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ABSTRACT 

Stochastic waveforms are constructed whose expected autocorrelation can be made arbitrarily small outside the origin. 
These waveforms are unimodular and complex-valued. Waveforms with such spike like autocorrelation are desirable in 
waveform design and are particularly useful in areas of radar and communications. Both discrete and continuous wave-

forms with low expected autocorrelation are constructed. Further, in the discrete case, frames for  are constructed 
from these waveforms and the frame properties of such frames are studied. 
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1. Introduction 

1.1. Motivation 

Designing unimodular waveforms with an impulse-like 
autocorrelation is central in the general area of waveform 
design, and it is particularly relevant in several applica-
tions in the areas of radar and communications. In the 
former, the waveforms can play a role in effective target 
recognition, e.g., [1-8]; and in the latter they are used to 
address synchronization issues in cellular (phone) access 
technologies, especially code division multiple access 
(CDMA), e.g., [9,10]. The radar and communications 
methods combine in recent advanced multifunction RF 
systems (AMRFS). In radar there are two main reasons 
that the waveforms should be unimodular, that is, have 
constant amplitude. First, a transmitter can operate at peak 
power if the signal has constant peak amplitude—the 
system does not have to deal with the surprise of greater 
than expected amplitudes. Second, amplitude variations 
during transmission due to additive noise can be theo-
retically eliminated. The zero autocorrelation property 
ensures minimum interference between signals sharing 
the same channel. 

Constructing unimodular waveforms with zero auto-
correlation can be related to fundamental questions in 
harmonic analysis as follows. Let  be the real num-
bers,  the integers,   the complex numbers, and set 
   :XA  

:X 

     

. The aperiodic autocorrelation  of 
a waveform , is defined as  

1
, lim .

2 1

N

X
N m N

k A k X k m X m
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  (1) 

A general problem is to characterize the family of po- 
sitive bounded Radon measures F, whose inverse Fourier 
transforms are the autocorrelations of bounded wave-
forms X. A special case is when F  
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 on  and X is 
unimodular on . This is the same as when the auto-
correlation of X vanishes except at 0, where it takes the 
value 1. In this case, X is said to have perfect autocorrela- 
tion. An extensive discussion on the construction of dif- 
ferent classes of deterministic waveforms with perfect 
autocorrelation can be found in [11]. Instead of aperiodic 
waveforms that are defined on , in some applications, 
it might be useful to construct periodic waveforms with 
similar vanishing properties of the autocorrelation func-
tion. Let n  be an integer and n  be the finite 
group  0,1, , 1n 

:A  
: nX  

 

 with addition modulo n. The pe-
riodic autocorrelation X n  of a waveform 

 is defined as  

   
1

0

1
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.   (2) 

It is said that n  is a constant amplitude zero 
autocorrelation (CAZAC) waveform if each   1X k   
and  

     
1

0

1
1,2, , 1, 0.

n

X
m

k n A k X m k X m
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The literature on CAZACs is overwhelming. A good 
reference on this topic is [3], among many others. Lit-
erature on the general area of waveform design include *This work was supported by AFOSR Grant No. FA9550-10-1-0441. 
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[12-14]. Comparison between periodic and aperiodic au- 
tocorrelation can be found in [15]. 

Here the focus is on the construction of stochastic ape-
riodic waveforms. Henceforth, the reference to wave-
forms shall imply aperiodic waveforms unless stated 
otherwise. These waveforms are stochastic in nature and 
are constructed from certain random variables. Due to the 
stochastic nature of the construction, the expected value 
of the corresponding autocorrelation function is analyzed. 
It is desired that everywhere away from zero, the expec-
tation of the autocorrelation can be made arbitrarily small. 
Such waveforms will be said to have almost perfect auto- 
correlation and will be called zero autocorrelation sto-
chastic waveforms. First discrete waveforms, , 
are constructed such that X has almost perfect autocorre-
lation and for all  

:X  

,n   1.X n   This approach is 
extended to the construction of continuous waveforms, 

, with similar spike like behavior of the ex-
pected autocorrelation and 

:x
 

 
1x t .t for all   

Thus, these waveforms are unimodular. The stochastic 
and non-repetitive nature of these waveforms means that 
they cannot be easily intercepted or detected by an ad-
versary. Previous work on the use of stochastic wave-
forms in radar can be found in [16-18], where the wave-
forms are only real-valued and not unimodular. In com-
parison, the waveforms constructed here are complex 
valued and unimodular. In addition, frame properties of 
frames constructed from these stochastic waveforms are 
discussed. This is motivated by the fact that frames have 
become a standard tool in signal processing. Previously, 
a mathematical characterization of CAZACs in terms of 
finite unit-normed tight frames (FUNTFs) has been done 
in [2]. 

1.2. Notation and Mathematical Background 

Let X  be a random variable with probability density 
function .f  Assuming X  to be absolutely continuous, 
the expectation of X  denoted by  is    ,E X

 d .xf x x  E X  

The Gaussian random variable has probability density  

function given by  
21

21
e .

2π

x 

   

 f x


  The mean  

or expectation of this random variable is   and the 
variance,  is   ,V X 2 .  In this case it is also said that 
X  follows a normal distribution and is written as 

 The characteristic function of  ,  2 .X N~ X  at 
 , is denoted by ,t eitX E  tX . For further properties 

of expectation and characteristic function of a random 
variable the reader is referred to [19]. 



  = , ,k 


 V 

Let  be a Hilbert space and let kV v  
where  is some index set, be a collection of vectors in 

. Then  is said to be a frame for  if there exist 
constants A  and   such that for any ,B 0 < < ,A B 
v    

22 2
, .k

k

v v v B v


 


= ,

A  

The constants A and B are called the frame bounds. Thus 
a frame can be thought of as a redundant basis. In fact, 
for a finite dimensional vector space, a frame is the same 
as a spanning set. If A B

= = 1.A B
V 

 the frame is said to be tight. 
Orthonormal bases are special cases of tight frames and 
for these,  

If  is a frame for  then the map  
 :F     2  given by  = , :F v v v k k  is 

called the analysis operator. The synthesis operator is the 
adjoint map  *

2: ,F     given by  

  * .k k k
k

F a a v


 


:   
* .

 

The frame operator  is given by  
F F

= ,
 For a tight frame, the frame operator is just a 

constant multiple of the identity, i.e., A 
 v

 where 
 is the identity map. Every  can be represented 

as  
1 1, , .k k k k

k k

v v v v v v v 

 

  
 

   

 1
kv

1

is also a frame and is called the dual  Here 

frame. For a tight frame,  is just 
1

.  Tight  
A




:X  

: dv  

.d

frames are thus highly desirable since they offer a com-
putationally simple reconstruction formula that does not 
involve inverting the frame operator. The minimum and 
maximum eigenvalues of  are the optimal lower and 
upper frame bounds respectively [20]. Thus, for a tight 
frame all the eigenvalues of the frame operator are equal 
to each other. For the general theory on frames one can 
refer to [20,21]. 

1.3. Outline 

The construction of discrete unimodular stochastic wave- 
forms, , with almost perfect autocorrelation 
is done in Section 2. This is first done with the Gaussian 
random variable and then generalized to other random 
variables. The variance of the autocorrelation is also es-
timated. The section also addresses the construction of 
stochastic waveforms in higher dimensions, i.e., con-
struction of , that have almost perfect auto-
correlation and are unit-normed, considering the usual 
norm in  In Section 3 the construction of unimodu-
lar continuous waveforms with almost perfect autocorre-
lation is done using Brownian motion. 

As mentioned in Section 1.2, frames are now a stan-
dard tool in signal processing due to their effectiveness in 
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robust signal transmission and reconstruction. In Section 
4, frames in  are constructed from the dis-
crete waveforms of Section 2 and the nature of these 
frames is analyzed. In particular, the maximum and mini- 
mum eigenvalues of the frame operator are estimated. 
This helps one to understand how close these frames are 
to being tight. Besides, it follows, from the eigenvalue 
estimates, that the matrix of the analysis operator, F, for 
such frames, can be used as a sensing matrix in com-
pressed sensing.  

 2d d 

:X  

 Y
  

2 ,

2. Construction of Discrete Stochastic  
Waveforms 

In this section discrete unimodular waveforms, , 
are constructed from random variables such that the ex-
pectation of the autocorrelation can be made arbitrarily 
small everywhere except at the origin. First, such a con-
struction is done using the Gaussian random variable. 
Next, a general characterization of all random variables 
that can be used for the purpose is given. 

2.1. Construction from Gaussian Random  
Variables 

Let  be independent identically distributed (i.i.d.)  

random variables following a Gaussian or normal distri-
bution with mean 0 and variance   i.e.,  

 Define  by   2 .0,Y N :X  

 
2π

, e

n

n

i
Y

n  





n X              (3) 

where i is 1 . Thus, for each , n  1X n 
k 

 and X is 
unimodular. The autocorrelation of X at  is  

     1
lim

2 1

N
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N n N

A k X
N   n k X n 

0.k 
> 0

 

where the limit is in the sense of probability. Theorem 
2.1 shows that the waveform given by (3) has autocorre-
lation whose expectation can be made arbitrarily small 
for all integers   

Theorem 2.1. Given ,  the waveform  
defined in (3) has autocorrelation 

:X  
XA  such that  
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Ywhere the last line uses the fact that the s are i.i.d. 

random variables. Here 
1

2π
Y 
 
 
 

 is the characteristic 

function at 
2π


 of Y  which is the same as that for any 

other  due to their identical distribution. The charac-

teristic function at 

l

Y
2π


 of a Gaussian random variable 

with mean 0 and variance 2  is 

22 2π
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gives  
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0k 
  XV A k

    

which indicates that the expectation of the autocorrela-
tion at any integer  can be made arbitrarily small 
depending on the choice of 

 one has  
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 .                    □  
As shown in Theorem 2.1 the expectation of the 

autocorrelation can be made arbitrarily small but this is 
not useful unless one can estimate the variance of the 
autocorrelation. Denoting the variance of  XA k  by  
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By applying the Lebesgue Dominated Convergence Theorem one can bring the expectation inside the double sum to 
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 or  then  Each sum in (4) 
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 terms. One can re-index the variables in (4) and 
write it as  may have cancelations among terms involving n with 

terms involving m. Suppose that for a fixed n and m there 
are ,m n  indices that cancel in each of the four sums in 
(4). Due to symmetry, the same number i.e., ,m n  of 
terms will cancel in each sum. Depending on n and m, 
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This gives  
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A similar calculation can be done for  Thus for 
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2.2. Generalizing the Construction to Other  
Random Variables 

So far the construction of discrete unimodular zero auto-
correlation stochastic waveforms has been based on 
Gaussian random variables. This construction can be ge- 
neralized to many other random variables. The unimodu- 
larity of the waveforms is not affected by using a differ- 
ent random variable. The following theorem character- 
izes the class of random variables that can be used to get 
the desired autocorrelation.  

Theorem 2.2. Let Y
  

.Y

 be a sequence of i.i.d. ran- 

dom variables with characteristic function   Suppose 
that the probability density function of the  s is even 
and that Y  goes to 0 as t goes to infinity. Then, 
given 

Y
 t

,  the waveform  given by  :X 
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has almost perfect autocorrelation.  
Proof. Since the density function of each   is even 

this means that the characteristic function is real valued 
[19]. Following the calculation in the proof of Theorem 
2.1, the expected autocorrelation of X  for k 0  is  
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Example 2.3. Suppose the s follow a bilateral dis-  Y
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In the same way as was done in the Gaussian case, for 
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Example 2.4. Suppose that the s follow the Cauchy  

distribution with density function 
2

1
.

π 1
 Note that,  

x
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disregarding the constant π  this is the characteristic 
function of the random variable considered in Example 
2.3. The characteristic function of the  s is now e ,t
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the same as the distribution function in Example 2.3. For 
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2.3. Higher Dimensional Case 

Here one is interested in constructing waveforms :v   
  It is sired that v  has unit norm and the 

expectation of its autocorrelation can be made arbitrarily 
small. One way to construct v  is based o  the construc-
tion of the one dimensional example given in Section 2.1. 
This is motivated by the higher dimensional construction 
in the deterministic case [2]. As before,  Y

    is a 

sequence of i.i.d. Gaussian random variable mean 

2

s with 

zero and variance  . Next, one defines  
2π n

i Y


 

The waveform : dv   is then define

e nX n   . 
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In this case, the autocorrelation is given by  
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1 N
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where .,.  is the usual inner duct in d

length or norm of any 
 pro   . The 

   v m  is t ven byhus gi   

     2
, .v m v m v m  

From (5),  
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Thus the  v m s are unit-normed. The following 
em 2.5 shows that the expected autocorrelation of v 
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Theor

 be made arb mall everywhere except at the 
origin.  
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defined in (5) has autocorrelation vA  such that  

2
2 2π

e if 0.
v k

E A k
k




   
 

 
 

 

Proof. As defined in (6),  

1 if 0k 


  1
lim    ,

2 1

N

v
N n N

A k  v n k v n
N 


   

When = 0,k   

    21
0 lim 1.

2 1

N

v
N n N

A v n
N 

 
   

Thus,  

  0 1.vE A   

For 0,k   due to (5),  
 

   

 
 

 

 
 

 

            

1 11
, ,

1 1

1 1 1 1 .

X n

X n k X n
v n k v n

d

X n k d X n d

X n k X n X n k X n X n k d X n d
d

  
             
   

          

            

 



 

1

X n k 

Consider > 0.k   

       

   

    
    11

0

2π1

0

1 1
lim

2 1

1 1
lim e

2 1

1
lim

2 1

n m n m kn m k n m

N n N m

N d i Y Y Y Y

N n N m

N n

1

0

1

1
lim ,

2 1

1 1
lim

2 1

N

v
N n N

N d

N n N m

N d

E v n k v n
N

E X n k m X n m
N d

E X n k m X n m
N d

E
N d

N

         

 



  



  

    

  

 

 


       

   


 
     






 

 

 


E A k

2
2

1

2 2π2π1

0

1
e e .

k
N d kiY

N m

E
d




    
 

 

 
  

 
 

 

ilarly, for < 0k , one gets  
 
Sim

  
2

2 2π
k




 e .vE A k




               □ 

Thus the waveform v  as defined
un to

2.4. Remark on the Periodic Case 

periodic case. The sequence : nX    
2.1, i.e.,  

 in this section is 
it-normed and has au correlation that can be made 

arbitrarily small.  
Remark 2.6. As in the one dimensional construction, 

it is easy to see that here too the construction can be done 
with random variables other than the Gaussian. In fact, 
all random variables that can be used in the one dimen-
sional case, i.e., ones satisfying the properties of Theo-
rem 2.2, can also be used for the higher dimensional con-
struction.  

It can be shown that the periodic case follows the same 
nature as the a
is defined in the same way as in Section 
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 the expectation of the autocorrelation is  When 0,k 
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where one uses that the Y s are i.i.d.. A similar 
calculation for ne ve values of k suggests that the 
autocorrelation can be made arbitrarily small, depending 
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the fact 
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riodic case, this result can be obt ned for random vari-
ables other than the Gaussian.  

3. Construction of Continuous Stochastic 
Waveforms 

In this section continuous wavefo
autocorrelation are constructed from a one dimensiona
Brownian motion. 

For a continuous wavefo
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2

1 T

T

 

   
 







 

Thus each Tg  is integrable and further 1.Tg  Let 
  1h t ; t  . Then   = 1.E h  Therefore, by the 

Dominated Convergence Theorem, and properties of 
Brownian motion and characteristic functions, one gets  

     

    

   

22 2π

2

2

1 2π
lim e

2

T

TT

sT

W t s W tTT

E A E x t s

T

T








   
 

 

 

  
 

   
 





which can be made arbitrarily small based on .

2π

1
lim d

2

1
lim e d

x TT

i W t s W tT

s x t t
T

E t



 

 
 
 

 




 

  Simi-
larly,  

      

2 22 22π 2π

2 2

1 2π
lim

e e .     

T

s s

E A s

 
 


2 W t W t sTT T    

       
        
   

   

 





 

4. Connection to Frames 

Consider the mapping : dv    given by  

 

  1 X k

 

 

1

1

X k

X k d

 
 

 
    


     (8) 

where  

v k
d

        

2π

e ,
k

ki Y
X k  


  as defined i

Let 

n Section 2.1. 

M d  and consider the set  
      1 , 2 , ,V v v v M   of M  unit vectors in d . 

trix  The ma

     
     
1 2

3 11

X X

X d
F

d



     

2

1 1

X d

X X

X M X M X M d


 
 

  
 
    


   



 

is the matrix of the analysis operator corresponding to 
.V  The frame operator of V  is *= ,



F F  i.e.,         
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1 2X X X d
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1 2

2 3 1 2 3 11

1 1 1 1

X X X M

X X X M X X X d

d

X d X d X M d X M X M X M d

                        


 

      
 

 . 

tries of   





The en  are given by
M

d
  and for ,m m , > ,m n m n   

      

 
 

 

     1 1
e .

n mY Y

M n

M M
X m X n

d M d M
        

      



 
 
 

     
 
   

 
      

 
 

 






ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ



 

 
Note that since   is self-adjoint, 

,

2π1 1

=0 0

11
1 1

1

1 1 m n

m n

M M i Y Y

X n

X n
X m X m X M m

d

X

, , .m n n m   It is 
desi at V emulates a tight  i.e,   is close to  

a co t times the iden

red th

nstan

frame,

tity, in this case, 
M

d
 times the 

identity. Alternatively, it is desirable that the eigenvalues 

of o    are all close to each other and close t
M

d
 

e f

vec

ac

other, the closeness increasing with the size of the set. 
The bounds on the probability o  deviation of the 
eigenvalues from the expected value is also derived. The 
related inequalities arise from an application of Theorem 
4.1 [22] below.  

Theorem 4.1. (Azuma’s Inequality) Suppose that 

f

. In 

this case, due to the stochastic nature of th rame opera-

 : = 0,1, 2,kX k   is a martingale and  

1 ,k k kX X c   

almost surely. Then for all positive integers N  and all 
positive reals ,t   

tor, one studies the expectation of the eigenvalues of  .  

4.1. Frames in 2  

Thi ction discusses the construction of sets of tors s se
in 2  as given by (8). The frame properties of such sets 
are analyzed. In fact, it is shown that the expectation of 
the eigenvalues of the frame operator are close to e h  

 
2 2

=1
2

0 2e

N

k
k

t c

X t

 

.NP X

 
   

  

Consider 3M   vectors in 2 , 2d   in (8). 

 


  

 i.e.
Then 2:v    and  

 

               
1 21 1 1

, , .
12

X X X M
v M

X M

     
      

                       (9) 1 , 2
2 32 2

v v
X X

     
  

Considering the set       1 , 2 , , ,V v v v M   the frame  is  operator of V
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1
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.
2 1
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M

m
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Theorem 4.2. 1) Consider the set  

2, ,  3,M   where the 
i ). The minimum eigenvalue, 

 m , 

   = 1 , 2 ,V v v 
vectors  v n  are g

 min ,   and the

  v M 
ven by (9
aximum eigenvalue  max ,   of 

fthe frame operator o  V satisfy  

         1 1
2 2

M M
min maxE E        (11) 

where 

2
2 2π

21 1
e .




   
 

  

2) The deviation of the minimum and maximum ei- 
value of   from their expected value is given, for 

M

M M
  

ge
all

n
 positive reals ,r  by  

     
2

3
4

8
min min > 2e ,

r

MP E r


    

     
2

3
4

8> 2e .
r

Mr


   

Proof. 1) The frame operator of  

   2 , ,v M  is given in (10). The eigen- 

max maxP E  

  1 ,V v v

values of 
2

M
  are 1 = 1   and 2 = 1   where  

   
1

1 M

m

X m
M



 1 .X m   

Let  

     

     

       

2 2

3 3

1 1

2π

1

2π

1 2 e ,

2 3 e ,

1 e ,
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i Y Y
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so that  

 2π
i Y Y

M

 

2

1 2 .M

M

    
 

 m

 

Note that for ,m n    and n  are independent  

and so      = .m nEm nE E     Al nce the Y s  

are i.i.d. and the characteristic fu of the Y s is 
symmetric,  

1 ,m M    

so, si

on ncti

      

 

1 1

2
2

2π

2π

e

e

m mi Y Y

m

m

E E
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and therefore  

1

2
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e
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2
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2
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Thus  

   

   

 
2

2

2

1 2 1 22

2 2 2

1 22
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2π
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1

1

1 1 1 1
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1
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The above estimate on  2
E   implies that  

   
2

2 2π
22 1 1

e .
M

E E
M M


 

   
 

      (12) 

Since   1 1E E    and    2 1E E   , (12) 
implies  

   
2

2

2
2

2π
2

1 2

2π
2

1 1
1 e

1 1
1 e .

M
E E

M

M M







 
   
 

   
 


   


  

 

that  

M M

Noting min 12

M   and   max 2 ,
2

M   

one finally gets, after setting  
2

2 2π
21 1

e ,
M

M M




   
 

    

         min max1 1 .
2 2

M M
E E          

2) To prove 2) we use the Doob martingale and 
Azuma’s inequality [22]. For = 2, , 1,n M   let 

1 = .n n nZ Y Y    Here the Doob martingale is the se- 
quence  0 1 1, , , MU U U   where  

2π

1 2
1

1,

1
e , , ,

j
M iZ

k k
j

U E Z Z Z
M






for 1, ,k M 
 

   
 

 
 

and  
2π

0
1

1
e .

j
M iZ

j

U E
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Note that  0U E   and 1 .MU    Also,  

1 1 2.k k k kU U U U     
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So by Azuma’s Inequality (see Theorem 4.1)  

    
2 2

2 82e .r M
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Since      1 1 2 2E E     
me

,E    this 
ans  

   2 8e r Mr   

and  

1 1 > 2P E 

   2 82e r MP E r    . 

Going back to the actual fra e operator  , whose 

 are 

2 2 >

m

eigenvalues 12

M   and 22
,

M   the following esti- 

mates hold.  
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Corollary 4.3. The eigenvalues of the frame operator 
considered in Theorem 4.2 satisfy, for all positive reals r,  

>P  

    2 34 8e ,r M   
 

 min < 1
2

M
P r  

    2 34 8e ,r M   
 

 max > 1
2

M
P r  

where 

2
2 2π

21 1
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M

M M
  

Proof. Due to part 1) of Theorem 4.2  

       min min< 1 < .
2

M
r E r        min 

This implies, as a consequence of part 2) of Theorem 
4.2, that  

   

      2 34 8e .r Mr  
 

In a similar way, from part 1) of Theorem 4.2,  

        max max m1
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M
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which implies, as a consequence of part 2) of Theorem 
4.2, that  
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Remark 4.4. In Theorem 4.2, as M tends to ity, 
the value of 

 infin
  in (11) can be made arbitrarily small 

based on the choice of .  This in turn implies that the 
two eigenvalues can be made arbitrarily close to each 
other, with .  On the other hand, for a fixed M, as    
tends to zero, (11) becomes  

  

  

min

max

1
2

1
1 .

2

E
M

M
E

M





   
 

 
    

 





 

4.2. Frames in ;d  > 2d  

 d and M, in order to  existing results on 
th m matrices [23, 
24 he frame needs  
to be considered. Let 

1M  

For general use
e concentration of eigenvalues of rando
], a slightly different construction of t

  ,mn m n
Y

  be i.i.d. random vari

ables following a Gaussian distribution with mean zero 
an

- 

d variance 2.  It can be shown that  
22 2π2π

2e e
mniY

E



   
 

 
  

 
 

and the variance  
22π2π  

 

One can define the following two dimensional se

2

e 1 e .
mniY

V



  

 
 

     

-
quence. For , ,m n   

22 2π2π
2e e .

mniY

mnX



   
    

Consider the mapping : dv    given by  

 

1

1

X

X

 
 



2 .

d

v
d

X

 
 
 
 








              (13) 

As before, let M d  and consider the set of M  
unit vectors       = 1 , 2 , ,V v v v M  in d . Th  
frame operator of this set is  

e
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11 2111 12 1

12 2221 22 2

1 2 1 2
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d d dM
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M M dM
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X X X X X X

X XX X X

X X X X X X

  
  
     
  
    


 

       
 

 . 
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11 12 1

2

MX X X
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21 22 21 MX X X
A
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        (14) 

1d d dMX X 

so that *= .AA  The matrix A has entries with mean  

zero and variance 

2
2 2π

2 1
ˆ = 1 e




   
 

 
  .

d  
 

 According to 

results in [23], if 
d

c
M

  as ,d  M  , then the 

sma est ei   converge almost llest and larg

rely to 

genvalues of 

su  2
2ˆ 1 c  and  2

1 c respectively.  

 

2̂

 
, 

Theorem 4.5. Let 1 2 d s A s A s A    be the
singular values of the matrix A given by (14). Then the 
following hold. 

 

 
1) Given 0 ,  there is a large enough d such that  

  2

0

d

M

  
    (15) 

2)  

1 ec  

w e 1c  and 2c  are universal positive constants.  
Proof. Let 

16ˆ 1 2e .r d
dP s A r          

  1P s A 2 ,c M            (16) 

her

ds  be the mapping that associates to a 
matrix A  it largest singular value. Equip dM  with 
the Frobenius norm  

  2

,

.mn
m n

A  

Then e mapping d

2 *:A Tr AA 

 th s  is convex and 1-Lipschitz i
the se   



n 
nse that

  d ds A s A A A     

irs  ,for all pa A A  of d by M matrices [24]. 

 think of A as a n 2 .dM  The real 

and imaginary parts of t

We random vector i

he entries of 
1

A
d

 are sup-

ported in 
1 1

, .
d

  
 a product measure on 

d 
 Let P be

2dM
 

en quence 

n inequality (Coro [24]) we have  

 

1 1
,

d d
 
 

. Th of the concen-

 

 as a conse

llary 4.10, tratio

  2 16r d
dm s     4edP s A r

where  dm s  is the median of  ds A
m and ma  singular va  

ost surely to

. It is known that 
the minimu ximum lues of A con- 

verge alm   c  and ˆ 1  ˆ 1 c  , re- 

spectively, as d, M tend to infinity and 
d

c
M

 . As a  

consequence, for each 0  and M sufficiently large, 
how th edians belong to the fixed interval

one 
can s at the m   

0 0ˆ ˆ1 , 1
d d

M M



  
   

               
 which gives

 

  


2 16e .r d  0ˆ 1 2d

d
P s A r

M
 

  
       

 

le
n

 

For the smal st singular value we cannot use the con-
centratio  inequality as used for ds  since the smallest 
singular value is not convex. However, following results 
in [25] (Theorem 3.1) that have been use  in [26] in a 
similar situation as here, one can say that whenever 

d

 > 1M d , where   is greater than a small con-
stant,  

    2
1 1 e c MP s A c   , 

where c  and 2c  are positive universal nstants.   □ 
.6. Not ular val-

ue  the
e corres  

erat
Remark 4.7. (Connection to compressed sensing) 

 of compresse
 recover a spar

of measurements. A signal 

1

Remark 4 e that the square of the sing
co

s of A are the eigenvalues of   and so  estimates 
given in (15) and (16) give insight into th ponding
deviation of the eigenvalues of the frame op or  .  

The theory d sensing [27-29] states that it is 
possible to se signal from a small number 

Mx  is k-sparse in a basis  

 
1

M

j
j

   if x is a weighted superposition of at most k  

elements of  . Compressed sensing broadly refers to 
the inverse problem of reconstructing such a signal x 
from linear measurements 

 
 , 1, ,y x d      with 

d M , ideall  the gey with d M . In neral setting, one 
has x y  , where   is a M d  sensing matrix 

ve tors having the measurement c   as its , x is 
a length-M signal and y is d measu

The standard compressed sensing techni rantees 
exact recovery of the original signal w y high 

 columns
 a length- rement. 

que gua
ith ver

g

there exists a small number k

probability if the sensin  matrix satisfies the Restricted 
Isometry Property (RIP). This means that for a fixed k, 

 , such that  

   
222

22 2*1 1k kx x     

for any k-sparse signal x. By imitating the work done in 
[26] (Lemmas 4.1 and 4.2), it can be shown, due to heo-
rem 4.5, that matrices A of the type given in (14) satisfy  

,x  

 T
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Figure 1. Behavior of the condition number of the frame 
operator with increasing size rame; ε = 0.0001, d = 3, 
σ = 1. 

 of the f
 

 from the traditional random matrices used in 
compressed sensing in that their entries are complex- 
valued and unimodular instead of being real-valued and 
not unimodular.  

Example 4.8. This example illustrates the ideas in this 
subsection. First consider M = 5 and d = 3 so that there 
are 5 vectors in 3.  Taking from a normal distribution 
with mean 0 and variance 1,

the RIP condition and can therefore be used as measure-
ment matrices in compressed sensing. These matrices are 
different

   a realization of the 
matrix  1 3,1 5mn m n

Y
   

 is  

0.0353 0.5004 0.6299 0.1472 0.4003

0.4804 0.9344 0.4220 0.9509 0.2783

0.8609 0.4822 0.4680 0.9509 1.2284

   
    
     

. 

Then taking 0.001,   
2π1

e
3

mniY
A 

 
  

 
 is  

 

0.27 0.96 0.89 0.44 0.
1

.46 0.
3

74 0.68 0.16 0.99 0

i i 85 0.52 0.33 0.94 0.24 0.97

0.92 0.39 0.89 0 99 0.05 0.93 0.37 0.47 0.88 .

0. .99 0.09 0.30 0.95 0.74 0.67

i i i

A i i i i i

i i i

    
       

      

 

i i

   
 

 

 
The condition number, ratio of the maximum and 

minimum eigenvalues, of 4.8667.  As the number 
of vectors M is increased, the condition number gets 
closer to 1. Figure 1 shows the behavior of the condition 
number with the increase in the number of vectors.  

5. Conclusion 

The construction of discrete unimodular stochas c wave- 

for this purpose has been characterized. Such construc-
ti
hig
us
of
tio
tinuous unimodular stochastic waveforms whose auto-
correlation can be made arbitrarily small in expectation.  
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