1}^{+\infty} \frac{1}{d_{1}^{2}} + \sum_{d_{1}=1}^{+\infty} \frac{1}{d_{1}(d_{1}+1)} - \sum_{d_{1}=1}^{+\infty} \int_{0}^{\frac{1}{d_{1}(d_{1}+1)}} S(u) du$$

thus,

$$\int_0^1 S(x) dx + \sum_{k=1}^{+\infty} \int_0^{\frac{1}{k(k+1)}} S(x) dx = \frac{3}{2} - \sum_{d_1=1}^{+\infty} \frac{1}{d_1^2} = \frac{9 - \pi^2}{6}.$$

Through the MATLAB program we can get the definite integration

$$\int_{0}^{1} S(x) dx = -0.1250.$$

3. Hausdorff Dimension of Graph for S(x)

Write

$$Gr(S) = \{(x,S(x)), x \in (0,1]\}.$$

Theorem 7. $\dim_H Gr(S) = 1$.

Proof. For any $n \ge 1$, $\{J_{\sigma} \times S(J_{\sigma}), \sigma \in D_n\}$ is a covering of Gr(S). From (Cor 3), $J_{\sigma} \times S(J_{\sigma})$ can be covered by n squares with side of length $\lambda(J_{\sigma})$. For any $\varepsilon > 0$,

$$H^{1+\varepsilon}\left(Gr(S)\right) \leq \liminf_{n \to \infty} \sum_{\sigma \in D_n} n \left(\sqrt{2}\right)^{1+\varepsilon} \left(\lambda \left(J_{\sigma}\right)\right)^{1+\varepsilon}$$

$$\leq \liminf_{n \to \infty} n \left(\sqrt{2}\right)^{1+\varepsilon} 2^{-n\varepsilon} \sum_{\sigma \in D_n} n \left(\sqrt{2}\right)^{1+\varepsilon}$$

$$= \liminf_{n \to \infty} n \left(\sqrt{2}\right)^{1+\varepsilon} 2^{-n\varepsilon} = 0.$$

Thus, $\dim_H Gr(S) \leq 1$

Since

$$|Proj(x,S(x))-Proj(y,S(y))| \le d(x,S(x),(y,S(y)),$$

then

$$1 = \lambda \left((0,1] \right) = H^1 \left(0,1 \right] = H^1 \left(Proj \left(G_r \left(S \right) \right) \right) \le^1 \left(G_r \left(S \right) \right),$$

so $\dim_H Gr(S) = 1$.

Figure 1. The graph of S(x).

4. Acknowledgements

This work is supported by the Hunan Education Department Fund (11C671).

REFERENCES

- [1] S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, "Lüroth-Type Alternating Series Representations for Real Numbers," *Acta Arithmetica*, Vol. 55, No. 4, 1990, pp. 311-322.
- [2] K. H. Indiekofer, A. Knopfmacher and J. Knopfmacher, "Alternating Balkema-Oppenheim Expansions of Real Numbers," Bulletin de la Société Mathématique, Vol.

- B44, 1992, pp. 17-28.
- [3] S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, "Metric Properties of Alternating Lüroth Series," *Potugaliae Mathematica*, Vol. 48, No. 3, 1991, pp. 319-325.
- [4] J. Barrionuevo, M. Burton-Robert, Dajani-Karma and C. Kraaikamp, "Ergodic Properties of Generalized Lüroth Series," Acta Arithmetica, Vol. 74, No. 4, 1996, pp. 311-327
- [5] K. Dajani and C. Kraaikamp, "On Approximation by Lüroth Series," *Journal de Théorie des Nombres de Bordeaux*, Vol. 8, No. 2, 1996, pp. 331-346. doi:10.5802/jtnb.172
- [6] K. J. Falconer, "Fractal Geometry, Mathematical Foundations and Applications," Wiley, Hoboken, 1990.
- [7] K. J. Falconer, "Techniques in Fractal Geometry," Wiley, Hoboken, 1997.
- [8] J. Galambos, "Reprentations of Real Numbers by Infinite Series," Lecture Notes in Math, Springer, Berlin, 1976.
- [9] L. M. Shen and J. Wu, "On the Error-Sum Function of Lüroth Series," *Mathematics Analysis and Applications*, Vol. 329, No. 2, 2007, pp. 1440-1445.
- [10] L. M. Shen, C. Ma and J. H. Zhang, "On the Error-Sum Function of Alternating Lüroth Series," *Analysis in The*ory and Applications, Vol. 22, No. 3, 2006, pp. 223-232. doi:10.1007/s10496-006-0223-x
- [11] T. Sálat and S. Znám, "On the Sums of Prime Powers," Acta Universitatis Palackianae Olomucensis of Mathematica, Vol. 21, 1968, pp. 21-25.