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ABSTRACT

The aim of this paper is to prove that the average function of a trigonometrically p-convex function is trigonometrically
p-convex. Furthermore, we show the existence of support curves implies the trigonometric p-convexity, and prove an

extremum property of this function.
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1. Introduction

In 1908, Phragmén and Lindelof ( See, e.g. [1]) showed
that if F(z) is an entire function of order 0< p<c,
then its indicator which is defined as:

log ‘F(rei'g )‘
—

h(6)=h, (0) =limsup

r—w r

,(@<0<p)

has the following property:
If 0< p(ﬂ—a) <m, and H(H) is the function of
the form

H(H) = A cos pf + Bsin pd

(such functions are called sinusoidal or p-trigonometric)
which coincides with /#(6) at o and at S, then for
a<6<p wehave

h(0)<H ().

This property is called a trigonometric p-convexity
([1.2)).

In this article we shall be concerned with real finite
functions defined on a finite or infinite interval
(a,b)cR.

A well known theorem [3] in the theory of ordinary
convex functions states that: A necessary and sufficient
condition in order that the function f:(a,b) > R, be
convex is that there is at least one line of support for f
at each point x in (a,b).

In Theorem 3.1, we prove this result in case of
trigonometrically p-convex functions. In Theorem 3.2,
we prove the extremum property [4] of convex functions
in case of trigonometrically p-convex functions. And
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finally in Theorem 3.3, we show that the average func-
tion [5] of a trigonometrically p-convex function is also
trigonometrically p-convex.

2. Definitions and Preliminary Results

In this section we present the basic definitions and results
which will be used later , see for example ([1,2], and
[6-9]).

Definition 2.1. A function f:(a,b) >R is said to
be trigonometrically p-convex if for any arbitrary closed
subinterval [u,v] of (a,b) such that
0<p(v-u)<m, the graph of f(x) for xefu,v]
lies nowhere above the p-trigonometric function, deter-
mined by the equation

H (x)=H (x;u,v, f)= Acos px + Bsin px
where 4 and B are chosen such that H (u)= f(u),
and H(v)=f(v).
Equivalently, if for all x € [u, v]
S (u)sin p(v—x)+ 1 (v)sin p(x—u)
sinp(v—u) ’

F(x)<H(x)=
(1)

The trigonometrically p-convex functions possess a
number of properties analogous to those of convex
functions.

For example: If f:(a,b)—>R is trigonometrically
p-convex function, then for any u,ve(a,b) such that
0< p(v—u) <m, the inequality f (x) >H (x; u,v, f)
holds outside the interval (u, v).

Definition 2.2. A function
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T, (x) = A cos px + B sin px

u

is said to be supporting function for f(x) at the point
ue (a, b), if

T,(u)= f(u), and 7, (x)< /(%) Vxe(a,b). (2)
That is, if f(x) and 7, (x) agree at x=u and
(

the graph of f x) does not lie under the support curve.
Remark 2.1. If f:(a,b) >R is differentiable tri-
gonometrically p-convex function, then the supporting

function for f(x) atthe point u €(a,b) has the form
T, (x) = f(u)cos p(x—u)+ f'(u)sin p(x—u).

Proof. The supporting function 7, (x) for f(x) at
the point u €(a,b) can be described as follows:

T, (x)= lim H(x;u,v, f),

where ve(a,b) suchthatO<p(v—u)<m, andas
f(x) 2 H(x;u,v, ), Vxe(a,b)\(u,v).

Then taking the limit of both sides as v—u, and
from (1), one obtains

f(x)2T, ()

= limH(x;u,v,f)

. f(u)sinp(v—x)+ f(v)sin p(x—u)
=lim
v—u sinp(v—u)

= f(u)cos p(x—u)+ f'(u)sin p(x—u).

Thus, the claim follows.

Theorem 2.1. A trigonometrically p-convex function
f:(a,b) >R has finite right and left derivatives
fI(x), f!(x)atevery point x e (a,b), and
f(x)< f(x) forall xe(a,b).

Theorem 2.2. Let f:(a,b)—>R be a two times
continuously differentiable function. Then f is trigo-
nome-trically p-convex on (a, b) if and only if
S (x)+p°f(x)=0 forall xe(a,b).

Property 2.1. Under the assumptions of Theorem 2.1,
the function f is continuously differentiable on (a, b)
with the exception of an at most countable set.

Property 2.2. A necessary and sufficient condition for
the function f ( ) to be a trigonometrically p-convex
in (a,b) is that the function

)+ [ £(e)ds, we(ab)

w

o(x)=/" (x

is non-decreasing in (a, b).

Lemma2.1.Let f:(a,b)—> R beacontinuous, 2m-
periodic function, and the derivative f'(x) exists and
piecewise continuous function and let M be a set of
discontinuity points for f”(x) If
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(%, —0)< f'(x,+0), x, eM, 3)
and feC’ (a b)\M) where
f"(x)+p° f(x)20, xe(a,b)\ M. 4)

Then f(x) is trigonometrically p-convex on (a,b).
Proof. Consider

)40 [F()dt, we(ab).  6)

w

o(x)=1"(

Two cases arise, as follows.
Case 1. Suppose x=x, € M. Using (5), we observe

@(x, +0)—p(x, =0)= f'(x, +0)— f"(x, —0).

From (3), we get ¢ (x, +0)>¢(x, —0).

So, the function ¢(x) is non-decreasing in M. Case
2.Let xe(x,_,x),x_,x, €M, and
(XX, )M =D.

Differentiating both sides of (5) with respect to x,
one has

¢'(x)=f"(x)+p" [ (%)-
Using (4), one obtains
@' (x)=0, xe(x_,x).

Thus, ¢(x)is non-decreasing function in (x,_;,x, ).
Therefore, from Property 2.2, we conclude that the
function f'(x) is trigonometrically p-convex on (a,b).

3. Main Results

Theorem 3.1. A function f:(a,b)—> R is trigonome-
trically p-convex on (a,b) if and only if there exists a
supporting function for f(x) at each point x in
a,b).

( Prz)of. The necessity is an immediate consequence of
F. F. Bonsall [10].

To prove the sufficiency, let x be an arbitrary point
n (a,b) and f hasa supporting function at this point.
For convenience, we shall write the supporting function
in the follwoing form:

T.(z)=f(x)cos p(z—x)+K, ,sin p(z—x),

where K, is a fixed real number depends on x and

f.

From Definition 2.2, one has
T.(x)=f(x), and T (z)< f(z) Vz €(a,b).
It follows that,

f(x)cos p(z—x)+K,  sinp(z—x)<(z) Vze(a,b).
(6)
For all wu,ve(a,b), choose any u#v such that
O<p(v—u)<n, and A,4>0 with A+ =1 and let
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x=Au+ pv.
Applying (6) twiceat z=u andat z=v yields

f(x)cos p(u—x)+K,  sinp(u—x)< f(u),
f(x)cosp(v=x)+K,  sinp(v—x)< f(v).

Multiplying the first inequality by sin pA(v—u), the
second by sin pu(v—u), and adding them, we obtain

x)[sinpxi (v—u)cos p(u—x)

—cos p(v—x)sin pu(u - v)]

+K sin pA(v—u)sin p(u - x)

—sin p(v—x)sin pu(u—v)

< f(u)sin pA(v—u)+ f(v)sin pu(v—u).
Consequently

f(u)sin p(v—x)+ f(v)sin p(x—u)

f(x)ﬁ sinp(v—u)

for all x e[u,v], which proves that the function f(x)
is trigonometrically p-convex on (a,b).

Hence, the theorem follows.

Remark 3.1. For a trigonometrically p-convex function
f:(a,b) > R, the constant K, , in the above theorem
is equal to f” ( ) if f s differentiable at the point x
in (a,b),otherwise, K, , e[f f”(x)].

Theorem 3.2. Let f.(a,b)—)R be a trigonome-
trically p-convex function such that 0<p(b—a)<n
and let T,(x) be a supporting function for f(x) at
the point u €(a,b). Then the function

.. a+b
has a minimum value at u = T

Proof. From Definition 2.2, we have
T, (u)=f(u), ™
and
T (x)< f(x) Vxe(ab), 8)
and T,(x) can be written in the form

T,(x)=f(u)cos p(x—u)+K, sin p(x—u)

:Ksinp(x+a—u), @

/()

u.f

where K =./f*(u)+K,

.r-and tan pa =

Using (9), one obtains
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7, (x)ax

b
:stinp(x+a—u)dx

2 . (b—aj , {(b+aj }
=—sinp| — |Ksinp|| — |+a—u

o 2 2
=£Sinp(b_ajﬂ(a+bj

o 2 2

Consequently,
t 2. (b—aj (a+bj
= x)dx— —sin T . (10
J£(x)as=Zsinp| == 1| =] (10
Using (7) at u = a +b, the function G ) becomes

e (i) 2]

But from (8) ,we observe 7;( j f[aerj

dx——smp(

all ue(a,b).
Now using (10) and (11), it follows that

G(u)> G(QTM) forall ue(a,b).

Hence, the minimum value of the function G(u)
a+b
occurs at ¥ =——.

Theorem 3.3. Let f(x) be a non-negative, 2m-
periodic, and trigonometrically p-convex function with a
continuous second derivative on R and let F(x) be
a 2m-periodic function defined in [0, 2] as follows

1 X
F@):;gfﬁym xe[0,2x]. (12)
If £'(0)>0, and
f(0)=—]s(r)de (13)

Then, F(x) is trigonometrically p-convex function.

Proof. The proof mainly depends on Lemma 2.1. So,
we show that the function F(x) satisfies all conditions
in this lemma.

Suppose that

g(xy:}-ff(ﬂdn xeR". (14)

It is obvious that, g(0)= /(0).
First, we study the behavior of the function F(x)
inside the interval (0, 21t) .

It is clear from (12) that F(x)s is an absolutely
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continuous function, has a derivative of third order.
But from the periodicity of F(x) and (13), we get

F(0)=g(0)=1(0)

17 (15)
=5 .([ f(¢t)dr = g(2m)=F(2m).
Using the following substitution ¢ = x7 .
It follows that, F(x) can be written as
1 1
F(x)= If(xr)dr and F"(x)= Irzf”(xr)dr )
0 0
Consequently,
F"(x)+ p*F(x)
(16)

- j:rz (f”(xr)+p2f(xr))+p2 (I—Z'z)f(XT)dT.

Since f(x) is non-negative, trigonometrically p-con-
vex function, and 0<7 <1, then from Theorem 2.2 and
(16) it follows that

F"(x)+p*F(x)20, xe(0,2n). (17)
Second, we prove that
F'(2n-0) < F'(2n+0). (18)

From the definition of g(x) in (14) and the perio-
dicity of F(x), we observe that
F'(2n-0)=g'(2n), and F'(2n+0)=g'(0).

Again using (14), we have

g'(x) = M (19)

Thus, from (15) and (19), one has g'(2n)=0, and
’ 1 -y
£(0)-11(0).
Hence, from (13), we infer that
F'(2n-0)=g'(21) =0 g%f”(o)

=g'(0)=F'(2n+0),
and the inequality in (18) is proved.
Now using (17), (18), and Lemma 2.1, we conclude
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that F (x) is trigonometrically p-convex function, and
the theorem is proved.
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