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ABSTRACT 

In this paper, we prove introduce some fixed point theorems for quasi-contraction under the cyclical conditions. Then, 
we point out that a common fixed point extension is also applicable via our earlier results equipped together with a 
weaker cyclical properties, namely a co-cyclic representation. Examples are as well provided along this paper. 
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1. Introduction 

Since Banach [1] proved his contraction principle in 
1922, many authors have improved, extended and gener-
alized Banach’s contraction principle in several ways and 
applied the principle to differential and integral equations, 
variational inequality theory, complementarity problems, 
equilibrium problems, optimization problems, convex 
analysis and many others.  

Theorem 1.1 [1] Let f  be a self-mapping on a com- 
plete metric space  ,X d . If there exists  0,1k 

   , ,fy kd x y

 
such that  

d fx

,

 

for all x y X , then f has a unique fixed point in X.  
In 1971, Ććirić [2] generalized Banach’s contraction 

principle theorem to a more general contraction as fol-
lows: 

Theorem 1.2 [2] Let  ,X d  be a complete metric 
space and :f X  X  be a mapping such that, for all 

,x y X , there exists , , , 0      with  
2 < 1   

d f



 x fy

 such that  

  
  

, ,

, ,

x y d x f

d x fy d y

 



 

 

  


, ,

.

x d y fy

fx



  

f
 ,

d
 

Then f has a unique fixed point.  
Also, in 1974, Ććirić [3] generalized his own result [2] 

by introducing the quasi-contraction and proved a fixed 
point theorem under this condition as follows: 

Definition 1.3 [3] A mapping  of a metric space 
d

0 < 1

 into itself is said to be a quasi-contraction if 

there exists a number   such that  

       
   

, max , , , , , ,

, , ,

d fx fy d x y d x fx d y fy

d x fy d y fx



,

 

x y X .  for all 
 ,Theorem 1.4. [3] Let X d

:
 be a complete metric 

space and f X X  be a quasi-contraction. Then f 
has a unique fixed point in X.  

In 2005, Rus [4] introduced the cyclical condition in 
metric spaces. For some results on fixed point theory, we 
refer the readers to [5-7]. Throughout this paper, we 
denote the set   0 :  for some m m n n   

n
 by 

. 0

Definition 1.5. [4] Let X  be a nonempty set and  
:f X X 1

0
m ii

X be a mapping. The set 

1
0
m ii

 is called  

a cyclic representation of X with respect to f if the 
following conditions hold: 

X

1) X X
 

i

; 
1

0
mi  ; X  for all X  is a nonempty subset of 2) 

   di mf X X 1
0
m3) 1 moi

Definition 1.6. Let 
 for all i .  

 0,2X   0 0,1X  ,  , 

1

1 3
,

2 2
X

    and   
2 1, 2X 

 

. Now, we define a self- 

mapping f on X by  
1 1

if 0 ,
2 2

1 3
1 if < ,

2 2
3

1 if < 2.
2

x x

f x x

x x
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Now, we see that  0 ,1 1

1 1 3
,

2 2 2
f X     

X    
 

,  

   1 21 1, 2f X X    and  

   2 0,1 0,1
1

2
f X     

2
0

ii
X . Therefore, the set A



:

 

is a cyclic representation of X with respect to f.  
Definition 1.7. Let X be a nonempty set, f X X

1
0
m ii

  
be a mapping and the set X   be a cyclic repre-  

sentation of X with respect to f. If 1 ix X
2x X i

, , ,

 and 

 1 modi m  for some , we say that x1 and x2 
are descendants in Y.  

1
0
m

The purpose of this paper is to extend Ććirić’s quasi- 
contraction to a cyclic quasi-contraction, establish some 
fixed point theorems and give an example to illustrate the 
main result. We also introduce the notion of co-cyclic 
quasi-contraction and prove some common fixed point 
theorems. 

2. Fixed Point Theorems 

In this section, we introduce a generalization of Ććirić’s 
quasi-contraction, say, a cyclic quasi-contraction, and 
prove some fixed point theorems. 

Definition 2.1. Let 0 1 1mA A A   be nonempty closed 
subsets of a metric space  ,X d ,  and 1

0
: m ii

Y A
 

:f Y Y

1
0
m ii

 be a mapping. If the following conditions are 
satisfied: 

1) A

0 < 1

 is a cyclic representation of Y with re-

spect to f; 
2) there exists 

  , , , ,fx d y fy

 such that  

    
   

, max , ,

, , ,

d fx fy d x y d x

d x fy d y fx


 

whenever x  and  are descendants in Y , then y f  is 
called a cyclic quasi-contraction.  

Remark 2.2. To reduce a cyclic quasi-contraction to a 
quasi-contraction, simply take each iA X

0 1 1, , , m

 and the 
result directly emerges.  

Now, we can construct some fixed point theorems, 
which generalize the further results, as follows: 

Theorem 2.3. Let A A A 
 ,

 be nonempty closed 

subsets of a complete metric space X d

1
0

: m ii
Y 
  :

 and  

A . Suppose that f Y Y  is a cyclic 

quasi-contraction with 
1

0,
2

 


 

A 0 1

n

n
f x

 

1
0
m ii

z  

. Then f has a unique 

fixed point  and the sequence  



  

converges to  for any z 0x Y   
Notice that the  -constant in the quasi-contraction is  

restricted to the set 
1

0,
2

 
 . Next, we can drop this re- 

 
striction and develop a theorem in an ultrametric space. 
The result follows from the additional assumption of an 
ultrametric space. Before we give the result, we now give 
the definition of an ultrametric space. 

Definition 2.4. Let X  be a nonempty set. A function  
:d X X      is called an ultrametric if it satisfies 

the following conditions: 
 , 0d x y   and 1) , 0d x y 

,
 if and only if x = y 

for all x y X ; 
   , = ,d x y d y x , for all x y X ; 2) 

     3) , max , , ,d x y d x z d z y
, ,

 for all  
x y z X .  

A set X equipped with this ultrametric , denoted d
 ,X d

, ,

, is called an ultrametric space.  
Remark 2.5. Note that an ultrametric space is also a 

metric space. We can simply prove this. In fact, for any 
x y z X ,  

     
         

   

, max , , ,

max , , , min , , ,

, , , ,

d x y d x z d z y

d x z d z y d x z d z y

d x z d z y



 



, , ,

 

which in turn is a metric.  
Theorem 2.6. Let 0 1 1mA A A   be nonempty closed 

subsets of a complete ultrametric space  X ,d

1
0

:= m ii
Y A  :

 and  
. Suppose that f Y Y  is a cyclic qua- 

si-contraction. Then f  has a unique fixed point  

 and the sequence  converges 

to 

1
0
m ii

z A



   0 =1

n

n
f x



z  for any 0x Y .  

Now, we prove Theorem 2.3. The proof of Theorem 
2.6 is quite similar to the proof of Theorem 2.3, we omit 
to prove this theorem. 

Proof of Theorem 2.3. Let 0x Y
x

 n
 be arbitrarily 

chosen. Define a sequence    by 
1n n 0nx f x

1n 

0n n

 for 
all . If there exists a positive integer n0 such that 
x

0
fx

1n n

, the the proof is finished. So, assume that  
x x   for all . Since 1n  0x Y

0 0
mi

, there exists  
1 0 i such that 

0
x A . Therefore,  

and, by induction, we have . 

Hence we have  

 01 0 1 modi mx fx A  

 00 mod
n

n i n mx f x A  

   
     

   
      

1 1

1 1 1

1 1

1 1 1 1

, ,

max , , , , , ,

, , ,

max , , , , ,

n n n n

n n n n n n

n n n n

n n n n n n

d x x d fx fx

d x x d x x d x x

d x x d x x

d x x d x x d x x





 

  

 

   







   (1) 

Assume that  
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1 1

1

max , , , ,

, .

n n n n

n n

d x x d x x

d x x

 


1 1,n nd x x 

 , ,d x x

  

 

Then we can see that 1 1n n n n  , which 
is a contradiction. Therefore, from (1), it follows that  

 d x x 

   
   

   

1 1

1 1

1 1

, max ,

max , , ,

, ,

n n n n

n n n n

n n n n

d x x d x x

d x x d x x

d x x d x x







 

 

 



 

   

 
1 1

1

, ,

,

.

n n

n n

d x x

d x x

 



1 d x

 

Consequently, we can deduce that  

 n nd x x   1, ,n nx , where 1
1




 


. By re- 

peating this process, we have    1 0 1, ,nd x x

1n

n nx 

 nx

d x .  

Thus it is easily seen that 




  1n n
x





 is a Cauchy sequence  

in Y. Since Y is closed in X, Y is a complete subspace of 
X and so  converges to some point x Y  . De- 

note 1
0
m ii

Z A
  . Now, we show that x Z 

n  0 modn i n m

. Since,  

for each , we have 1 x A 


1

1
0
mi 

1





, it is easy to see  

that, for each 1
0 , Ai contains infinitely many points 

of . Since Ai is closed for each , we can  

mi 
 n n

x


construct a subsequence of    in Ai which con- n n
x

verges to x . Therefore, x Z  . In other words, Z is 
nonempty. 

Consider the restriction Zf  of the function . We 
can see that it maps 

f
Z  into itself, i.e., :Zf Z Z . 

Then it is easily proved, by applying Theorem 1.4, that 

Zf  has a unique fixed point x Z . Thus  is also 
a fixed point of . 

z

f

f
Now, assume that there exists another fixed point of 
 denoted by x Y . Since x Y , we have jx A  

for some 0 . Therefore, 1mj  x  and  are descen- 
dants in . Hence we have  

z

Y

   
     

   
 

, ,

max , , ,

, , ,

, ,

d x z d fx fz

d x z d x fx

d fx fz d z fx

d x z





, , ,d z fz  

 









 

 

which implies that  ,d x z z= 0 , that is,   is the 
unique fixed point of f . 

Next, we show that x z 

0
z A

   

    

, , ,

, , .

n

n n

d z fz

d x z

  

 

. Since Z and  
, we have  1 mod i n m 

 x z 



 
 

   
 

1

1 1

1

1 1

, ,

max , , ,

, , ,

max , , ,

n n

n n

n n

n n

d d fx fz

d x z d x x

d x fz d x z

d x z d x x





 


 

 


 





   (2) 

We have a contradiction if  

        1 1max , , , , , , .n n n n nd x z d x x d x z d x z  
    

So, we claim that  

      
    

1 1

1 1

max , , , , ,

max , , , .

n n n n

n n n

d x z d x x d x z

d x z d x x

 
 


 

 

Hence, from (2), it follows that  

     
      

   
 

1 1

1 1

1 1

1

, max , , ,

max , , , , ,

, ,

, .

n n n n

n n n

n n

n

d x z d x z d x x

d x z d x z d x z

d x z d x z

d x z









 
 

  
 

 
 








   



 

Thus, by repeating this process, we obtain  
   , ,nd x z d x z 0n

  =. Therefore, we have x z

 nx
, 

that is, 
=1n


 converges to the unique fixed point z  

of f  in Z  for any initial 0x Y

0

. This complete the 
proof.                                        ■ 

Proof of Theorem 2.6. Let x X

  1n n
x

 be arbitrary. De- 


fine a sequence 


 as in the proof of Theorem 2.3. 

Following the proof lines, we obtain  

     
      

 

1 1 1 1

1 1 1

1

, max , , ,

max , , max , , ,

, .

n n n n n n

n n n n n n

n n

d x x d x x d x x

d x x d x x d x x

d x x







   

  









 

By repeating this process, we get  
   1 0 1, ,n

n nd x x d x x 

  =1n n
x

. Then it is easily seen that the  


sequence 


  =1n n
x

 is a Cauchy sequence and so, from the 

completeness of Y , 


 converges to some point  

Yx  . We can show, by using the proof of Theorem 2.3, 
that 1

0
m ii

A
   is not empty. More precisely,  Z

Zx  . 
fNow, we consider the restriction :Z Z Z  of the 

function f . Note that the strong triangle inequality also 
implies the ordinary triangle inequality. Hence Theorem 
1.4 can be applied to confirm the existence of a unique 
fixed point   of Zz f  in Z . By the proof of Theo- 
rem 2.3, we can show that  is also the unique fixed 
point of 

z

f . 

Now, we show that the sequence  0 1

n

n
f x




 con-  

verges to z* for any 0x Y . Since  and 
, we have  

 0 mod n i n mx A 

 0 1 mod i n mz A
 

   
     

1

1 1

, ,

max , , , , , ,

n n

n n n

d x z d fx fz

d x z d x x d z fz
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1

1 1

, , ,

max , , ,

n n

n n

d fx fz d x z

d x z d x x

 



     , , .n nd x z

 ,n nd x z

  
  

,

, ,

n n

n

x

d x z

 0, ,nd x z 

 
   ,V G d  is a complete metric space. Set  

We can see that  

      1 1max , , , , ,n n nd x z d x x d x z 
  . 

Otherwise, we have a contradiction. Hence we have  

   
   

 

1 1

1 1

1

, max , ,

max , ,max ,

, .

n n

n n

n

d x z d x z d x

d x z d x z

d x z







 
 

 
 










 

Again, by repeating this procedure, we obtain  

 nd x z . Then the sequence  
=1n n

x


 con- 

verges to the unique fixed point  of z f  in Z  for 
any initial 0x Y

 , , ,v x y 

. This completes the proof.        ■ 
Notice that our results do not only generalize Ććirić’s 

result, but also make it easier to determine the fixed point 
of a given mapping as in the following example:  

Example 2.7. Consider a weighted graph  
  : :G V G u   , E G  whose E G

,iw

 ,i j ,i jw

 makes G 
a complete K4 graph with weights j  for each  

 given as follows:     ,i j E G
  

  

 ,u v  3 

 ,u x 1

 ,u y 2

 ,v x 2

 ,v y 1

 ,

  

  

  

  

x y 3  

 
For the understanding of the readers, we illustrate G as 

a figure in the following:  
 

 
 
Now, define a function  by let-

ting, for all ,  if i = j and  

,i j  if  (we can do this because the 
graph G is complete). By this setting, it is easy to verify 

that 

 :d V G
 ,i j V G  ,d i j 

i j

 : , ,0  : ,1A u v x  and A v y , we have A0 and A1 being 
two closed subsets of  V G . Suppose that the mapping 

   :f V G V G

i  

 given by the following:  
  

f i   

u y  

v v  

x  y

y v

 

  

 
By a careful calculation, we may obtain that f  is a 

cyclic quasi-contraction on 0 1V G . Thus,   = A A f  
has a unique fixed point  and  n

0 1v A A  f i v  
for every  i V G

, :

.  

3. Common Fixed Point Theorems 

In this section, we prove some common fixed points 
theorems for the co-cyclic conditions. Before we can 
prove our results, we also need the following, which is an 
extension of Definition 2. 

Definition 3.1. Let X be a nonempty set and  

 V G 
0

w ,d i j 

f g X X 1
0
m ii

X be two mappings. The set 

1
0

= mi

 is  

called a co-cyclic representation of X between f and g if 
the following conditions are satisfied: 

X 

i

; X1) 
1

0
mi X  is a non-empty subset of X  for all 

   

; 2) 

 1 mod i i mf X g X  1
0
m for all i .  3) 

Example 3.2. Let  0,2X  , 0 0,1X  , 1

1 3
,

2 2
X

      
 and 2 1, 2X  . Now, define two self-mappings f, g on X 

by  

1 if 0 1,

1 3
if 1 < ,

2 2
3

1 if < 2,
2

x

fx x x

x x


  

  



  

 

1 1
if 0 ,

2 2
1 3

1 if < ,
2 2
3

1 if < 2.
2

x x

gx x

x x

   

 

  

 

 

Now, we see that  

     0 1 2

1 1
,1 , 1 , ,1 ,

2 2
g X g X g X           
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 ,f g -co-cyclic quasi-contrac-  
       0 1

1
1 , ,1 ,

2
f X f X   

 
2

1
,1 .

2
f X     

 

Therefore,    0 1f X g X ,    1 2f X g X  and  

   2 0f X g X . That is, 2 i
0i
X



0 1, , , m

  is a co-cyclic rep-  

resentation of X between f and g.  
Definition 3.3. Let 1A A A   be nonempty closed  

subsets of a metric space  ,X d ,  and  1
0

: m ii
Y A
 

, :f g Y Y

1
0
m ii

 be two mappings. If the following condi-
tions are satisfied: 

1) A

0 < 1

 is a co-cyclic representation of Y be- 

tween f and g; 
2) there exists 

  , , ,d fy gy

 ,

 such that  

    
   

, max , , ,

, , ,

d fx fy d gx gy d fx gx

d fx gx d fy gx


 

whenever x and y are descendants in Y, then we say that f 
and g are f g

1, , ,

-co-cyclic quasi-contraction.  
Remark 3.4. The notions and results in this section 

can be reduced from the results of the previous section if 
the mapping g is the identity mapping.  

Now, we are ready to give some extensions of the 
results in Section 2. 

Theorem 3.5. Let 0 1 mA A A
 ,

  be nonempty closed 
subsets of a complete metric space X d

0
:=

i
Y

 

 and  

1m iA . Suppose that , :f g Y Y  are  ,f g - 

co-cyclic quasi-contraction with 
1

0,
2

   

 ,  

:
Ai

i ig A A i is a mapping and gA

1
0
mi 

1
0
m ii

 is closed for all  

. Then f and g have a unique point of coinci- 

dence in A .  

Theorem 3.5 can be proved using the analogous ideas 
of the proofs in Section 2. However, we prove Theorem 
3.5 differently by using the following lemma ([8]): 

Lemma 3.6. [8] Let X  be a nonempty set and  
:f X 

E   
X  be a mapping. Then there exists a subset 

 such that X  f E f X  and :f E X

1
0
mi  E 

 is 
an injection.  

Proof of Theorem 3.5. By Lemma 3.2, for each 
, there exists i i  such that A  ig E   

 ig A  and : i ig E 
1 igE

A

0i W

  1 mod( i mg E 

0
mi  1

0
m ii

 is an injection. Define  
: mW   and a mapping  by hgx = 

fx. It is easy to see that  

:h W 

 ih g E   

for each 1, which further implies that gE   

is a cyclic representation of W with respect to h. More-

over, we can write the 

tion with 
1

0,
2

    
 in terms of a cyclic quasi-contrac- 

tion as follow:  

     
     

, max , , , ,

, , , , , .

d hgx hgy d gx gy d hgx gx

d hgy gy d hgx gy d hgy gx


 

Since W is complete, by using Theorem 2.3, we show 
that there exists a unique fixed point x  of h in  g

 1
0
m ii

g E :g. In fact, this means x hgx fx w    

1
0

: m ii

.  

Furthermore, we can see that w is also the unique point 
of coincidence of f and g in Z A

 

, :

. This com-
pletes the proof.  

Note that our conditions are not strong enough to show 
the existence of a common fixed point of two mappings. 
To guarantee the existence and uniqueness of a common 
fixed point, we need an additional condition, namely, a 
weak compatibility, which is defined as follows: 

Definition 3.7. [9] Let X be a nonempty set. Two map-
pings f g X X  are said to be weakly compatible if 
they commute at their point of coincidences, i.e., if  
x X fx gx f  is such that  , then gx gfx

w fx gx

.  
Theorem 3.8. Suppose that all the conditions in Theo-

rem 3.5 hold. If f and g are weakly compatible, then f and 
g have a unique common fixed point.  

Proof. Since all the conditions in Theorem 3.5 hold, it 
follows that f and g have a unique point of coincidence w  

of f and g, that is,    1
0

: m ii
 in A

  . If f  Z

and g are weakly compatible, we have  
w fgx gfx gw    ff . This means w gw  is also a 

point of coincidence of f and g. Since the point of coin-
cidence of f and g is unique, we have that fw gw w  , 
that is, w is a common fixed point between f and g. 

For the uniqueness of the point w, suppose that 
fz gz z 

z w

. Hence z is a point of coincidence of f and g. 
Since the point of coincidence of f and g is unique, we 
conclude that  . Thus f and g have a unique com-
mon fixed point w in Z. This completes the proof.  

Theorem 3.9. Let 0 1 1mA , , ,A A   be nonempty closed 
subsets of a complete ultrametric space  X ,d

1
0

: m ii
Y A
  , :

 and  
g Y Y  are  ,. Suppose that f f g - 

co-cyclic quasi-contraction, :
Ai

i ig A A

i

 is a map-  

A 1
0
mi 

1
0
m ii

 is closed for all . Then f and g  ping and g
have a unique point of coincidence in A

0 1, , , m

. More- 

over, if f and g are weakly compatible, then f and g have 
a unique common fixed point.  

The proof of this theorem can be completed using the 
proof of Theorems 2.6, 3.5 and 3.8 and so we omit here. 

Corollary 3.10. Let 1A A   be nonempty closed A
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 ,subsets of a complete metric space X d

1
0

: m ii
Y A
 

 , , 0,   

  


, ,d fy gy

x



 and  
. Let f and g be two self-mappings on Y.  

Suppose that there exist  such that  , , 

 
 

, , gy

d fx gx

  

 



  
, ,

d fx fy d gx d fx gx

d fy g 
 (3) 

whenever x and y are descendants in Y, where  
1

2
       , :

Ai
i ig A A  is a mapping and 

 ig A  is closed for all 1
0
mi  1

0
m ii

. Suppose that A

1
0
m ii

 

is a co-cyclic representation of Y between f and g. Then f 
and g have a unique point of coincidence in A


  

ax , ,

, , ,

gy

x d fy gx



.  

Moreover, if f and g are weakly compatible, then f and g 
have a unique common fixed point.  

Proof. Since f and g satisfy the inequality (3), we can 
deduce that  

    
    

, m

, , , ,

d fx fy d gx

d fx gx d fy gy d fx g

        
 

Now, since  1
0,

2
           

, applying Theo- 

rems 3.5 and 3.8, we obtain the result.  
Corollary 3.11. Let 0 1 1m, , ,A A A   be nonempty clo- 

sed subsets of a complete ultrametric space  ,X d

1
0
m ii

  
and  , :X d Y  A

 , , 0,   

  


, ,d fy gy

x



. Let f and g be two self-map-  

pings on Y. Suppose that there exist  
, ,    such that  

    
  

, ,

, ,

d fx fy d gx gy d gx gy

x d fx gy df y g

 

 

 

 
 

whenever x and y are descendants in Y, where  

1        , :A i ii
g A  A  i and g A

1
0
m ii

 is closed 

for all . Suppose that 1
0
mi  A

1
0
m i

  is a co-cyclic  

representation of Y between f and g. Then f and g have a  
unique point of coincidence in A 


  

ax , ,

, , , .

gy

d fy gx

  0,1   

, , , m

. Moreover, if f  

and g are weakly compatible, then f and g have a unique 
common fixed point.  

Proof. Since f and g satisfy the inequality (3), it fol- 
lows that  

    
    

, m

, , , ,

d fx fy d gx

d fx gx d fy gy d fx gy

        
 

Now, since , applying Theo- 
rem 3.4, we obtain the result.  

   

If g is the identity mapping in Corollaries 3.5 and 3.6, 
we have the following: 

Corollary 3.12. Let 10 1A A 

 ,

 be nonempty closed 

subsets of a complete metric space X d

1
0

:= m ii
Y A 

 , , , , 0,    

 and  
. Let f be a self-mapping on Y. Suppose  

that there exist   such that  

       
   

, , , ,

, ,

d fx fy d x y d x fx d y fy

d x fy d y fx

  

 

  

 
 

whenever x and y are descendants in Y, where  

A

1
<

2
        1

0
m ii

A. Suppose that  

1
0
m ii

 is a cy-  

clic representation of Y with respect to f. Then f has a 
unique fixed point in A 

, , ,
.  

Corollary 3.13. Let 0 1 1mA A A
 ,

  be nonempty closed 
subsets of a complete ultrametric space X d

1
0

: m ii
Y A
 



 and  
. Let f be a self-mapping on Y. Suppose  

that there exist , , , , 0,       such that  

       
   

, , , ,

, ,

d fx fy d x y d x fx d y fy

d x fy d y fx

  

 

  

 

< 1

 

whenever x and y are descendants in Y, where  
        1

0
m ii

A. Suppose that  

1
0
m ii

 is a cyclic 

representation of Y with respect to f. Then f has a unique 
fixed point in A  .  

Remark 3.14. Notice that Corollary 3.12 also gener-

alizes the condition 
1

2
2

     of Theorem 1.2.     

4. Conclusion 

For the single-mapping case, the existence and unique-
ness of a fixed points for a quasi-contraction in cyclic 
sense is proved with a restriction that the contraction  

constant have to be less than 
1

2
. We further showed that  

if X is an ultrametric space, such a restriction may be 
dropped. Further, with the notion of a co-cyclic repre-
sentation, we point out that the two-mapping case may be 
extended from our results proved earlier. 
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