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ABSTRACT

In this paper, minimal submanifolds in Finsler spaces with (a, f)-metrics are studied. Especially, helicoids are also
minimal in (a, f)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with (a, f)-metrics are
given. Last, the Gauss curvature of the conoid in the 3-dimension Randers-Minkowski space is studied.
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1. Introduction

In recent decades, geometry of submanifolds in Finsler
geometry has been rapidly developed. By using the
Busemann-Hausdorff volume form, Z. Shen [1] intro-
duced the notions of mean curvature and normal curva-
ture for Finsler submanifolds. Being based on it, Bern-
stein type theorem of minimal rotated surfaces in Rand-
ers-Minkowski space was considered in [2]. Later, Q. He
and Y. B. Shen used another important volume form, i.e.,
Holmes-Thompson volume form, to introduce notions of
another mean curvature and the second fundamental form
[3]. Thus, Q. He and Y. B. Shen constructed the corre-
sponding Bernstein type theorem in a general Minkowski
space [4].

The theory of minimal surfaces in Euclidean space has
developed into a rich branch of differential geometry. A
lot of minimal surfaces have been found in Euclidean
space. Minkowski space is an analogue of Euclidean
space in Finsler geometry. A natural problem is to study
minimal surfaces with Busemann-Hausdorff or Holmes-
Thompson volume forms. M. Souza and K. Tenenblat
first studied the minimal surfaces of rotation in Randers-
Minkowski spaces, and used an ODE to characterize the
BH-minimal rotated surfaces in [5]. Later, the nontrivial
HT-minimal rotated hypersurfaces in quadratic (a, f)-
Minkowski space are studied [6]. N. Cui and Y. B. Shen
used another method to give minimal rotational hyper-
surface in quadratic Minkowski (a, f)-space [7]. How-
ever, these examples only consider the special (a, f)-
metrics either Randers or quadratic. Therefore, what is
the case with the general (a, f)-metric?
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The main purpose of this paper is to study the conoid
in (a, f)-space. It includes minimal submanifolds in

Finsler spaces with general (a, f)-metric ( F' = a¢ (ﬁj)
a

and the Causs curvature in Randers-Minkowski 3-space.
We present the equations that characterize the minimal
hypersurfaces in general (a, f)-Minkowski space. We
prove that the conoid in Minkowski 3-space with metric

F=a¢(’6

a
a plane under some conditions. Finally, similar to [7], we
give the Gauss curvature of conoid in Randers-Min-
kowski 3-space and point out that the Gauss curvature is
not always nonpositive on minimal surfaces.

j is minimal if and only if it is a helicoid or

2. Preliminaries

Let M be an n-dimensional smooth manifold. A Finsler
metric on M is a function F:TM —>[O,oo) satisfying
the following properties: 1) F'is smooth on TM \{0} ;2)
F(x,Ay)=AF(x,y) for all A>0; 3) The induced
quadratic form g is positively definite, where

g:=g; (x,y)dx' ®dx’,
(M

Here and from now on, [F] i [F] ;; mean 6_E’
¥y yy ayl

2
£ , and we shall use the following convention of
oy'oy’
index ranges unless otherwise stated:

1<i,j, - <nm 1Sa,ﬂ,---£m(>n).
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The projection m:7M — M gives rise to the pull-
back bundle n'TM and its dual n'7°M , which sits
over TM \{0} . We shall work on TM\{O} and rigidly
use only objects that are invariant under positive re-
scaling in y, so that one may view them as objects on the
projective sphere bundle SM using homogeneous coor-
dinates.

In n'T°M there is a global section a):[F]y,- dx’,

called the Hilbert form, whose dual is =/’ ii,

x
I'=y'[F , called the distinguished field.The volume
element dVg,, of SM with respect to the Riemannian
metric ¢ , the pull-back of the Sasaki metric on
TM \{0}, can be expressed as

dVg,, =Qdr Adx, 2)
where
Q::det[%} dr=dv' Aeee Ady”, 3)

~
n

dT:=Z:(—1)[_l Ydy' A ady A Ady”. “

i=1
The volume form of a Finsler n-manifold (M, F) is
defined by

dv,, =o(x)dx, o(x) ::L Qdr, 5)

Cn—l S.M
where ¢, , denotes the volume of the unit Euclidean
(n—1)-sphere §"', S, M ={[y]yeT.M}.

Let (M, F) and (M JF ) be Finsler manifolds, and
f:M —> M be an immersion. If

F(x,y)=F(f(x).df(y)) for all (x,y)eTM\{0},
then fis called an isometric immersion. It is clear that

g (% 9) =8, (%3) 1717, (©6)
for the isometric immersion f:(M,F )—)(M JF ), where
~a a ~a a i a a “ *
= x), V=LY, f; :é Let (nTM)L

be the orthogonal complement of @' 7TM in w' ( T )

with respect to g, and set

ha :f;jaylyj __f;{aGk +G~a,

a (7
=22
F~ ox*

B

ha = gaﬂhﬁ’

2 ra
where f..“zi, G* and G* are the geodesic
Y ox'ox’

coefficients of F and F respectively. We can see that
he(n*TM) (see (1.14) in [3]), which is called the
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normal curvature. liecall that for an isometric immersion
f: (M,F) - (M,F) , we have (see formulae (2.14) and
(3.14) of Chapter V in [8])

G* =g £V +G7), (8)
where ¢ = 1,"¢"g,,. From (2.7), it follows that
W=pl(fi 'y +G), ©9)
where p.f =57~ fF¢. Set
U= cn_lla(jst%erjdfc“, (10)

which is called the mean curvature form of f. An isomet-
ric immersion f:(M,F)— (M,I:") is called a minimal
immersion if any compact domain of M is the critical
point of its volume functional with respect to any varia-
tion vector field. Then f'is minimal if and only if £ =0.

3. Minimal Hypersurfaces of («, f)-Spaces

Here and from now on, we consider general (a, f)-metric.
Let F=a¢(s), s :ﬁ, where ¢(s) isa positive C”
a

function on (=b,,b, ),
a= aij(x)yiij ﬁ:bi(x)yi,

18I, =Ja'bb, =b(0<b<b,).

If ¢(s)=1+s, then F is a Randers metric. If « is
an Euclidean metric and f is parallel with respect to
a , F is a locally Minkowski metric and (M, F) is called
an (a, ff)-Minkowski metric. By [9], F is a Finsler metric
if and only if ¢(s) satisfies

$(s)—s54'(s)+(B =s7)g"(s) >0, |s|]<b<b,. (1)

Let

g
A=det(a,), g=det(g,), Q= (12)
It have been proved ([9]) that

g=¢(s) H(s)A4, (13)
where
H(s)=g(p=s¢') [ p-s¢'+(b*=5*)¢"].

In the following part, we will discuss minimal hyper-
surfaces in Minkowski space with (a, f)-metric. Let

f:(M,F)> (]\;[,F) be an isometric immersion,

F=ag(s)= &qﬁ[ﬁ], where

a
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&:\/daﬂjja}ﬂa ﬁ:l;aj/a'

Since f'is an isometric immersion, we get
F=f"F= a¢(£j,
a

where

a= ,[a’.jy"yj, a; :daﬁf’,“fjﬂ,
ﬁ:biyiﬂ b, :l;afia'
Note that (M, F) is a hypersurface of (M ,1:“ ) , let
n=n"é, be the unit normal vector field of f (M) with

respect to @ and n=7“¢, be the unit normal vector
field of M with respectto g, respectively. That is

Yt fr=0, g, fF =0,
g(n,n) g ﬂn “ppf =1,
There exist a function A(x,y) on SM, such that

(;"r(n,n) = daﬂn“nﬂ =1,

8,51 = Ad,n”
where A=g(n,n)= (d(n,n))f1 . Then

=15% aﬁy . (14)
From above, we know that fis minimal if and only if

a ha
n _[SMFerzo. (15)

X

From (3.3) and (3.4), and in a similar way as in [5], we
can get

h,=8,h =g, [(f Yy 4GP gy }”
=1’ [(ﬁfyiyj +G'B)dﬂ§n5]&wn’.
/1;121 g= /1?21 ¢ =
Then (3.5) is equivalent to
(950" [ 9= 50" +(5* -7 ) 9"
"o s @ (16)

(#y'y' +G”)dr=0.

¢n+1]:IA

12

g:

If F= &qﬁ[@] is an (a, f)-Minkowski metric, then
a

G” =0. In Minkowski-(a, p) space, fis minimal if and
only if
ij r\i-1 ' N "
Vo (b-sp) [958+ (52 =57)g"]

BB
fijn S.M dmz

dr=0.
(17
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Theorem 1 Let (M, F) be a hypersurface of (1\71 ,F) ,
and F = &q{gj be an (a, f)-Minkowski metric. Then
f:(M,F)—>(M,F) is a minimal immersion if and
only if

[ v (0B~ ()
[ #(B)- B (B)+ (5>~ B)¢"(B) |az =0,

where S, 1isasphere such that o =1.
Now, we consider the conoid in 3-dimensional (a, f)-

(18)

Minkowski space paralleling to x*-axis. Set F = d¢ [é}
a

where

S GRS EI At
and b is a constant. Let f :(u cosV,u sinv,h(v)) ,
where /(v) is a unknown function. Then

., [ cosv siny 0
(f’ )2><3 B {—u sinv  ucosv h,\J’
o cosv sinv 0
(7 7 )= yz)(_usinv ucosv h'j

= (yl cosv—uy’siny y'sinv+uy® cosv yzh').

1 .
Assume that y' =cos@, y* = [———sinéd,
u® +(h")

0 [0,2x], then
@) () ()
=J(y1)2 t(w (0 )(5?) =1

Note that the normal vector of the surface is

—h'sinv h'cosv u

" )

Joy e Jwy e ’

and

(i), =0 0 0).
(f )m (fZI)M:(—sinv cosv 0),
(fzi)mz(—ucosv —usiny h").

Set

(19)
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Then (3.8) is equivalent to

3
Y (245n W + f5n W) =0. (20)

a=

Since S, is symmetric with respect to y' and ﬁ
is a function only depending on y?,

W= ' (#(5)- 5 (B))
{#(B)- B (B)+(5-5)¢'(B) ]az =0,
Therefore, (3.10) becomes to
uh"w? =0, Vu.
However, W* =0 is impossible. Recall that
2 _ 2 A'g d
w jsx(y ) —¢M (S) T,

and y® is not identically vanishing, we can obtain
W*>0.Then h"=0,

h=cv+d,

¢(s)>0,

where c, d are arbitrary constants.
Theorem 2 Let (Vz,F) be an (a, p)-Minkowski

space, F = &¢[éj, B =07, and

a
f= (u cosv,usinv,h (v)) be a conoid. Then f'is minimal
if and only if f'is a helicoid or a plane.

Remark 3.1 From theorem 2, we can affirm that a
helicoid is minimal not only in Euclidean space but also
in (a, p) Minkowski space, where [ =by’. This is an
interesting result for minimal surfaces. o

But whether the result hold if the condition J = by’
is not satisfied? Now we consider the following condi-
tion:

B =b7 +b,7 +b5
= (51 cosv+b, sinv)y1 +(52 cosv—h, sinv)yz,

where l;l, l;z, 53 are not all zeros. To simplify the com-

putation, we only discuss quadratic (a, ff)-metric:
2

F=a+kﬂ—. Set B, = b cosv+b,sinv,
a

B, = 52 cosv—l;] sinv. Then (3.8) becomes an equation
respect to u:

C;(v)u’ +C, (v)u'* +C (v)u’

@n
+C, (v)u* +C, (v)u+C,(v)=0,
where
q:%@w,
15

C, =

-~ B, (B3 (Y + B3 )n'n,
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C, =—(3K BB, + 3k’ B,B} —4kB,B, - 2k’ BB, ) f
+(%325;h'+§53233 +§szl4h"+%k2anB§

— knB? —§k2l;2B12 +2kb> +1jh",

C, = 1?5 B,b} (1) " —9szIE3B§h’+%k23253h’h",
15

ngﬁwfw

+ B, (3k° B} —4kB, —2k°b” B —2kb] ) (h')’

+(§sz(‘ — knB? - k*nb* B’

+%k253B,2 +2kb’ +1j(h’)2 ',

C, =-3k’b,B, (1+ B! )(h')".
Since (3.11) is valid for any u, we can obtain
C =0(i=0,--,5), Vv.
If #0 or b,#0, then B #0 or B,#0, such

that #'(v)=0. Therefore, when b,,b, are not all zeros,
h(v) = const . That is to say a minimal conoid hypersur-
face is a plane with respect to the given metric above.

Theorem 3 Let (V3,15) be an (a, P)-Minkowski
n2
space, where F :07+k’BT ||,5’||=b satisfying
a

[3 = 151)71 +I;2)72 +53)73 (1;1,152 are not all zeros). Then a

minimal conoid hypersurface in (V3,F ) is a plane.

4. Gauss Curvature of Conoid in Randers
3-Space

As we all known, the Gauss curvature of a minimal sur-
face is nonpositive everywhere in Euclidean space. Then,
a natural problem arises: whether this fact holds for
minimal surfaces in Minkowski-Randers 3-space? In this
section, we study the Gauss curvature of conoid in Min-
kowski-Randers 3-space around x’-axis in the direction
B thatis B* =bj. Consider the conoid

f(u,v) = (ucosv,usinv,h(v)), where u>0 and veS"

Let ¢ = df(%j , € = df(%) . Then y=~{e +ne,

gives a natural coordinates (u,v,&,77) on its tangent
bundle. In this section we shall use the convention that
1<i,j<2 and 1<a,f <3 . Besides, the notations
C'=u, 7 =v and y' =&, )" =n arealso used.

Note that the induced 1-form B = f~ ,B on the surface
is closed. Then the Ricci curvature tensor of F = f"F
is given by ([10], Page 118)
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Ric = Ric +— (37‘00 2Fr00‘0) (22)
where Ric denotes the Ricci curvature tensor of the
induced Riemannian metric « = f'@, 7, = b,,y'y’ and

1

b,; denote the coefficients of the covarient derivatives
of S with respect to «. Then the Gauss curvature of

the surface is given by

Ric(y)
F2

K(x,y)=
(23)

=K+ 3r00 2Fr00‘0)

i
where x=f (u,v), K denotes the Gauss curvature
with respectto « .
a 2 ra
i and z; = 8.f -
i y 64/1@4//

Denote z = Then

Ccosv

sinv 0
—usinv ucosv h'(v))

N
)
~—
)
X
[N
Il
7N\

:(—sinv cosV O),

=(-ucosy —usinv h").

a
%)
(22 1x3

Noting that the Gauss curvature is computed in Euclid-
ean space as follows:
2
& LN-M ’
EG-F*
where
L=z-n%,

M=z}-n%, N=z-n°,

_,a a _ o a _La
E=z"-z', F=z"-z7, G=2z -z;.

By direct computation, we can obtain
2
R (24)
2, p2)\?
(u +h )

Meanwhile, the coefficients of « = f'@ are given by

1 0
(akl):(ak,)il— 0 1 b
u2+(h')

where a = zazjﬂ J,5- It is easy to verify that
Fk =a" Zz i 5 . By a direct computation, we have

1:1_0 0
0 )
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0 u
w2 u +(h')
i u Wh"
u2+(h’) u +(h')
Since b, =bz,
h'u
b =b  —bT=b " e
ilj ic/ RN/ u ) hh"
W+ W+ h?
From b, _b,\ o bl‘?l"jk byl,l“lk,we have
2bu’h’
P =
(u +h )
bu*h'
bzuu = buzu = o
(u2 +h" )2
buh"
b1\2|2 = bzu\z =—(h*-u’ 5
(u2 +h" )2 ( )
2buh"
bz\zu = T, a2
(u +h' )
2bh'u? 1 R
b,,=————— +h" |
21212 Y (uz L p? ]
Besides,
o 2bub’ ., uPh" 52
Too =by, ¥y’ Z—Wyly —m(y ) )
P 4bu*h' 2
Toop = iy vyt :(24—7)2 yl) v
u
2buh" ” 2\ 1(.2)\?
-i——2 p z(h —2u )y (y )
(u +h )
2bh'u? 1 RVIPEE
- +h"
u’+h"? (uz+h’2 j(y )

Then, from (4.2) and (4.3), we obtain the following
theorem.

Theorem 4 Let V3 F ) be an Randers-Minkowski
space with ﬂ the Gauss curvature of the conoid
f(u,v) (ucosv,usmv,h( )) at x= f(u,v) in direc-
tionof y=_&e +ne, is given by

K(x,y)=-T"+ ;4 [12152r‘§2772 —8bFT* &%y
+12bT°En> —4BT En’ + 4bFT* +30°7* |,
where
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hrZ 2h'2 2h¢
e (w2 +n2) " (uzuwz y’ " (+h y
F3:M F“:”—h"(hﬂ_zuz)
(u2 +h? )2 ’ (u2 +h? )2 ’
uh' 1 ” B u*h”
FS:uz-i-h'z(uz+h'2 2)’ F6_<uz+h,z)2'

Note that a helicoid is minimal if and only if it is a
conoid with respect to (a, f)-metrics (where J=by*).
Let h(v)=cv+d (cis a constant), then the Gauss cur-
vature of this surface is given by

K(x,y)=-T1° +%[3z§2n1§2772 ~bFI*p (28 +772)],
(25)

where

2 2.2 2
0 c 1 cu ) cu

= 272 2 2"
(u2+c2) (u2+c2)

(uz + cz)
However, for a given point x= f(u,v), in which

directions of 7.8, K(x,y)>0, K(x,y)=0,
K(x,y)<0?

DIf 20, then K(x,y)<0 forany c=0;
2) If éO,Since

F=a+p= ai/.yiyj +b,y' =(\/uz+c2 |77|+cl;77),

Equation (4.4) becomes
1 2chu?
K(x,y):— > o 3773 .
(u2 +c2) (\/uz +c |77|+c1577)

If ¢>0,let <0, then

2chu®
N 3
(cb —Vur+c? )

1
K(x’y):_(u2+c2)2 e

I 2
2chu + <0, then
(cb —ut+¢? )

K (x,y)>0; Otherwise, let 7 >0, then

we can also make ¢ +
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.2
K(x,y):— 1 : N 2chu :
(”2"'02) (cl;+\/u2+cz)
2chu?

we can make ¢® + - <0, then

(05 +u +¢? )

K (x,y)>0.In sum, the Gauss curvature is not nonposi-
tive anywhere.
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