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ABSTRACT 

We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic com- 
plex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objects (vector 
bundles) and algebraic objects as they are the coherent D-modules, these last with the goal of obtaining conformal 
classes of connections of the holomorphic complex bundles. The class of these equivalences conforms a moduli space 
on coherent sheaves that define solutions in field theory. Also by this way, and using one generalization of the Penrose 
transform in the context of coherent D-modules we find conformal classes of the space-time that include the heterotic 
strings and branes geometry. 
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1. Introduction 

It is opportune to consider a generalization of the Radon- 
Schmid [1], on coherent D-modules [2], of the sheaf of 
holomorphic bundles into a cohomological context, [3] 
with the goal of establishing the equivalences between 
geometrical objects (vector bundles) and algebraic ob- 
jects as they are the coherent D-modules, these last with 
the goal of establishing the conformal classes useful to 
define adequately the differential operators that define 
the field equations of all the microscopic and macro- 
scopic phenomena of the space-time through the connec- 
tions or shape operators [4], of the complex holomorphic 
bundles in gauge theory. The class of these equivalences 
is precisely in our moduli space, which has in considera- 
tion the differential operator that defines the connection 
of the corresponding vector bundle which establish the 
relation among dimensions of cohomological conformal 
classes [5], and the vector bundles corresponding via the 
differential operators of the equations of shape (connec- 
tion) of the Riemannian manifold [5].   

But studies in algebraic geometry have established that 
manifolds of Calabi-Yau have the integrals of Penrose 
type, or at least complex integrals on strings like equiva- 
lences of geometrical invariants under the philosophy of 
the mirror symmetry. From a point of view of coherent 

D-modules, the conformally comes established in auto- 
matic form through the use of Penrose transforms on D- 
modules. Of this manner, we come to D-strings and D- 
branes corresponding to specific classes of derived she- 
aves obtained from the appropriate generalized Penrose 
transform [6].  

We define our moduli space as the space of the inva- 
riant differential operators of the  -cohomology modulo 
that are conformally invariants. We determine a coho-
mology between moduli spaces on the space of different- 
tial operators that accept a scheme of integral operators 
cohomology of Penrose type in the context of the coher- 
ent D-modules [7], since the scheme of the ireducible 
unitary representations to these operators are unitary re- 
presentations of compact components of the group  

 4,SL C  [5].  

2. Conformally Invariant Operators,  
Penrose Transform and Derived Sheaves  

There exists indictions that the class of differential op- 
erators that accept an re-interpretation of a integral op- 
erators cohomology (as the due for the Penrose transform, 
the Twistor transform, etc.) is accordingly the class of 
invariant differential operators, of the fact that the Pen- 
rose transform generates these conformal invariants op- 
erators [4], and thus we can identify the conformal classes 
to which they belong [8,9]. Some examples of these dif-
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ferential operators are the existence of the massless field 
equations (to flat versions and curved of some of their 
similar ones [10]) and the conformal invariant wave op-
erator given by the map [4]: 

   6 :R O □ 1 3O  .

 

            (1) 

or also the Einstein operator [4]: 

     
   1
A A B B AB A

AB A B

   

  □

: 1B   □
   (2) 

or the conformal invariant modification of the square of 
the wave operator    1 4O O   , that is to say; the 
wave operator who involves terms of the Ricci tensor [4], 

 2 3 ,abR Rg  
2: 2 ab

b b a     □      (3) 

Then the integration of the partial differential equa- 
tions corresponding to these invariant linear differential 
operators is realized as integrals transform of the Penrose 
type, because the context of the irreducible unitary rep- 
resentations for these operators are unitary representa- 
tions of compact components of the group  4,SL C

 2SO n
 

such as , [7], of the fact that in the flat case the 
classification of invariant differential operators like those 
described previously are a problem of representations 
theory of Lie groups applied to the group of  4,SL C

SL



 
and its compact subgroups [7]. Then one visualizes these 
operators through Lie group , as equi-variants 
operators among homogeneous vector bundles on M con- 
sidering to 

 4,C

4,CSL

 
F

P M

, like homogeneous space [5-11].  
The integral operators in this case are realizations of 

these representations and they are orbital integrals of one 
integral transform from the resolutions to these differen- 
tial equations which in this concrete case is the Penrose 
transform.  

The problem is solved using the machinery of repre- 
sentations theory and is given in [12], and with more 
generality in [13]. In after studies, the local twistor con-
nection [14] is used to investigate the questions as to 
whether these operators have curved analogues i.e. con-
formally invariant operators in the curved case.  

For example, some of these operators that are men- 
tioned in the Equation (2), and the Equation (3) are in- 
cluded in a conformal class that is obtained by the image 
of the Penrose transform on the corresponding sheaf 
whose germs are these differential operators in the holo- 
morphic vector bundle given. The Penrose transform ge- 
nerates conformally differential operators.  

We consider the Penrose transformation, [15] through 
the correspondence 

             (4) 

where VF F12 , is the manifold of flags of dimension 
one and two, associated to 4-dimensional complex vector 
space V. Let  1 VP F  , be such that  3

1 V F P C
4C  VM F

, 
(complex lines in ), and let 2 , be such that 
   G ,V F C

4 RM R C
2 2, 4  (Grassmannian manifold of 2-di- 

mensional complex subspaces),  with  

   4
1 2 3 4, , , , , ,i i i i iz z z z z z z x jy x y       M C R

F

(5) 

is the 4-dimensional complex compactified Minkowski 
space [16]. The projections of , are given for: 

 1 2 1,   ,L L L                  (6) 

and  

 1 2 2π ,   ,L L L

L L V 

               (7) 

where 1 2 , are complex subspaces of dimension 
one and two, respectively, defined a element  1 2, ,L L

F
 

of , to know 

   
  
1 2 1 2 1 2 1

1 2 2

,     , ,   ,

π ,   ,

L L V V L L V L L L

L L L

     



F 

M

   (8) 

If , is compactified Minkowski space [16] then 

 


  

set of equations of massless fields

0, * ,  0, 

0, 0, , 17ij ij ij

dF dF j W

R R gR

   

  





P

       (9) 

that is to say, the spectral resolution of complex sheaves 
is needed [16], of certain class seated in the projective 
space , to give solution to the field equations modulo a 
flat conformally connection [16-18]  

     0 1 0,i i
P P PO h O h O h     

P

,h

    (10) 

Let , be the Penrose transform [16] associated to 
the double fibration (4), used to represent the holomor- 
phic solutions of the generalized wave equation [16], 
with parameter of helicity h [17,19]:  

                 (11)  □

UMon some open subsets , in terms of cohomologi- 
cal classes of bundles of lines [16], on  

   U U    P

P k

 ( P , is the super-projective space).  
It is necessary to mention that these cohomological 

classes are the conformal classes that we want to solve 
the phenomenology of the space-time to diverse interac- 
tions studied in gauge theory [20], and can construct a 
general solution of the general cohomological problem of 
the space-time.  

With major precision, the tensors of the bundle of lines 
on , are given  Z , by the kth-tensor power 

 O kP , of the tautological bundle [21], (is the bundle 
that serves to explain in the context of the bundles of 

Copyright © 2012 SciRes.                                                                                 APM 



F. BULNES 381

lines on , the general bundle of lines of ).  P M
Let     2 , ,k  1 h k    xP  be and let  

  1π ,x x   be. Then a result that establishes the  

equivalences on the cohomological classes of the bundle 
of lines on U

M

U  M

, and the family of solutions of the Equa-
tion (9), (equations of the massless fields family on the 
Minkowski space , with helicity h) is given by the 
following theorem.  

Theorem 3.1. (Classic Penrose transform) Let , 
be a open subset such that U   x , is connect and simply 
connect x U  . Then , the associated mor- 
phism to the twistor correspondence (1); which maps a 
1-form on 

0k  

U , to the integral along the fibers of  , of 
their inverse image for  , induce a isomorphism of co- 
homological classes:  

  1 , kPH U O k    er , ,h kU □

M

2 ,  E

E i

       (12) 

Proof. [4].  
Which are the classes that are extensions of the space 

of equivalences of the type Equation (12)? Why are these 
classes necessary to include more phenomena of the 
space-time? What version of the Penrose transform will 
be required?  

Part of the object of our research is centered in the ex- 
tension of the space of equivalences of the type (12), 
under a more general context given through the language 
of the D-modules, that is to say, we want to extend our 
classification of differential operators of the field equa- 
tions to context of the G-invariant holomorphic bundles 
and obtain a complete classification of all the differential 
operators on the curved analogous of the Minkowski 
space of . Thus our moduli space will be one of the 
equivalences of the conformal classes given in the 
equivalence (12), in the language of the algebraic objects 
D-modules with coefficients in a coherent sheaf [13].  

A way of answering the first and the second questions 
is analyzing the origin of the structure of the complexes 
that define the microscopic physical phenomena. Through 
this way and in natural form we can establish equiva- 
lences (isomorphisms), between derivative categories 
and categories of physical phenomena, considering a 
complex as the defined in the succession (10), for the 
micro-local context in which a regularity theorem subja- 
cent for the Penrose transform on D-Modules is used, 
that is to say, given a D-Modules complex [13-22]  

0 1E E          (13) 

we can map this complex to the system of branes/anti- 
branes, in which every i , 

This bears to the application of a symplectic context, 
which also is a consequence of the foliation in Lagran- 
gian submanifolds of , inside the problem of the uni- 
queness of the Radon-Penrose transform on the same 
coherent D-Modules [12].  

M

3. Resolution on D-Modules  

Consider the category of D-modules given by the space 
 L

qcM D , such that the category of quasi-coherent left 
D-modules on X, is isomorphic to the category  L

qcM D
oppD

, 
of quasi-coherent right -modules on X. For a cate- 
gory  qc  cohD , of D-modules we denote by M M D

π

S

, 
the corresponding subcategory of coherent D-modules.   

We consider a correspondence 

Y

                  (14) 

X

where all the manifolds are analytic and complex,  , 
and   , are proper and 

 S X Y
, induce a closed embed- 

ment  dimSd S C [12]. Be , with  

 , odd defines branes and 
other sheaves define anti-branes [22]. Such D-branes and 
anti-D-branes are defined of equal form in the space-time, 
although dynamically they annihilates for defining a pair 
of particle and anti-particle [22]. 

S Yd d d S Y . 
We define the transform of a sheaf F, on X, (more 

generally, of an object of the derived category of sheaves) 
like  

1π ,S S YF  R F d      

M

           (15) 

and we define the transform of a DX-module , like 
 D   M MS , where  , and  


 denotes the 

direct and inverse images of  and   respectively, in 
the sense of the D-modules1 [2], and we consider also  

1!π ,S S XG  R G d      

G

          (16) 

to a sheaf , on Y. Then we have the formula 

   RHom , RHom , ,
X Y SS D X D YO O  M M

G

  (17) 

of which is deduced the formula, to , the sheaf on Y, 
(coherent sheaf): 

1To define the images of direct functors to D-modules it is have that use
derived categories. For it, is simpler defining them for right D-modules.

Be   b R

qcD M D , the derived category bounded for right quasi-co-

herent D -modules of the form  

     

R

D Y XR R D     V V

V

, 

where , is the characteristic manifold and R, is the right derived 
functor following: 

   : .R

qc qcR D D M M

: ,r Y X

 

Also  and   1

1

    Y X Y XD D O O D


 


      Y XD 

1

. Then , 

is a right D  -module to the right multiplication in the second func-
tor.
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  
  

, 

, ,

X X

D Y Y

O d

O d



on (1), in the contex
  b RD M D

:i Y X

i   


R X;RHom

R Y; RHom

X

Y

D

S

s 

   

M G

M G
    (18) 

This defines a categorical equivalence of the transfor- 
mati t of the right derived D-modules, 

qc , because it is necessary to give an equi- 
valence with a sub-category of the right D-modules that 
have support in Y, for this way guarantee the inverse im-
age of P , and with it, to obtain an image of closed 
range of the operator P , conforming their uniqueness 
on the given context [15-21].  

Theorem of Kashiwara 3.2. Let , be the 
correspondence (14), a closed immersion. Then the direct 
image functor , is an equivalence of R i

qcM D , with 
full sub-category of  R

qcM D , consisting of modules 
with support in Y.  

Proof: [6].  
This equivalence preserves coherency and holonomic- 

ity [19]. Then preserves conformability in  [10-13].  M

 .G C

P

*V T X 
M

ME
M ME  Mod D

We formulate in the language of the D-modules and 
their sheaves, like the given in a resolution (10), the cor- 
respondence between the space of coherent D-modules 
and the space of equations of massless fields. It can be 
established if we can grant the uniqueness of the Penrose 
transform. But for it is necessary to include a result that it 
establishes the regularity in the analytical sense of the 
Riemannian manifold, which shapes the space-time, and 
that allows the application of the involutive distribution 
theorem on integral submanifolds as solutions of the cor- 
responding equations of field without mass on sub-mani- 
folds isomorphic in the Kaehlerian model inside of the 
flat model given on 2,4  Of the fact, an analogy in 
the obtaining of models of space-time (under the same 
reasoning) must be realized between special Lagrangian 
submanifolds and m-folds of Calabi-Yau. But to it, we 
need define the complex micro-local structure that de-
fines all the phenomena of strings and branes in micro-
scopic level, which happens in the 6-dimensional com-
ponent of the universe (6-dimensional compact Rieman- 
nian manifold) with ratio of the order 1033 cm (Max 
Plank longitude of a string). The Penrose transform is an 
integral geometric method that interprets elements of va- 
rious analytic cohomology groups on open subsets of 
complex projective 3-space as solutions of linear differ- 
ential equations on the Grassmannian of 2-planes in the 
4-space. The motivation for such transform comes from 
the interpretation of this Grassmannian as the complexi- 
fication of the conformal compactification of the Min- 
kowski space and their differential equations being the 
massless field equations of various helicities.  

By the Kashiwara theorem (Theorem 3.2), and some re- 
sults of Oshima [20-23], on involutive manifolds [24], 
we can characterize certain spaces to the regularity of the 

images of , in D-modules.  

4. A Micro-Local Analysis and Version of 
the Penrose Transform  

Let , be a conic regular involutive submani- 
fold. We say that a coherent DX-module , has regular 
singularities on V, if so we has  ( M  is regular if 

). We denote by   XRS V , the thick 
subcategory of  dMod D

V    b
RS VD D

 b
XD D

 

goo X , whose objects have 
regular singularities on , and by X , the full 
triangulated subcategory of good , whose objects 
have cohomology groups belong to  Mod XRS V D :  

       

   

good goodMod Mod b
X X XRS V

b
XRS V

D D D D

D D

 

↖  

Associated to the correspondence given in (14), we 
give the microlocal correspondence:  



21

* *

app

T X T Y

  
 

             (19) 

The manifold  , being Lagrangian, is well acquaint- 

ance that 2 ,ap1 ,p  is smooth if and only if 
 

 is an 

immersion. The consequences of this are:  

2 ,ap1)  is a closed embedment identifying  ,  


(deep space) to a closed regular involutive manifold 
, (foliation) and  *V T Y 

2) 1 ,p


 is smooth and surjective on T X  (ob- 

servables of space-time).  

*

codimc VIf V  , in , then we have the follow- 
ing local model of correspondences of (14):  

*T Y

  S X Y Lemma 4.1. Assume that , is a closed 
embedment and assumptions given by 1), and 2) above. 
Then, for every  , ap q  U

*U T Y   p U
, there are open subsets X , 

X , with X , and Y , a complex 
manifold Z, of dimension , and a contact transforma- 
tion Y X , such that id

q U
Vc

*:U U T Z   
XU  , in- 

duces an isomorphism of correspondences:  

 
231 2 1

*

*

aa

X Y Z

pp p p

X Y X X Z

U U T Z

U V U U U T Z

   



 

   

a
X XU U

(20) 

  
: X XU U 

, is the graph of a contact trans-  where 
formation  23

ap
* *a

XU U T Z U T Z    
, and , denotes the pro-  

jection . X X

Proof. [16].   
The construction of characteristic cycles of Kashiwara 
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associates to every object G , (coherent sheaf on Y) of 
this category, a Lagrangian cycle  yC G , into , 
which is a cone (invariant under recalling of cotangent 
fibers). If , is the structure sheaf of closed submani- 
fold like the given by , this cycle is justly the co- 
normal bundle and this tends to be singular. Then we can 
enounce the Kashiwara Theorem 3.2, also as:  

*T ZM

G

 bD E M

 Mod E

E

*T X

M
M  M



“The construction of a smoothed characteristic cycle 
gives origin to an full embedment of derived categories 

  XRS V  (full subcategory of objects , have co- 
homology groups with regular singularities along V) into 

  XRS V  (sheaf of micro-differential formal op- 
erators on X)”. 

The X -modules shape a support ring of the DX- 
modules. A XE -module is a ring of microdifferential 
operators of finite order on .  

It is clear that from the lemma 4.1, we can characterize 
the cycles propitious to determine an embedment full of 
derived categories that shapes the structure of our she- 
aves defined in bounded derived category of the full sub- 
category of sheaves of K-vector spaces comprising com-
plexes with constructible cohomology.   

Which are the integral transforms that can obtain the 
quantized contact transformation?  

Definition 4.1. 1) Let V, be a closed conic regular in- 
volutive submanifold of , and let M , be a co- 
herent DX-module. We say that , is simple along V, if 

, can be endowed with a good filtration k , such 
that 

*T X

*T X , is locally isomorphic to , as an 

*T X -module. We denote by coh X  the full 
subcategory of whose objects are sim- 
ple along V.  

GM VO
 ; ,V O

:   

O Mod
X ; ,XD OcoMod h

Let f S X , is a morphism, we denote by !f , d an
1f    proper direct image and inverse image for D- 

modules, and we denote by 
the

 , th exterior tensor prod- 
uct. For  

e 
 b

XRS VDM sing the resolution (13) 
we associate their dual  

D , and u

  ,X

X
D  O

X  

 RHom , 
XD XD M M      (21) 

X X XO , where X , is the sheaf of holo- 
morphic forms of maximal degree. We also set   
D O

  D DM M Xd . Thus DM , and DM

 b
RS D K D

 K

, belong to  

  XV . Let , be a simple   X Y -module along 
. In particular , is regular holonomic, and hence 

D

D

RSM    b
XRS VD D

K , is concentrated in degree zero. For   

   XVD D Nb , and , we set 

 X  Y

1

1
! ,O q



 M

1q 1 2  q q

L
2q KM K         (22) 

where , and , is defined 1q X X Y Y   . 
Also  

   ! , ,O X Yd dN   (23) 
  

1L
1 2X Y

q D q


  KN K

,j jH  K KM M             (24) 

,            (25) j jH  K K
N  N

Theorem 4.1. Assume that 1q , q1 , are proper on 
 supp K , and assume 1), and 2) from

a  a  le
ple DY-mo

 (19). Let M , be 
simple DX-module along *T X , nd t N , be a sim-

dule along V. Then  
1) 0K , and 0K , send orphisms omorphism 

modulo flat connections, 
 isom  (is

 M N  to isomor- 
ph  (iso sm ism morphi modulo flat connections   
   N  M . 

2) 0K M , is simple along V, and NK
0 , is simple 

along *T X . M reover, o 0 M , and K NK , are flat 
co ctions f

0

nne or 0j   .  
3) T tural adjunction hisms he na  morp 0 0K KM M , 

and 


0 0 K K N , aN re isomorphisms modulo flat 
connections. In particular, the functor  

   
0

0

*
coh coh, 

F

X
G

M T X O M





K

K

, ,YV O  

are quasi-inverse to each other, and thus esta ish the 
equivalences of categories. In D-modules theory the 

bl

category given by  coh , YM V O , is of the simple DX- 
modules to along V. This is due to the support of Radon 
transform of our R e transform that is re- 
quired.  

The following step is to give a result of equivalences 
between c

adon-Penros

ategories that suggest the extension to the be- 
fo

 the 
no

valen

re functors to the category of the vector bundle of lines 
of where it has the classification of differential operators 
belong to sheaves defined in the Section 2. Indeed.  

Theorem 4.2. [12] With the same hypothesis as given 
by the theorem 4.1, assume also 3d   . Then with

tation of the theorem given by the Section 3, then the 
following correspondence is an equi ce of categories  

   
0

0coh cohMod , ,
F

Y
G

D M V O





K

K

L  

Precisely these equivalences shape a classification of 
the homogeneous vector bundles of lines [18,19].  

btain 
th

 t
 in -ca

As a corollary, using these Penrose transform, which is 
of Radon type on Lagrangian manifold  , we can o

e complex Minkowski space M , simple DM -modules 
along the characteristic manifold V, of he wave equa- 
tions that are classified by (half) tegers, so lled helic- 
ity  h k . The following section establishes these equiva- 
lences using geometrical additional hypothesis.  

 cohMo DL , is the full subcategory of d  cohMod XD , 
whose open sets are of the DL , type to some bu

particular, if N , is a simp e 
along V, there is an unique ( o OX-linear isomorhisms) 
line bu dle L , on X, such t  

ndle of 
lines L . In le DY-modul

up t
n hat 0 D KN L , in  
 cohMod ,Y YD O . In other words, the above theorem says 

that simple D -modules along V d, up tY , are classifie o flat 
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connections, by 

ection , 
(26) 

The last theorem concludes, 

category of holomorphic vector bundles 
with flat connections   

  coh , -modules /Singularities along

of th

Y YM V O M D

e involutive manifold V/flat con n

 0 ,N N        (27) 

However, it is important in calculating 
image of a DX-module associated to a line bu
w

 

 0 0D  KK KL

explicitly the 
ndle, one 

ay to do it consists in “quantizing” this equivalence. In 
the following results we will.  

Let M , be a simple DX-module along *T X , and let 
N , be a simple DY-module along V. Then D M N , 
is a simple

let u, be 
  X YD  -module along *T X V .  

efinition 4.2. 1) Let *p T X V  , and a 
generator a f 

D
t p, o  D

 M N  X Y -m, the E odule as- 
sociated to D M N . Denote by I

Y   say th
, the annihilating 

ideal of u, in  X E at u, is simple if their 
symbol ideal

We
 I , is reduced, and hence coincide with the 

defining ideal *T X VI , of *T X V .  
Continuing ith other incises from the theorem 4.1, 

we have: for 2)  , w


w
 Let p e say that a section  
 

  
Hom , 

X YD D


 M N K , is non degenerate at p, if 
for a simple generat  
p

or u of D M N , at p,   ,s u
, at p, in the sense of [7, 

25]. (Note that locally simpl  admit s  gen- 
erators, and one checks immediately that this definition 
does not depend on the choice of such generators). and 
for 3) We say that is non-degenerate on  , if u is non- 
degenerate of any p . There is a natural isomor- 
phism   

 is a 
ion of K

e modules imple
non de egenerat  sect

    Hom Hom , ,
X YD D   M N M

  
, 

YD KN K

 (28) 
Hence, the sections s, defines a DY-linear morphism 
    . N M    

non de rat  

s K

Theorem 4.3. With the above notations, and with s, is 
, thegene e on   s , is an isomorphism 

m

s the graph of a contact trans- 
fo ce , is open in *T Y ) the above re-
su

ns a

eristics Cycles and Equivalences  

 
 

odulo flat connections.  
Proof. [7-25].  
Observe that when  , i
rmation (and hen V
lts reduce to the so-called “quantized contact transfor- 

mation”, in psedo-differential equatio nd micro-func- 
tions [12].  

5. Charact

Now in the context of the generalized D-modules to the
use of the Schmid-Radon transform, and finally obtain
Radon-Penrose Transform, the functor  

additional geometrical hypothesis,S      (29) 

establishes an equivalence between the category M(DX- 

modules/flat connection), and M(DY-modules/Singulari- 
ties along of the involutive manifold V/flat connection) 
[12]. Then our moduli space that we construct is the cate- 
gorization of equivalences:  


  V  , ,

-modules Singularities along of theYS Yd M D  
  

`

involutive manifold flat connection H U O

(30) 

considering the moduli space as base [12], 

    -modules flat connection  ker U, ,X h kM D □

`

 (31) 

then the cohomology on moduli spaces is the cohomol- 
ogy of the space-time with an equivalence like the 

 
S Xd   

given 
in the equivalence (12), to a more general cohomological 
group that the given by   1 ,H U O kP , and whose di- 
mension of  ,H U O , can be calculated by the inter- 
section methods, to a comple  [13], which is 
of the type 

x sheaf O
 iO (see examples in Section 6).  

A version of the theorem 4.1, foreseen in the before 
section, that es b ishes the regularity through the trans- 
fo

kP  

ta l
rmations realized by the functor  , on the categories 

of derived D-modules adding the corresponding coho- 
mological groups of zero dimension is:  

Theorem 5.1. Let  , smooth and  , proper. Let 
 , π :     ,S X Y     be a closed embedding.   

1) If  b , then good XD DM  S M , orresponds to  c

   b .  YRS VD D
2) If  D M , good

b
XDM is lo

rang e, 
, and cally free and of 

e on then   M , is sim e along of V, on 0
SH  pl

*T

duli that we w
on es the equivalence induced by the trans- 
fo

Y .  
Proof: [25].  
Our space mo ant to characterize is the 
e that establish
rm S , between the category of coherent D-Modules 

on X, and the category of coherent D-Modules on Y, with 
regular singularities on V.  

We define the category  *
goodMod ;b

XD T X , like the 
localization of  good

bD DM , by the thick sub-cate- 
go s

X

 endowed with thery of holomorphic bundle  flat con- 
nection:  

    *
goodMod char ,X X XM D T X  M M  (32) 

In particular, the objects of  *
goodMod ;b

XD T X
the same objects of  goodMod XD , and a mor
w

, are 
phism 

: ,M M  in  goodMod XD hism 
in 

, it turns a isomorp
 *

goodMod ;b
XD T X , if w, an er w, correspond to 

M . This is equivalent t :w 
d cok

X  to say tha M  ME E E , is 
an  on X . In similar form we define MY, 
and  *d ;b D T Y , obtained by lo- 

isomorphism *T
 the category goodMo Y
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calization of     espect to MY. 
ohom

Mod YRS V D , with r
Considering the c ology groups of zero dimen- 

sions of the functors S , y S , we

enote by

 give functors that  

we will be ab  le to d 0
S , and 0 , respectively. S

In other words we obtain the images:   

     0 0, and ,S SSH H   M M   (33) 

from which using the theorem 2.1, (usi

0 0
S 

ng the local and 
microlocal analysis of the before sections) the f
are established between categories:  

unctors 

     

For the doble fibration (14), and the moduli spaces (30) 
and (31), these equivalences shape the moduli s

0

0goodMod Mod ,S

S
X YRS VD D







    (34) 

pace [25]: 

       
    

good

0

Hom Mod , Mod

, , derived -modules ,

XD X YRS VH D D

H D D M  D

 

   

M

MS X Y

`

 (35) 

The additional geometrical hypothesis in the functor 
(29), comes established by the geometrical duality o
Langlands [26], which says that the derived categ
co

f 
ory of 

herent sheaves on a moduli space Flat , ,L G C  `  
where C, is the complex given by  

1 1

2 3

1 1

2

: 
j j j

j  j

d d dj j j

d dj+

C
 

 

   

 





E E E

E
)      (36

is equivalent to the derived category of D-mod
moduli space of holomorphic vector G-bundle

  ,B C  [27]. These equivalences permit to map points  

 G

esults  

Theorem 6.1. (F. Bulnes) The moduli space obtained by 
  Flat , ,L  where L , 
L anifolds , and defined 

ecke).  
b

ules on the 
s given by 

G

of Flat , ,L G C  `  to eigen-sheaf of Hecke given by  

B C  [22]. 

6. R

this way is the
is the space of 

moduli space `
agrangian subm

G C
 

with C, a complex of certain special sheaf of holomor- 
phic G-bundles (eigensheaf of H

Proof. It is necessary to go from the o tained co-cy- 
cles for the Radon-Penrose transform on  goodMod XD , 
to the obtained cycles by Penrose on    Mod D , 
an

 the given b

YRS V

d viceversa. The equivalence of both spaces of co- 
cycles demonstrates that the functors are y 

       the modu goodHom Mod , ModX XRS VD D , o li 
space (35). Then these functors are G-invariants and their 
image under 

f

XDH  , is recorded in a moduli space of 
holomorphic bundles  dG C  [23Bun

. The

s must be

], which is an ex- 
tension of the transformed cycles by the classic Penrose 
transform [15]  equivalence under the G-invariance 

of holomorphic bundle  demonstrated using a 
generalized Penrose transform for D-modules that are the 
composition of an inverse image functor and a direct 
image functor on the side D-module, which is foreseen 
by the geometrical duality of Langlands [26,28].   

In electromagnetic interactions the functors are the 
objects that characterize the moduli space  

   goodFlat M XD

   
, ,G CL`  are 

     •
2 Hom , 2SUH X U  , where  X , are 

homotopies on the Riem n manifold X [9-20].   
In a more general co and using the flag domains 

that will be necessary to define th ravity
ory 

(f

annia
ntext 

e quantum g  phe- 
nomena [28], and equivalences inside of the string the

or example heterotic strings, D-branes and others phe- 
nomena) to give solution a extensions of the wave equa- 
tion on observables of curvature, boson and fermion eq- 
uations, Schmid equation [10], and classify their differ- 
ential operators on the same base of vector bundles, but 
now through holomorphic vector bundles that are G-in- 
variants.  

But this only covers some aspects of brane theory as 
those given outside of the homogeneous space G H , 
when H  K .  

For example, they are acknowledges the cases to het- 
erotic strings that can develop on D-modules that are 

 G C TD les -modu when  G C T , is a flag manifold [11]. 
In

tegral o logy on 

(10) and generalise this resolution for 
co

e g tra
o

at will conform a version of Penrose trans- 
fo

 this case the integral operators cohomology given on 
such complex submanifolds is also equivalent to the in- 

perators cohomo submanifolds of a com- 
plex maximum torus. What happen when these flags are 
complex domains or their equivalents, Lagrangian sub- 
manifolds in F ?  

To be able to establish a moduli space that could give 
a resolution for the equations of the mathematical phys- 
ics given by the set 

herent DF -Modules that are DF -Modules induced by 
a bundle of lines F , with complex domains that are in- 
tegral submanifolds of a Kählerian manifold is necessary 
to use on eneralized Penrose nsform with the con- 
formal invariance n the DF -Modules, and that the dif- 
ferential operators who are not flat might write each one 
in accordance with similar operators. This last comes re- 
flected when a piecewise linear manifold has a differ- 
ential structure. This piecewise linear manifold, defines a 
non-symmetrical component curvature, which reflects 
their difficult expression by conformal operators of supe-
rior degree such as the Laplacian, and Dirac differential 
operators.  

It is necessary consider some conjectures on integral 
geometry, that shows the construction of the geometrical 
hypothesis th

rm more useful to generate quasi-conformal operators 
(quasi D equivariant operators) in an analytic cohomol- 
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ogy as the given one by the  -cohomology but in a 
more generalized context, that it includes the Cĕch-co- 
homology. 

Conjecture 1. A more generali ed Penrose transform is 
necessary to include differential operators in Hodge rep- 
resentative c

z

lass to obtain all complete holomorphic co- 
homological classes.  

In other words, there is an isomorphism  

      


w

  0,  

  1 0, 1
holomorpc , 2 ,, 2H O H O   D D    (37) 

here  

      0, 1 , 2 solutions ,H O  D □F s s  

 , is the Stein fold and D , is a flag do- 
main.  

Conjecture 2. The corresponding extended class of 
tia

ormal operators are those of the Gelfand-Graev- 
Sh

S  

where S  mani

differen l operator that can be generated like general- 
ized conf

apiro type [29].   
We want to compute the analytic cohomology  
 1 ,H Z O , of a complex manifold Z.   

Since solutions of differential equations on manifolds 
an  
generalize ry of sheaf co- 
ho

d cohomological classes are part of the bases of this
d Penrose transform, the theo

mology and D-modules was perfectly considered for 
their modern study. In [5], we used this theory to gener- 
alize and study the Penrose correspondence given by the 
double fibration (4). More recently the Equation (17), in 
[1] has studied the generalized Penrose transform be- 
tween generalized flag manifolds over a complex alge- 
braic group G, using M. The Kashiwara’s correspond- 
dence (see [1-6]) between quasi G equivariant G HD - 
modules and some kind of representation spaces which 
are  , -Hg modules (loosely, they are complex vector 
spaces endowed together with an action of the Lie - 
bra g , associated to G, and an action of H, which are 
com in some way) when H, is a closed algebraic 
subgroup of G.   

Co jecture 3. We have a generalization of Penrose 
transform on the homogeneous space 

 alge

patible 

n
G H , or a Radon 

transform on equivarian odules on generalized flag 
m

he v

tors with Radon transform will give 
th

t-D-m
anifolds [10-33].  
Lemma 7.1. (F. Bulnes) We need t ersion of Ra- 

don transform to compute dimensions (transform of di- 
mensions). Their func

e equivalences on the generalization mentioned in Con- 
jecture 3.  

Proof. See [5,30].  
Theorem 7.1. (F. Bulnes) 

-equivariantG G H`   -equivariant
ˆ, , .GC CY C `  

heorem 3.2, the class given 
by  C G , is a complex whos lass is 

Proof. By the Kashiwara T
e sub-c  C B , where 

B , is a D-brane, that is to say, a D-module   
  , D

o C FM  M B G , since, {Massless fields equations} 
  

ze

a Kählerian moduli sp

 D
o FM B , then all G , that is a complex hypersurface in 

the space  kC , which is complex parameteri d define 

ace  k
  C G` , where  , is 

nsion of the brane space. M , is a D-module 

 

the dime
 P -m

What happens with the orbifolds? It is necessary to con- 
orbifolds like 

o u

which is a odule induced by the bundle of lines P̂ . 

sider the D-branes in the D-modules on 
bundles of lines in P . Of the fact, by the theorem 6.1, 
we can dem nstrate that  , H G C` , under certain d - 
ality [22], is composed for objects of derived category of 
D-modules on  GB C . This vector bundle of lines under 
the same duality [22  is their wide version which is iso- 
morphic to the moduli sp  , G C . Using a 
version of the Penrose transform predicted by Recillas’s 
conjecture and etrical duality of Langlands on 
D-branes, is generated the isomorphism class given by 

],
ace Higgs`

 geom

    Flat , , ,H kG C  G C L` ` ara theo- 
rem between 

 (using Kashiw

G HD -modules and some  , Kg -modules) 
since equivalence exists between D-modules of  GB C , 
and some D-branes of  , H G C` . Then by the propo- 

Y, is projective [31], that 
is to say, 
sition that says that the scheme 

  , i anifol
es. Th

 two modu

ry 7.1

y theorem 7.1}.  

C B s a complex whose m ds Y (that 
are orbifolds of CY-manifold), are P̂ -modul e 
equivalence between the li spaces is completed 
with inverse Penrose transform.    

Corolla . (F. Bulnes). Moduli space = {homo- 
logical relations of the black holes with the distinct co- 
homological dimensions obtained by lemma 5.1 and 
lemma 7.1}  moduli space = {given b

Proof. We use the Radon transform of dimensions 
[30-32], given by   

   

 

d
d

4 8 4 81 1
dim d dY x x x x

 
   

       
1

1
dim d ,

d! j j
jP

n F n x t
A

 


 

1
1

d

1

d! d!i i i
iP P

S

  
 L L

      

 

   
   

 

where  i ix xL , are the Lagrangian operators of in- 
stantons considered in flat space 4 8P , of the corre- 
sponding supertwistor space PT  [33]. Then by Theorem 
7.1, and using the large resolution  

re


 coherent D-modules 
given by the images of Penrose transform in these pro- 

Some consequences and components of the space-time 

3 1 4 2 4 3 4 4 4 0,d d d d        P P P P P  

which is a special case of the solution (36), we obtain 
the equivalence between the moduli spaces.  

The long sequence induced by the

jective spaces gives the string fabric by heterotic strings 
[33]. 
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re included in the Calabi-Yau manifold, in the hole in the 
3-dimensional space.   

lated under the isomorphism discussed in the previous 
theorem are those that establish the equivalences given 
by the Equation (12), with the microlocal structure of  , 
and w 7. Some Applications and New Research 

Developments  
ith Floer cohomology group deduced from the co- 

ho

bi

mology group sketch by the theorem given in the 
search of the integral operators cohomology that encloses 
the Penrose transform class.   

The corresponding category associated to a Cala - 
Yau threefold X, would be the Fukaya-Floer category of 
the moduli space of unitary flat bundles over holomor- 
phic curves in X, denote  curve X` . We summarize 
these in the following Table 1. 

We base in the scheme on Stein manifolds from Rieman- 
nian structure of the space-time [34], and using the gen- 
eralization by Gindikin conjectures formulated in the 
Section 7, we obtained a result given in [30] to integral 
operators cohomologies of Radon-Schmid type: 

Teorema 8.1. (F. Bulnes) In the integral operator co- 
homology 

  , H  M O , on complex manifolds (Stein 
type) the following statements are equivalent:  

Example 1. The image S  + additional geometrical 
hypothesis, given by the Penrose transform that is a 
CY-threefold, can be interpreted under the additional 
geometrical hypothesis, usi ray-Serre spectral 
sequence for 1:   Y P , giving th

M , and z1) The open sets 
M

, are G-orbits in X, and 
their integrals are generalized integrals to . 

ng the Le
e exact sequence  

2) Exist an integral operator T, such that  

   

g Ho
 group  

 1 2 0Y Yh O  .  

icity 
h, wh uon with negative helicity cor-
re

 1 1 1 0 1 1, , , ,Y Y YH O H Y O H R O    P P  

where is the image of right functor on sheaf YO . Then 
their correspondin dge numbers [33] (corresponding 
to the cohomology s in mirror symmetry) are 

   , -equationsTH ker D M O . 

 h O

Example 2. Using a similar correspondence to the 
double fibration (17) in a twistor context, elements of the 
cohomology group   1 , H O h   PT , correspond 
via the Penrose transform to space-time fields of hel

ere in particular l, a g
sponds to a twistor wave function of weight 0. PT , is 

dual orbital corresponding to PM .   
Example 3. Fix an an exact se- 

quence  

   2
1 1 10  0,O k O O k    

P P P
 

Such extensions correspond t airs o

 integer  1k , and 

 p

1P
m



o f sections  

  0 1, ,r s H O k P , without com on zeros. If  

  X X H , is a relative Abelia rface on 1P , then 
their fibers are supersingular surfaces (D-branes of one  

2
1O

n su  

dimension  1 1 P P  and the inclusion 1 ( )O k  
P P

,  

comes from the exte  solu-
tions are a a

nsion (1). The corresponding
ll classes of fields on Calabi-Yau m nifold. 

The   curveFuk X` , is the space of branes that are  

3) M z M
, and  z z


  

 
,  

   1, , H H U O   M O .  

Proof: [18-30].  
The affirmation 2), and 3), are generalized in the con- 

text of the moduli space  ,G H CL`



Flat . Using some 
cohomological classes of geometrical integral transforms 
that give the equivalences T , from the theorem 8.1, 
with their corresponding identifications in the D-modules 
context we can give the following Table 2.  

Other applications and new results obtained recently 
[22-27], are the relatives to cohomology group classes 
whose objects have the same metrics in the Kählerian 
context:  

Proposition [27]. The L2-cohomology groups of g` , 
de complete Kählerians metrics are all the same coho-
mology groups of D’Rham of g`

M

        

.  
A concrete application of this result establishes that 

the moduli space of the relations between hyperbolic 
waves (horocycles) [35], and the Haar measure of the 
group action in SU (2.2), on , is the moduli space of 
the functors   

  
     

•
0 2 Hom , 2

, , -modules ,

SU

j
X Y

D k H X U

H D k D D M D

   

    

P

F P P

`

  ,D kP DM

o-cyles of the P ose transform on coherent D-modules. 

rose Transform on Derived Sheaves 

 

The D-module transform of  is the -  
 

Table 1. Cycles and c enr

Pen
(Coherent D-modules) M  

S  + additional geometrical  + additional geometrical hypothesis hypothesis  S

ifold G2-manifold, M7 CY threefold, X6 Man

SUSY Cycles A-submanifolds. + flat bundles Holomorphic curves + flat bundles 

Invariant Homology group,  AH M  Fukaya category,   curveFuk M X  
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Table 2. Some cohomological classes of g nd the ding moduli 
spaces. 

 

eometrical integral transforms a ir images inside of the correspon

Integral Geometry  Field Theory

 H ·• ,  M O  Integral  

Cohomolo
Geom Physical Moduli Space 

 Operator

gy 
etrical Picture Stack 

D-m
Homogeneous Complex  

odule transform [17] 
vector Bundle   0h k □ ,    con 1 2h k k        Flat good, Xd S X

G C M D L` `

  2 1, 2H O s P ] Complexification of the twistor 
model   

3 (QFT) [1,9,12
 of the space-time M

{hyperfunctions fields on M,  
of helicity s}

 Flat ,G H CL`  

 10 0,k 
P CY-Manifolds (all the Orbifolds)

branes of one dime1 1O k 
P P

 2O O 

k  1, k  Z (SUSY) [32] 

D- nsion 

1 1 P P   -equiv ,GM CY C   

Penrose-Ward Transform [32] Mini-Superambi-twistor space 
Yang-Mill-Higgs fields  Higgs , 

(boson fields) G C   M4 6L

 
module associated to the wave e
Equa 

quation given in the 
tion (11), where   1  2k .   

o braic group G, we enunciate the 
conjecture based on the result given by Gindikin 10-36] 
which shows that the D-module inverse image functor 
ass ction 

   

8. 

he skills used in this work are the developed maps of 

eful to realize con f the string 
theory and brane theory inside SUSY theory, for example 

 that are germs of these sheaves and 

h k

Conclusions  

T
coherent sheaves of D-Modules, which establish confor- 
mal classes that are us texts o

differential operators
their corresponding geometric images in the complex ho- 
lomorphic bundles, who receive sense in the QFT for the 
particles fields.  

These equivalences gives birth to the moduli spaces on 
the calculated conformal classes that can be useful in the 
securing of classes of solutions modulo a geometric 
characteristic of the different equations of field studied in 
theoretical physics and that an invariant turns out to be 
geometric of the application of the Penrose transform on 
classic elements via their classic version.  

In this way, departing from some hypotheses obtained 
by Gindikin on the geometric invariance of cycles in a 
Kählerian manifold, we can obtain more general versions 
of the Radon transform, coming to the point of extrapo- 
lating these hypotheses to the geometric context of the 
Penrose transform on the coherent D-Modules in order to 
use for the generation of the isomorphisms via their dou- 
ble fibration and with it the moduli spaces securing that 
establish the equivalences of geometric objects that can 
be re-interpreted algebraically and vice versa. An exam- 
ple of it is the theorem 7.1, and their concrete applica- 
tions in the description of equivalence of objects hap- 
pened in the Table 1.  

Since the generalized Penrose transform for D-mod- 
ules is the composition of an inverse image functor and a 
direct image functor on the side D-module, we first de- 
scribe the algebraic analogs of these functors. More ex- 
plicitely, if H  K , are two closed algebraic subgroups 

f a given complex alge
 [

oci ojeated to the pr g : ,G H  G K   is equiva- 
lent to the forgetful functor from the category of  K, g - 

 of  , modules to the category Hg -modules. Gindikin 
also shows that the derived direct image functor Dg , on 
the side D-module corresponds (up to a shift) to the al- 
gebraic Zuckerman functor KHR , which maps  , Hg - 
modules to  , Kg -modules (more precisely, objects of 
the derived categories). The next step is to obtain an 
analog of the Bott-Borel-Weil theorem for computing the 
Zuckerman functor image of “basic objects” of the cate- 
gory of  , Hg -modules [10,26]. In representation the- 
ory this is equivalent to computing explicitly the image 
by the derived Zuckerman functor KHR , of generalized 
Verma modules  HM   [36] ciated to weights , asso  , 
which are integral for g , and dominant for the Lie 
subalgebra of g , corresponding to H. Those generalized 
Verma modules are the objects which correspond M , 
Kashiwara correspondence to the D-modules which gen- 
erate the Grothendieck group of the category of quasi- 
G-equivariant 

via 

G HD -modules of finite length [23]. In 
this way, we can also obtain a classification of the dif- 
ferential operators considering extensions of the Verma 
modules considered [18], and showed to invariance of 
conformal operators by [4].   

Nevertheless, from the point of view of the representa- 
tion theory the demonstration of the theorem 7.1, leaves 
open questions as soon as to be able to generalize the 
Radon and Penrose transforms on G H , for not com- 
pact case of G, since conditions have not happened to 
guarantee an operator of this class that is of closed range 
on these spaces [36,37].  

Through the corollary 7.1, we want to establish at least 
initially in physics, the form in how might there be estab- 
lished the equivalence of the isomorphism obtained by 

Copyright © 2012 SciRes.                                                                                 APM 
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the different Penrose transforms between the dimensions 
of the singularities, these are seen and shaped by the 
st

tion 

ry.  

ring theory, and the projective spaces (in the context of 
the bundles of lines) [18,22,38] that give birth to the con- 
formal classes via the derived sheaves and their stacks in 
physics, given through the applica of the Penrose 
transform. Likewise, the concrete applications that have 
been mentioned are studied for the mirror theory in the 
last advances on field theo
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omenclature and Abbreviations 

—Wave operator. This is a differential operator that 
omposes the wave equation on the space 4R , also 
alled D’Alambert operator. 
 4, C —Special linear group of the complex matrices 

p. This com-

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N degree. 

DM —coherent XD -module. This D-module is the 
fundamental ingredient of the equivalences of the objects 
of moduli space.    
M —DX-module object of our research and their cate-
gory is usef of linear dif-
ferential 

 sy

M
 X-module u

□
c
c
SL

ul to realize the classification 
operators in field theory. Th

of rank four. Have the structure of Lie grou
pone

is D-module repre-
sents a stem of PDE, in mathematical physics to which 
is n  to

nt is necessary to define the linear reductive groups 
of M . 
P —Penrose transform operator. 

XD —Shea of rings of holom

ecessary  give solution.   
G —Coherent Sheaf of the DX-module .

YD —Imf orphic linear differential 
operators (a D-module). 

XO —Sheaf of holomorphic functions on a complex 
manifold X. 

age of D nder Penrose transform.  
DL —DX-module of bundles of lines.  

 O kP —Coherent Sheaf of D-modules that are DP - 
modules, and that can be induced to DF -modules. 
SUSY Cycles—Supersymmetry Cycles.  
QFT—Quantum field theory. 

qcM D — Category of D-modules. 
 co


D —Category of D-modulM h es that is subcategory 

of  qcM  . 

XE —Ring naturally endowed with a Z -filtration by the 
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