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ABSTRACT 

A ring R is called right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of every principal right 
ideal of R is generated by an idempotent. For a ring R, let G be a finite group of ring automorphisms of R. We denote 
the fixed ring of R under G by RG. In this work, we investigated the right p.q.-Baer property of fixed rings under finite 
group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then we 
show that: 1) If R is G-p.q.-Baer, then RG is p.q.-Baer; 2) If R is p.q.-Baer, then RG are p.q.-Baer. 
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1. Introduction 

Throughout this paper all rings are associative with iden-
tity. Recall from [1] that a ring R is called right princi-
pally quasi-Baer (simply, right p.q.-Baer) if the right 
annihilator of every principal right ideal of R is generated, 
as a right ideal, by an idempotent of R. A left principally 
quasi-Baer (simply, left p.q.-Baer) ring is defined simi-
larly. Right p.q.-Baer rings have been initially studied in 
[1]. For more details on (right) p.q.-Baer rings, see [1-6].  

Recall from [7] (see also [8]) that a ring R is called 
quasi-Baer if the right annihilator of every right ideal is 
generated, as a right ideal, by an idempotent of R. A ring 
R is called biregular if for each x R , RxR eR  for 
some central idempotent . We note that the class 
of right p.q.-Baer rings is a generalization of the classes 
of quasi-Baer rings and biregular rings.  

e R

For a ring R, we use  to denote a fixed maxi-
mal right ring of quotients of R. According to [9] an 
idempotent of a ring is called left (resp., right) semi-
central if  (resp., ) for all 

 Q R

R
ea  a R

e
ae eae eae  . 

Equivalently, an idempotent e is left (resp., right) semi-
central if and only if eR (resp., ) is a two-sided ideal 
of R. For a ring R, we let 

Re
 lS R

S R

 (resp., l ) denote 
the set of all left (resp., right) semicentral idempotents. 
An idempotent of a ring is called semicentral reduced 
if l . Recall from [2] that a ring R is 
called semicentral reduced if l , i.e., 1 is a 
semicentral reduced idempotent of R.  

 S R

R

1

e
  0,e e S eR

  0,

For a nonempty subset X of a ring R, we use  r X


R  
and Rl X

 

 to denote the right annihilator and the left 

annihilator of X in R, respectively. If R is a semiprime 
ring and I is a two-sided ideal of R, then  r I l IR R . 
For a right R-module M and a submodule N of M, we use 

ess
R RN M den and R RN  to denote that M RN  is es-

sential in M R  and RN  is dense in M R , respectively. 
 For a ring R, we let Aut R
G

 denote the group of ring 
automorphisms of R. Let be a subgroup of  Aut R

r R
. 

For gg G  and  , we let r
GR

 denote the image of 
r under g. We use  to denote the fixed ring of R un-  

 for everyG gR r R r r g G   

0

der G, that is . 

We begin with the following example. 

2. Preliminary  

Example 2.1. There exist a ring R and a finite group G of 
ring automorphisms of R such that R is right p.q.-Baer  

F F
Rbut RG is not right p.q.-Baer. Let 

F

 
  
 

 with a  

field F of characteristic 2. Then R is right p.q.-Baer. De-
fine  g Aut R

1
1 1 1 1

0 0 1 0 0 1

a b a b
g

c c

 

 by  

       
        

        
2 1g

 

  since the characteristic of F is 2. Then 
Now we show that RG is not right p.q.-Baer. The fixed 

ring under G is 

,
0

G x y
R R x y F

x

       
   

 

By computation we see that the idempotents of RG are 
only 0 and 1, thus RG is semicentral reduced. So if RG is *Corresponding author. 
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  e B Q R . Letright p.q.-Baer, then RG is a prime ring by [2, Lemma 
4.2], a contradiction. Thus RG is not right p.q.-Baer.Also 
we can see that RG is not left p.q.-Baer. 

I be a two-sided ideal of R such that 
 Rr I fR   with essI

Definition 2.2. Let R be a semiprime ring. For  
 g Aut R , let 

  eachforg
g mx Q R xr rx    r R

 Q R

, 

where m  is the Martindale right ring of quotients 
of R (see [10] for more on  Q Rm ). We say that g is X- 
outer if g 0   . A subgroup G of Aut R  is called X- 
outer on R if every 1 g G   is X-outer. Assume that R 
is a semiprime ring, then for  g Aut R , let  

  eachforg
g mx Q R xr rx    r R

 

. 

For g Aut R , we claim that g g  . Obviously 

g g   . Conversely, if gx  then xR Rx . There 
exists den

R RI R  such that xI  R . Therefore , RI R
( ) den

R RRRI  , and xRI RxI R . Thus  mx Q R , 
hence gx  . Therefore g g 

 

. So if G is X-outer on 
R, then G can be considered as a group of ring auto-
morph-ismms of  and G is X-outer on Q R  

0

Q R . 
For more details for X-outer ring automorphisms of a 
ring, etc., see [10, p. 396] and [11].  

We say that a ring R has no nonzero n-torsion (n is a 
positive integer) if  with  implies a0na  a R  .  

Lemma 2.3. [12,13] 
Let R be a semiprime ring and G a group of ring auto-

morphisms of R. If  is semiprime, then  is 
semiprime. 

*R G GR

 Cen R

   GCen R

For a ring R, we use  to denote the center of 
R.  

Lemma 2.4. For a semiprime ring R, let G be a group 
of X-outer ring automorphisms of R.  

Then .  *Cen R G
Proof. 
Let  1 2 2  with 1a a g     n na g ia RCen R  , 

1 the identity of G, and ig G
 1 n ng a g  

ng
na b ba

a   1a a R


 1a a g a g  

. 
The 2 2  

for all . So 1 1, , ···, n  
for all . Since G is X-outer, it follows that  

1 2 2 1n n b 
b R a b ba 2

2 2
ga b ba

b R

b a a

2 0a n . Hence 1 1    . Also since 
b b   for all , we have that b R  1a Cen R .  

Note that for all g G a g,  implies 
1

1 1 1
gga a g


 
1

11
ga a


. So  1

G
a Cen R  

G

. Thus  

   Cen R

 *Cen R G

 

*Cen R G . 

Conversely,  is clear.   G
Cen R

Therefore  GCen R

   G
en Q R  

*Cen R G . 
Lemma 2.5. [14] Assume that R is a semiprime ring 

and G is a finite group of X-outer ring automorphisms of  

R. Then .    G
Cen Q R C

Lemma 2.6. Assume that R is a semiprime ring and 

R ReR  and f B R
1e f

. Then 
 . 

Proof. Since R is semiprime,  
    1ess

RR R R
l r I f R    . Thus  1ess

R R
I I f Q R 

ess
. 

As R ReR  ess
R, 

R
I I eQ R

1 f
. We note that e and 

    are in B Q R 1e f 

 G
q Q R

GqI R
:q IR R

. So we have that . 
Lemma 2.7. [15] Let R be a semiprime ring with a fi-

nite group G of X-outer ring automorphisms of R.  
1) For , let I be a dense right ideal I of RG 

such that . Then IR is a dense right ideal of R 
and the map  defined by  

   i i ii
q a r a r  ia I ir R, with  and  , is a 

right R-homomorphism. Moreover .   G
q Q R

   :
GGQ R Q R  q q2) The map    defined by     

is a ring isomorphism. 
3) Let q Q R

qK R G
 and K a dense right ideal of R such 

that . Then R  is a dense right ideal of RG  K

 G

G G

R
q K R R and , where q

q

GR
 is the restriction 

of  to RG. Thus  G

G

R
q Q R

g

. 

For a ring R with a group G of ring automorphism of R, 
we say that a right ideal I of R is G-invariant if I I  
for every g G , where  g gI a a I  . 

Proposition 2.8. [1] Let R be a semiprime ring. Then 
the followings are equivalent.  

1) R is right p.q.-Baer;  
2) Every principal two-sided ideal of R is right essen-

tial in a ring direct summand of R;  
3) Every finitely generated two-sided ideal of R is 

right essential in a ring direct summand of R;  
4) Every principal two-sided ideal of R that is closed 

as a right ideal is a direct summand of R;  
5) For every principal two-sided ideal I of R, Rr I

g

 
is right essential in a direct summand of R;  

6) R is left p.q.-Baer.  
For a ring R with a group G of ring automorphisms of 

R, we say that a right ideal I of R is G-invariant if 
I I  for every g G , where  g gI a a I  . As-
sume that R is a semiprime ring with a group G of ring 
automorphisms of R. We say that R is G-p.q.-Baer if the 
right annihilator of every finitely generated G-invariant 
two-sided ideal is generated by an idempotent, as a right 
ideal. By Proposition 8, if a ring R is semiprime p.q.- 
Baer with a group G of ring automorphisms of R, then R 
is G-p.q.-Baer. 

A ring R is called right Rickart if the right annihilator 
of each element is generated by an idempotent of R. A 
left Rickart ring is defined similarly. A ring R is called 
Rickart if R is both right and left Rickart. A ring R is said 
to be reduced if R has no nonzero nilpotent element. We 
note that reduced Rickart rings are p.q.-Baer rings.  
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We put  

     


there exist

.

p

ess
R R

B Q R e B Q R

RxR eR

 



s withx R

 B
ˆ

pqQ R  Q R

  pB Q R

 Q̂ R
R

  B Q R R

  G GR R

pe B

 

Let  be the subring of  generated by 

R and . 

Lemma 2.9. [16] Assume that R is a semiprime ring. 
Then:  

1) The ring Bpq  is the smallest right ring of 
quotients of which is p.q.-Baer;  

2) R is p.q.-Baer if and only if .  p

With these preparations, in spite of Example 1, we 
have the following result for p.q.-Baer property of RG on 
a semiprime ring R for the case when G is finite and 
X-outer. 

3. Main Results  

Theorem 3.1. Let R be a semiprime ring with a finite 
group G of X-outer ring automorphisms of R. Then:  

1) If R is G-p.q.-Baer, then RG is p.q.-Baer.  
2) If R is reduced G-p.q.-Baer, then RG is Rickart. 
Proof. 1) Assume that R is G-p.q.-Baer. To show that 

RG is p.q.-Baer, it is enough to see that  

by Lemma 9 since RG is semiprime from Lemma 3. Let 

. Then 

pB Q

  GQ R  Ge B Q R , so    
by Lemma 7. From Lemma 9, there exists  such 

that 

Ge B Q R
Ga R



GG

G G ess G

R R
R eR

G G

G G G

R a  because . Note 

that 

  GRpe B Q

R R
R eR R a . 

We show that G G

G G ess G

R R
R eR 

0 er 0 Ger eR 
G GR aR



  G

ess G

R a
G

. To see this, say  

eR  
Gb R

erb R 

 with . Then . So there 
exists  such that 0 . Hence  

. 

Gr R
erb 

G G

0 G GaR

Observe that G

G G

R RR
R 

R

R aR r R aR 

 G

G G G G

R
R aR r R aR

 G

G G G G

R
R aR r R aR R  

, as 

RG is semiprime from Lemma 3. So  

 is a dense right ideal of RG since 

RG is semiprime. By Lemma 7,  

 is a dense right ideal of . 

So it is essential in RR . Hence  

 G

G G G G  ess

RR
R aR r R aR R  R

Q R 

ess

. 

We claim that R RRaR eR 
G G

. 
First note that RR aR R eR 

G G ess
. For the claim, it is 

enough to show that R R

 with . Then there exists r
R a

R
R R eR 

0 1 R
. Take  

er eR   r  such  

that 10 G G

R
err R aR R r    G R aR R . Say  

x y

G G

1err   , where G G x R aR R  and  
 aR R . 

e r
G

G G

R
y r R

Then 1 1err er ex ey


      . 

i i


 with  G

G G
i R

p r R aR  and iPut y p s  s R . 

Th iep sen iey   s case, 0iep    i. To

at the

. In thi for all   

see this, assume on the contrary th re is ip  such 
that 0iep  . Note that 0 iep eR   . 

Thus there exists 0
Gr R  such that  

0 G G  beca e

G

use G

G G ss G
0iep r R aR   GR R

eR . 

0i i  be use  
R aR

Also 0 0G G G Gep r R aR ep R aR e     ca


 G Gp r R aR . Therefore we have thGi R
 at 00 iep r   

  0GaRG

G G G

R
R aR r R   0iep, a contradiction. Thus 

for all i, so 0ey

 

 . H . Now 
G

ence 1err ex ey ex     
since Gx R aR write R , i ix t z  with it 

iz R

 G GR aR  

and . The i iet z xn i iex t z     because
G GaR o 10 err ex x R    

Therefore 

  
G

it R eR   . S G GaR R . 
ess

R ReR . NRaR  ote that  

   Cen Q  GGCen Q R R     by Lemma 5. Therefore  

  
     

G

G

e B Q R Ce

Cen Q R Cen Q R

 

   


 

Hence G G GRaR RR aR R ReR R eR    . 
aR is a G-invariant two-sided ideal of R and R is 

  Gn Q R

As R
R-p.q.-Baer, there is  lf S R  such that  

 Rr RaR fR . From [9],  f B R . As    e B Q R  
and ess

R RRaR eR  , it follows that 1e    
Lemm Ge R . 

Therefore G GeR eR R , and thus

f R  by
a 6, so 

G   Ge R . 

So  G GR R , and q. aer by 

Le a 9.  
all that a reduced p.q.-Baer ring is Rickart. 

G

nclusion 

Baer property of fixed rings under fi-

pB Q  hence RG is p. -B

mm
2) We rec

Thus if R is reduced G-p.q.-Baer, then R  is Rickart from 
1).  

4. Co

In [14], the quasi-
nite group actions on a semiprime ring and their applica-
tions to C*-algebras have been studied (see also [17,18]). 
Motivated by investigations in [14], in this paper we in- 
vestigate the right p.q.-Baer property of fixed rings under 
finite group actions on a given semiprime ring. Assume 
that R is a semiprime ring with a finite group G of 
X-outer ring automorphisms of R. Then we show that if 
R is G-p.q.-Baer, then RG is p.q.-Baer. Thus if R is a 
semiprime p.q.-Baer ring with finite group G of X-outer 
ring automorphisms of R, then RG is p.q.-Baer. 
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