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ABSTRACT 

AX BIn the paper, a class of fuzzy matrix equations   B where A is an m × n crisp matrix and  is an m × p arbitrary 
LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp matrix equations. Then 
the fuzzy approximate solution of the fuzzy matrix equation is obtained by solving two crisp matrix equations. The ex-
istence condition of the strong LR fuzzy solution to the fuzzy matrix equation is also discussed. Some examples are 
given to illustrate the proposed method. Our results enrich the fuzzy linear systems theory. 
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1. Introduction 

Systems of simultaneous matrix equations are essential 
mathematical tools in science and technology. In many 
applications, at least some of the parameters of the sys- 
tem are represented by fuzzy rather than crisp numbers. 
So, it is very important to develop a numerical procedure 
that would appropriately handle and solve fuzzy matrix 
systems. The concept of fuzzy numbers and arithmetic 
operations were first introduced and investigated by Za- 
deh [1] and Dubois [2].   

Since M. Friedman et al. [3] proposed a general model 
for solving a n × n fuzzy linear systems whose coeffi- 
cients matrix is crisp and the right-hand side is a fuzzy 
number vector in 1998, many works have been done 
about how to deal with some advanced fuzzy linear sys- 
tems such as dual fuzzy linear systems (DFLS), general 
fuzzy linear systems (GFLS), fully fuzzy linear systems 
(FFLS), dual fully fuzzy linear systems (DFFLS) and 
general dual fuzzy linear systems (GDFLS), see [4-9]. 
However, for a fuzzy linear matrix equation which al- 
ways has a wide use in control theory and control engi- 
neering, few works have been done in the past decades. 
In 2010, Gong Zt [10,11] investigated a class of fuzzy 
matrix equations AX B   by means of the undeter- 
mined coefficients method, and studied least squares so- 
lutions of the inconsistent fuzzy matrix equation by using 
generalized inverses. In 2011, Guo X. B. [12] studied the 
minimal fuzzy solution of fuzzy Sylvester matrix equa-
tions AX X B C  . Recently, they [13] considered the 
fuzzy symmetric solutions of fuzzy matrix equations 

AX B  . 
The LR fuzzy number and its operations were firstly 

introduced by Dubois [2]. In 2006, Dehgham et al. [6] 
discussed the computational methods for fully fuzzy lin- 
ear systems whose coefficient matrix and the right-hand 
side vector are denoted by LR fuzzy numbers. In this 
paper, we propose a practical method for solving a class 
of fuzzy matrix system AX B 

B

0 1r

 in which A is an m × n 
crisp matrix and  is an m × p arbitrary LR fuzzy 
numbers matrix. In contrast, the contribution of this pa- 
per is to generalize Dubois’ definition and arithmetic op- 
eration of LR fuzzy numbers and then use this result to 
solve fuzzy matrix systems numerically. The importance 
of converting fuzzy linear system into two systems of 
linear equations is that any numerical approach suitable 
for system of linear equations may be implemented. In 
addition, since our model does not contain parameter r, 

 , its numerical computation is relatively easy.  

2. Preliminaries 

Definition 2.1. [2] A fuzzy number M

 

 is said to be a LR 
fuzzy number if  

, , 0,

, , 0,
M

m x
L x m

x
x m

R x m









        
      

  

where m is the mean value of M , and   and   are 
left and right spreads, respectively. The function  .L , 
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 L xwhich is called left shape function satisfying: 1)   
; 2)  and  L x  0 1L   1L  0

L

; 3)  is a non 
increasing on .  

 L x

 .
 0,


The definition of a right shape function  is usually 

similar to that of .L . A LR fuzzy number M  is sym- 
bolically shown as  , ,

LR
Noticing that 

M m  
0,

.  
   0   in Definition 2.1, which 

limits its applications, we extend the definition of LR 
fuzzy numbers as follows.  

Definition 2.2. (Generalized LR fuzzy numbers) Let 
 , , LR

1) if 
M m   , we define  

0   and 0 
 

, then  

ax ,,0,M
LR

M m  

 

 , and  

 

0,

x ,

,

, .
ma

M

x m

R x m



 
  

 

x




 



0

x m

 



   

2) if    and 0 
 0

, then  

x , ,, Ma
LR

 

M m   

 

, and  

, ,

.

L x m
maM

x x ,

0,

m x

x m

 
  

 


0





 



  

  

3) if    and 0  , then  , ,
LR

M m     , and  

 
, ,

, .

m x
L x m

x m
R x m





 
 

 

   
 

 , ,

M
x

 
  


 

  

For arbitrary LR fuzzy number 
LR

M m  
, ,

  and 
 LR

 

 , , .

N m , we have  

1) 
LR

    

 
, 0,

, 0.
RL


 




12 1

22 2

1 2

M N m n      

2)  
 , ,

, ,
LR

n

n

  
 

   
N

Definition 2.3. The matrix system  

1111 12 1

2121 22 2

1 2

11 12 1

21 22 2

1 2

pn

pn

n nm m mn

p

p

m m mp

np

x x xa a a

x x xa a a

x x x

 
 
 
 
  
 




 


a 

a a a

b b b

b b b

b b b

 
 
 
 
 
 

 
 
 
 
  
 

 
 
    
 

  
  
   
  



   (1) 

where ij are crisp numbers and ijb  are LR fuzzy num- 
bers, is called a LR fuzzy matrix equation (LRFME). 

Using matrix notation, we have  

AX B  .                  (2) 

A LR fuzzy numbers matrix  

 Tij n p
X x


   , ,l r

ij ij ij ij, 
LR

x x x x

1 i n

,  

 1 j p ,  

Xis called a solution of the LR fuzzy matrix systems if   
satisfies (2). 

3. Method for Solving LRFME 

In this section we investigate the LR fuzzy matrix system 
(2). Firstly, we propose a model for solving the LR fuzzy 
matrix system, i.e., convert it into two crisp systems of 
matrix equations. Then we define the LR fuzzy solution 
and give its solution representation to the original fuzzy 
matrix system. At last, the existence condition of the 
strong LR fuzzy solution to the original fuzzy matrix 
system is also discussed.  

3.1. Extended Crisp Matrix Equations 

By using arithmetic operations of LR fuzzy numbers, we 
extend the LR fuzzy matrix Equation (2) into two crisp 
matrix equations.  

Theorem 3.1. The LR dual fuzzy linear Equation (2) 
can be extended into two crisp systems of linear equa- 
tions as follows:  

AX B ,                  (3) 

i.e., 

11 12 111 12 1

21 22 221 22 2

1 21 2

11 12 1

21 22 2

1 2

x pn x xa a a

pn

n n npm m mn

p

p

m m mp

x x xa a a

x x xa a a

b b b

b b b

b b b

  
  
  
  
  
  

  
 
 
 

  
 
 
 




      






   



l l

r r

X B
S F

X B

   

 

and 

,            (4)        
   

i.e.,       
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2 1

2 2

l l
p p

l l
p p

b b

b b

 
 



1 1

1

2

1 1

,
l
mp
r
p

r
p

r
mp

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 


,ij

  

11 12 1 11 1

21 22 2 21 2

11 12 1,2

21 22 2,2 1 2

11 12 1

2 ,1 2 ,2 2 ,2 21 22 2

1 1

l l l l

l l l l

n

r r r
n n n np

r r r
p

r r r
m m m n p

r r r
n n np

x x x b

x x x b

s s s

s s s x x x

x x x

s s s x x x

x x x

 
 
 
  
  
     
     
 
 
 
 

     
 

    
 

   


11 12

21 22

l l
m m
r r

r r

r r
m m

b b

b b

b b

b b

 

 

 
where s  ,  are determined as fol- 
lows: 

1 2i m  1 2j n  Consider the given LR fuzzy vector  

If , then 0ija ij ijs a , ,m i n j jis a 0a  ; if ij  , 
then ,i n j ijs a  , ,m i n ijs a  , and any kls  which is not 
determined by the above items is zero, 1 2k m 

  , ,
T

l r
nj nj LR

x x

1 2 p

  , ,
T

l r
nj nj LR

b b

 

, 
.   1 l  2n

Proof. Let    ,
1 2, ,X X X    pX

 1 1 1, , , ,j j j j njLR
X x x x x 

 , , ,B B B B   

l r  

and   

  1 1 1, , , ,l r
j j j j njLR

B b b b b  . 

Then the fuzzy matrix Equation (1) can be rewritten in 
the block forms 

 1 2, , , ,1 2 p pA X X X B B B      

, 1 .j j

, 

Thus the original system (1) is equivalent to the fol- 
lowing fuzzy linear equations   

AX B j p   

ia

1 i m 

            (5) 

Now we consider the Equations (4). Let  be the ith 

row of matrix A, , we can represent j i
AX  
  

in the form j i ji
AX a X   
  1,, 2, ,i m  .  

Denoting  and   0k :i ik iQ a a 
 :i ik ikQ a a  0

, 1, 2, ,

, we have 

j j

j ik kj ik kji
k Q k Q

AX a x a x i m        

j

j

l
ik kj

k Q

l
ik kj

k Q

  
  . 

i.e., 

,

,

j j

j j

j ik kj ik kji
k Q k Q

r r
ik kj ik kj

k Q k Q
LR

a x

a x










AX a x a x

a x a x

 

 

 

 

     






 


 

 

 



   

  (6) 

 1 1 1, , , , , ,
T

l r l r
j j j j nj nj njLR LR

B b b b b b b 

 

, ,

, ,

j j j j

j j

l r
ik kj ik kj ik kj ik kj

k Q k Q k Q k Q

r l l r
ik kj ik kj j j j LR

k Q k Q
LR

a x a x a x a x

a x a x B B B

   

 

   

 


  




 



   

 

, 

we can write the system (2) as 

 

Suppose the system j jAX B  1 j p ,  has a solu-
tion. Then, the corresponding mean value  

 1 2, , ,
T

j j j njX x x x 

1 111 12 1

2 221 22 2

1 2

 of the solution must lie in the 

following linear system  

j jn x ba a a

j jn

nj njm m mn

x ba a a

x ba a a

    
    
         
           




    


 1 2, , ,
Tl l l l

j j j njX x x x 

 1 2, , ,
Tr r r r

j j j njX x x x 

1 1

11 12 1,2

21 22 2,2

1 1

2 ,1 2 ,2 2 ,2

l l

.      (7) 

Meanwhile, the left spread  

and the right spread  of the so-  

lution can be derived from solving the following crisp 
linear system  

j j

n

l l
n nj nj

r r

x b

s s s

s s s x b

j j

m m m n

r r
nj nj

x b

s s s

x b

   
   

    
    
        
     
    

   
   

  


   
  

.    (8) 

Finally, we restore the Equation (5) and obtain above 
matrix Equations (3) and (4).  

The proof is completed. 

3.2. Computing Model Matrix Equations 

In order to solve the original fuzzy linear Equation (2), 
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we need to consider crisp matrix Equations (3) and (4). 
Since Equations (3) and (4) are crisp, their computation 
is relatively easy.  

In general [14], the minimal solutions of matrix sys-
tems (3) and (4) can be expressed uniformly by  

X A B

l l

r

X B
S S F

X B
  

   
 

  n n

                  (9) 

and  

r

 
  
 

          (10) 

respectively, no matter the Equations (3) and (4) are con- 
sistent or not.  

It seems that we have obtained the solution of the 
original fuzzy linear system (2) as follows:  

 
 

, ,

, ,

l r

LR

LR
O I S F

0S F 

 , , ,l r
ij ij ij LR

x x x

1 ,i n  ij n p
X x




l   r r
ij n p

X x

X X X X

A d I O S F 






    (11) 

But the solution vector may still not be an appropriate 
LR fuzzy numbers vector except for . So we 
give the definition of the minimal LR fuzzy solution to 
the Equation (2) as follows:  

Definition 3.1. Let  X 

1 j p   . If  is the minimal solu- 

tion of Equation (3),  and  ij n p
X x

 


0lX 
0 

are 

minimal solution of Equation (4) such that , 

, then we call rX   , ,l r

LR

0, 0,

0, 0,

0, 0,

0, 0.

l r
ij ij

l r
ij ij

l r
ij ij

l r
ij ij

x x

x x

x x

x x

 

  

 

 

0rX 

X X X X  is a strong 

LR fuzzy solution of Equation (2). Otherwise, it is a 
weak LR fuzzy solution of Equation (2) given by  

 
  

  
 

, , ,

,0,max , ,

, max , ,0 ,

, , ,

1 , 1 .

l r
ij ij ij LR

l r
ij ij ij

LR
ij

l r
ij ij ij

LR

r l
ij ij ij LR

x x x

x x x
x

x x x

x x x

i n j p




 



  
   


  (12) 

3.3. A Sufficient Condition of Strong Fuzzy  
Solution 

The key points to make the solution vector being a LR 
fuzzy solution are  and . Since  0lX 

 l
nX I O S F , n  ,rX O I S F  we know that the 

non negativities of lX  and rX  are equivalent to the  

condition  now that     is known. 0S  0
l

r

X

X

 


 

m nR  S
By the above analysis, we have the following result. 
Theorem 3.2. Let A belong to . If   is non- 

negative, the solution of the LR fuzzy matrix system (2) 
is expressed by  

 
    

, ,

, ,

l r

LR

n n LR

X X X X

A d I O S F O I S F  







S

      (13) 

and it admits a strong minimal LR fuzzy solution. 
The following Theorem gives a result for such   to 

be nonnegative.  
Theorem 3.3. [15] Let S be an 2p × 2p nonnegative 

matrix with rank r. Then the following assertions are 
equivalent:  

1) ; 0S  

1

r

Q

PS
Q

O

 
 
 
 
  
 



Q Q

iQ i j

T T

T T

2) There exists a permutation matrix P, such that PS 
has the form 

, 

where each i  has rank 1 and the rows of i  are or- 
thogonal to the rows of , whenever , the zero 
matrix may be absent. 

HE HF
S3) 

HF HE
  
   
 

 

H . In this case, for some positive diagonal matrix 

       ,
T T

E F H E F E F H E F
      

   
   
   

11 12

21 22

31 32

1 0 1 2,1,1 3, 2,1

1 1 0 2,1, 2 2,1, 2

2 1 1 6, 3, 2 5, 2, 3

LR LR

LR LR

LR LR

x x

x x

x x

    
   

     
   

    

 
 
 

l

. 

4. Numerical Examples 

In this section, we work out two numerical examples to 
illustrate the proposed method.  

Example 4.1. Consider the fuzzy matrix systems: 

. 

The coefficient matrix A is nonsingular and the ex- 
tended matrix S is singular. By the Theorem 3.1., the 
mean value x, the left spread x  and the right spread 

rx  of solution are obtained from  

11 12

21 22

31 32

1 0 1 2 3

1 1 0 2 2

2 1 1 6 5

x x

x x

x x

     
         

    
    

 

and 
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12

22

32

12

22

32

1 2

1 1

3 2

1 1

2 2

2 3

l l

l l

l l

r r

r r

r r

   
   
   
   

   
   
   
        

00, 2.5000

000, 0.5000

000, 0.500

 
 
 
  

0.8333, 0.9639

1.1667, 0.8194

0.1667, 0.1806

0.8333, 1.0139

0.1667, 0.0694

0.1667, 1.0694

l l

r r

x B
S

x B


 
 
 
     

              
 
  
 

l

and 
11

21

31

11

21

31

1 1 0 0 0 1

1 0 0 0 1 0

2 1 1 0 0 0

0 0 1 1 1 0

0 1 0 1 0 0

0 0 0 2 1 1

x x

x x

x x

x x

x x

x x

 
 
 
 
 
 
 
  
 

. 

. 

Thus, we have 
2.50

0.5

0.5

x A B   
Since 23x  is negative, according to Definition 3.1., 

the LR fuzzy approximate solution of the original fuzzy 
matrix system is  

 

   
   
   

11 12 2.5000, 0.8333, 0.8333 2.5000, 0.7639, 1.0139

0.5000, 1.1667, 0.1667 0.5000, 0.8194, 0.0694

0.5000, 0.1667, 0.1667 0.500, 0.0000, 1.0694

LR LR

Copyright © 2012 SciRes.    

21 22

31 32

LR LR

LR LR

x x   
 
 
  

 

   
   

11 12

21 22

31 32

10, 3, 5 6, 2, 21 1 1

4, 2, 1 5, 3, 11 1 1

X x x

x x

 
  
 
 

  
 

 

and it admits a strong LR fuzzy solution. 
Example 4.2. Consider the following matrix systems: 

LR LR

LR LR

x x

x x

x x

 
              

 

 
 
 

. 

 
By the Theorem 3.1., the mean value x of solution lies 

in the following crisp matrix system 
Thus, we have 

11 12

21 22

31 32

1 1 1 10 6

1 1 1 4 5

x x

x x

x x

 
             

 
l

. 

Meanwhile, the left spread x  and the right spread 
rx  of solution are obtained by solving the following 

crisp matrix system 

11 12

21 22

31 32

0 0 0 3 2

0 0 0 1 2 3

l l

l l

l l

x x

x x

x x

 
 

    
    
    

 

11 12

21 22

31 32

1 1 1

1 1

0 0 0 1 1 1 5 2

0 0 1 1 1 0 1 1

r r

r r

r r

x x

x x

x x

    
         

 

3.5000, 2.7500

3.5000, 2.7500

3.0000, 0.5000

 
 
 
 
 

0.7917, 0.9167

0.7917, 0.9167

0.1667, 0.1667
0.

1.0417, 0.4167

1.0417, 0.4167

1.1667, 1.1667

l l

r r

x B
S

x B


 
 
 
  

x A B   

and 

. 

        
 
  
 

 

   
 

By Definition 3.1., the original fuzzy system has a 
strong LR fuzzy approximate solution given by  

 

 
   
   

12

22

31 32

3.50, 0.792, 1.042 2.75, 0.917, 0.417

3.50, 0.792, 1.042 2.75, 0.917, 0.417

3.00, 0.167, 1.667 0.50, 0.167, 1.167

11

21

LR LR

LR LR

LR LR

x x

x

x x

  
  

    
  

   

 
 
 

X x . 

 
5. Conclusion numbers matrix. We converted the fuzzy matrix system 

into two crisp matrix equations and obtained the LR 
fuzzy solution to the original fuzzy system by solving 
crisp matrix equations. Moreover, the existence condition 
of strong LR fuzzy solution was studied. Numerical ex- 

In this work we proposed a general model for solving the  

fuzzy matrix equation AX B 
B

 where A is an m × n  
crisp matrix and  is a n × p arbitrary LR fuzzy  
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amples showed that our method is effective to solve LR 
fuzzy matrix equations.  
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