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ABSTRACT

A ring R is called right principally quasi-Baer (simply, right p.g.-Baer) if the right annihilator of every principal right
ideal of R is generated by an idempotent. For a ring R, let G be a finite group of ring automorphisms of R. We denote
the fixed ring of R under G by R°. In this work, we investigated the right p.q.-Baer property of fixed rings under finite
group action. Assume that R is a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then we
show that: 1) If R is G-p.q.-Baer, then R® is p.q.-Baer; 2) If R is p.q.-Baer, then R® are p.q.-Baer.
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1. Introduction

Throughout this paper all rings are associative with iden-
tity. Recall from [1] that a ring R is called right princi-
pally quasi-Baer (simply, right p.q.-Baer) if the right
annihilator of every principal right ideal of R is generated,
as a right ideal, by an idempotent of R. A left principally
quasi-Baer (simply, left p.q.-Baer) ring is defined simi-
larly. Right p.q.-Baer rings have been initially studied in
[1]. For more details on (right) p.q.-Baer rings, see [1-6].

Recall from [7] (see also [8]) that a ring R is called
quasi-Baer if the right annihilator of every right ideal is
generated, as a right ideal, by an idempotent of R. A ring
R is called biregular if for each xe R, RxR=eR for
some central idempotent e e R. We note that the class
of right p.g.-Baer rings is a generalization of the classes
of quasi-Baer rings and biregular rings.

For a ring R, we use Q(R) to denote a fixed maxi-
mal right ring of quotients of R. According to [9] an
idempotente of a ring R is called left (resp., right) semi-
central if ae=eae (resp., ea=eae) for all aeR.
Equivalently, an idempotent€ is left (resp., right) semi-
central if and only if eR (resp., Re) is a two-sided ideal
of R. Foraring R, we let S, (R) (resp., S,(R)) denote
the set of all left (resp., right) semicentral idempotents.
An idempotent € of a ring R is called semicentral reduced
if S (eRe)={0,e}. Recall from [2] that a ring R is
called semicentral reduced if S, (R)={0,1}, ie, lisa
semicentral reduced idempotent of R.

For a nonempty subset X of a ring R, we use r, (X)
and 1. (X) to denote the right annihilator and the left
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annihilator of X in R, respectively. If R is a semiprime
ring and | is a two-sided ideal of R, then r, (1)=1,(1).
For a right R-module M and a submodule N of M, we use
N, <M, and N, <* M, to denote that N, is es-
sential in M, and N, isdensein Mg, respectively.
For aring R, we let Aut(R) denote the group of ring
automorphisms of R. Let G be a subgroup of Aut(R).
For reR and geG, we let r’ denote the image of
r under g. We use R® to denote the fixed ring of R un-

der G, thatis R® :{r € R|rg =r for every g eG} .

We begin with the following example.

2. Preliminary

Example 2.1. There exist a ring R and a finite group G of
ring automorphisms of R such that R is right p.q.-Baer

F F
but R® is not right p.q.-Baer. Let R:{O F} with a

field F of characteristic 2. Then R is right p.q.-Baer. De-
fine ge Aut(R) by

oo - I 2

Then g? =1 since the characteristic of F is 2.
Now we show that R® is not right p.q.-Baer. The fixed
ring under G is

R® ={3 ﬂe R|x,y e F}

By computation we see that the idempotents of R® are
only 0 and 1, thus R® is semicentral reduced. So if R® is
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right p.q.-Baer, then R® is a prime ring by [2, Lemma
4.2], a contradiction. Thus R® is not right p.q.-Baer.Also
we can see that R® is not left p.q.-Baer.

Definition 2.2. Let R be a semiprime ring. For
g € Aut(R), let

¢, = {xE Q. (R)|xr® =rx for each r € R},

where Q, (R) is the Martindale right ring of quotients
of R (see [10] for more on Q_ (R)). We say that g is X-
outer if ¢, =0. A subgroup G of Aut(R) is called X-
outeron R ifevery 1= geG is X-outer. Assume that R
is a semiprime ring, then for g e Aut(R), let

D, Z{XGQm (R)|xrg =rxforeachre R} .

For ge Aut(R), we claim that @, =g, . Obviously
¢, < @, . Conversely, if xe®,  then xR=Rx. There
exists I, <®" R, such that xI c R. Therefore RI <R,
(RI)f <*" Ry, and xRl =Rxl cR. Thus xeQ,(R),
hence x e g, . Therefore @ =4, . So if G is X-outer on
R, then G can be considered as a group of ring auto-
morph-ismms of Q(R) and G is X-outer on Q(R).
For more details for X-outer ring automorphisms of a
ring, etc., see [10, p. 396] and [11].

We say that a ring R has no nonzero n-torsion (n is a
positive integer) if na=0 with aeR implies a=0.

Lemma 2.3. [12,13]

Let R be a semiprime ring and G a group of ring auto-
morphisms of R. If R*G is semiprime, then R® is
semiprime.

For a ring R, we use Cen(R) to denote the center of
R.

Lemma 2.4. For a semiprime ring R, let G be a group
of X-outer ring automorphisms of R.

Then Cen(R*G)=Cen(R®).

Proof.

Let a=al+a,g9,+-+a,d, €Cen(R) with a eR,
1 the identity of G, and g, €G.

The (al+a,9,+---+a,9,)b=b(al+a,g,+-+a,0,)
forall beR. So ab=ba, a,b* =ba,, ---, ab™ =ba,
forall beR. Since G is X-outer, it follows that
a,=---=a,=0. Hence a=al=a €R. Also since
ab=ba for all beR, we have that a eCen(R).

Note that for all geG, ag=ga =a° g implies
a, =a’ .S0o a=a eCen(R)". Thus
Cen(R*G):Cen(R)G .

Conversely, Cen(R)GgCen(R*G) is clear.

Therefore Cen(R*G) = Cen(R®).
Lemma 2.5. [14] Assume that R is a semiprime ring

and G is a finite group of X-outer ring automorphisms of
G

R. Then Cen(Q(R)®)=[Cen(Q(R))] -

Lemma 2.6. Assume that R is a semiprime ring and
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eeB(Q(R)). Letl be a two-sided ideal of R such that
l. < eR; and r,(1)=fR with feB(R). Then
e=1-f.

Proof. Since R is semiprime,
Iy <* Ig (re (1)), = (1= f)R. Thus 1, <* (1 f)Q(R),.
As 1, <®eR,, I, <*eQ(R),. We note that e and
1-f arein B(Q(R)).Sowehavethat e=1-f .

Lemma 2.7. [15] Let R be a semiprime ring with a fi-
nite group G of X-outer ring automorphisms of R.

1) For qeQ(R)°, let I be a dense right ideal I of R®
such that gl < R®. Then IR is a dense right ideal of R
andthemap §:IR — R defined by

q(Zairi)=Z(ai)ri , with a,el and reR, is a
right R-homomorphism. Moreover §e Q(R)G .

2) The map 0:Q(R®)—>Q(R)® defined by o(q) =g
is a ring isomorphism.

3) Let §eQ(R) and K a dense right ideal of R such
that GK < R. Then KR® is a dense right ideal of R®

and q|.. (K N RG)g R®, where is the restriction
of g toR® Thus ql|. €Q(R®).

For a ring R with a group G of ring automorphism of R,
we say that a right ideal | of R is G-invariant if 1° < |
forevery geG,where 1°= a9|ael .

Proposition 2.8. [1] Let R be a semiprime ring. Then
the followings are equivalent.

1) R is right p.q.-Baer;

2) Every principal two-sided ideal of R is right essen-
tial in a ring direct summand of R;

3) Every finitely generated two-sided ideal of R is
right essential in a ring direct summand of R;

4) Every principal two-sided ideal of R that is closed
as a right ideal is a direct summand of R;

5) For every principal two-sided ideal | of R, r, (1)
is right essential in a direct summand of R;

6) R is left p.q.-Baer.

For a ring R with a group G of ring automorphisms of
R, we say that a right ideal | of R is G-invariant if
1°c 1 for every geG, where 1°={a’lael}. As-
sume that R is a semiprime ring with a group G of ring
automorphisms of R. We say that R is G-p.q.-Baer if the
right annihilator of every finitely generated G-invariant
two-sided ideal is generated by an idempotent, as a right
ideal. By Proposition 8, if a ring R is semiprime p.q.-
Baer with a group G of ring automorphisms of R, then R
is G-p.q.-Baer.

A ring R is called right Rickart if the right annihilator
of each element is generated by an idempotent of R. A
left Rickart ring is defined similarly. A ring R is called
Rickart if R is both right and left Rickart. A ring R is said
to be reduced if R has no nonzero nilpotent element. We
note that reduced Rickart rings are p.q.-Baer rings.

RG
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We put
B,(Q(R))= {e € B(Q(R))|there exists x R with
RXR, <™ eR, }.

Let quB(R) be the subring of Q(R) generated by
Rand B,(Q(R)).

Lemma 2.9. [16] Assume that R is a semiprime ring.
Then: R

1) The ring Q. (R) is the smallest right ring of
quotients of R which is p.q.-Baer;

2) Ris p.q.-Baer ifand only if B, (Q(R))<R.

With these preparations, in spite of Example 1, we
have the following result for p.q.-Baer property of R® on
a semiprime ring R for the case when G is finite and
X-outer.

3. Main Results

Theorem 3.1. Let R be a semiprime ring with a finite
group G of X-outer ring automorphisms of R. Then:
1) If R is G-p.q.-Baer, then R® is p.q.-Baer.
2) If R is reduced G-p.q.-Baer, then R® is Rickart.
Proof. 1) Assume that R is G-p.q.-Baer. To show that

R® is p.q.-Baer, it is enough to see that B, (Q(RG )) c R°®
by Lemma 9 since R® is semiprime from Lemma 3. Let
ee Bp(Q(RG)). Then ee B(Q(RG)), S0 6 ¢ B(Q(RG))
by Lemma 7. From Lemma 9, there exists a < R® such
that R°aRS <* eRS because eeBp(Q(RG)). Note
that R°aR’ <éR> .

We show that R°aR’ <* éR% . To see this, say
0+6éreéR® with reR® Then 0=er ceR®. So there
exists beR® suchthat 0#erbeR®aR®. Hence
0 6érbe R®aR® .

Observe that [RGaRG Dr. (RGaRG )]RG <= RS, as
R® is semiprime from Lemma 3. So
R°aR® @r (RGaRG) is a dense right ideal of R® since
R® is semiprime. By Lemma 7,

[RGaRG ®r. (RGaRG )] R is a dense right ideal of R .

So it is essential in R, . Hence
[R°aR® +1.. (R°aR®)R] <= Q(R),

We claim that RaR, <** éR,.

First note that R°aR°R c éR,. For the claim, it is
enough to show that R°aR®R, <** éR. . Take
0+#6éreéR with reR. Then there existst, € R such

that 0#6rr, e R°aR°R+r ¢ (R°aR®)R. Say
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érr, = x+y, where xeR®aR®R and
yere (RGaRG)R )

Then érr, = éérr, =éx+8y.

Put y=Yps with p er,(R°aR®) and s eR.
Then 6y =) &p;s; . In this case, ép, =0 for all i. To
see this, assume on the contrary that there is p, such
that &p, = 0. Note that 0 ép, €€R®.

Thus there exists r, e R® such that
0+ 8p,r, e R°aR® because RGaRFfG <& éRFfG )

Also ép,r,R°aR® < ép,R°aR® =60=0 because
P erq(R°aR®). Therefore we have that 0+ épy, €
R°aR® Nr.. (R°aR® ) =0, a contradiction. Thus &p; =0
for all i, so 8y=0. Hence &rr, =8x+6&y=6x. Now
since xe R°aR®R, write xe Y tz, with t e R°aR®
and z eR . Then é&x=) &tz =)tz =x because
t e R°aR® c6R® . So 0=6érr, =éx=xeR®aR°R .
Therefore RaR, <** €R, . Note that
Cen(Q(RG)) = [Cen(Q(R))]G by Lemma 5. Therefore

e B(Q(RG))g Cen(Q(RG))
=[Cen(Q(R))]" =Cen(Q(R))

Hence RaR =RR®aR®R c RER®R =¢R.

As RaR is a G-invariant two-sided ideal of R and R is
R-p.q.-Baer, thereis f €S (R) such that
r.(RaR) = fR. From [9], feB(R).As §<B(Q(R))
and RaR, <** R, it follows that é=1-f eR by
Lemma6,s0 &eRC.

Therefore eR® =6R® — R®, and thus e e R®.

So BP(Q(RG))Q R®, and hence R is p.q.-Baer by

Lemma 9.

2) We recall that a reduced p.q.-Baer ring is Rickart.
Thus if R is reduced G-p.q.-Baer, then R is Rickart from
1).

4. Conclusion

In [14], the quasi-Baer property of fixed rings under fi-
nite group actions on a semiprime ring and their applica-
tions to C -algebras have been studied (see also [17,18]).
Motivated by investigations in [14], in this paper we in-
vestigate the right p.q.-Baer property of fixed rings under
finite group actions on a given semiprime ring. Assume
that R is a semiprime ring with a finite group G of
X-outer ring automorphisms of R. Then we show that if
R is G-p.q.-Baer, then R® is p.q.-Baer. Thus if R is a
semiprime p.q.-Baer ring with finite group G of X-outer
ring automorphisms of R, then R® is p.q.-Baer.
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