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ABSTRACT 

In this paper, minimal submanifolds in Finsler spaces with (α, β)-metrics are studied. Especially, helicoids are also 
minimal in (α, β)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with (α, β)-metrics are 
given. Last, the Gauss curvature of the conoid in the 3-dimension Randers-Minkowski space is studied.  
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1. Introduction 

In recent decades, geometry of submanifolds in Finsler 
geometry has been rapidly developed. By using the 
Busemann-Hausdorff volume form, Z. Shen [1] intro- 
duced the notions of mean curvature and normal curva- 
ture for Finsler submanifolds. Being based on it, Bern- 
stein type theorem of minimal rotated surfaces in Rand- 
ers-Minkowski space was considered in [2]. Later, Q. He 
and Y. B. Shen used another important volume form, i.e., 
Holmes-Thompson volume form, to introduce notions of 
another mean curvature and the second fundamental form 
[3]. Thus, Q. He and Y. B. Shen constructed the corre-
sponding Bernstein type theorem in a general Minkowski 
space [4]. 

The theory of minimal surfaces in Euclidean space has 
developed into a rich branch of differential geometry. A 
lot of minimal surfaces have been found in Euclidean 
space. Minkowski space is an analogue of Euclidean 
space in Finsler geometry. A natural problem is to study 
minimal surfaces with Busemann-Hausdorff or Holmes- 
Thompson volume forms. M. Souza and K. Tenenblat 
first studied the minimal surfaces of rotation in Randers- 
Minkowski spaces, and used an ODE to characterize the 
BH-minimal rotated surfaces in [5]. Later, the nontrivial 
HT-minimal rotated hypersurfaces in quadratic (α, β)- 
Minkowski space are studied [6]. N. Cui and Y. B. Shen 
used another method to give minimal rotational hyper-
surface in quadratic Minkowski (α, β)-space [7]. How-
ever, these examples only consider the special (α, β)- 
metrics either Randers or quadratic. Therefore, what is 
the case with the general (α, β)-metric? 

The main purpose of this paper is to study the conoid 
in (α, β)-space. It includes minimal submanifolds in  


Finsler spaces with general (α, β)-metric ( F 


   
 

)  

and the Causs curvature in Randers-Minkowski 3-space. 
We present the equations that characterize the minimal 
hypersurfaces in general (α, β)-Minkowski space. We 
prove that the conoid in Minkowski 3-space with metric  


F 


   
 

 : 0,F TM  

 is minimal if and only if it is a helicoid or  

a plane under some conditions. Finally, similar to [7], we 
give the Gauss curvature of conoid in Randers-Min- 
kowski 3-space and point out that the Gauss curvature is 
not always nonpositive on minimal surfaces. 

2. Preliminaries 

Let M be an n-dimensional smooth manifold. A Finsler 
metric on M is a function  satisfying 
the following properties: 1) F is smooth on  \ 0TM ; 2) 
   , ,F x y F x y  0 for all   ; 3) The induced 

quadratic form g is positively definite, where  

 
2

: , d d ,

1
: .

2 i j

i j
ij

ij y y

g g x y x x

g F

 

   



           (1) 

Here and from now on,  iy
F ,   i jy y

F  mean 
F

, 
iy

2

i j

F
y y 

 1 , , ; 1 , , .i j n m n      

, and we shall use the following convention of 

index ranges unless otherwise stated:  
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The projection  gives rise to the pull- 
back bundle  and its dual , which sits 
over . We shall work on  and rigidly 
use only objects that are invariant under positive re- 
scaling in y, so that one may view them as objects on the 
projective sphere bundle SM using homogeneous coor- 
dinates. 

π :TM M
* *π T M

 \ 0TM

* *π T M

*π TM
 \ 0TM

In  there is a global section   di
i

y
F x  ,  

called the Hilbert form, whose dual is ,i
i

l l
x





  

i il y F
dV
ˆ

, called the distinguished field.The volume 
element SM  of SM with respect to the Riemannian 
metric g , the pull-back of the Sasaki metric on 

, can be expressed as   \ 0TM

d d d ,V xSM                   (2) 

where  

1d d ,n: det , dijg
x x x 

d di ny y 




F

 
   

 
      (3) 

  1 1

1

d : 1 d
n

i i

i

y y 



     .     (4) 

The volume form of a Finsler n-manifold (M, F) is 
defined by  

   
1

1
d ,

xS M
nc

d : d , :MV x x x  


 

1nc 

 

     (5) 

where  denotes the volume of the unit Euclidean  

(n − 1)-sphere , 1nS   x xy y T M=S M

,

. 

Let (M, F) and M F   be Finsler manifolds, and 
:f M M 
 ,

 be an immersion. If  
    ,dF x y F f  x f  y  for all  , \ 0TM

 , ,i j

x y , 
then f is called an isometric immersion. It is clear that  

 ,ijg x y g x y f f   

   ,

            (6) 

for the isometric immersion : ,f M F M F   , where 

 x f x  , i
iy f y  , i i

f
f

x


 



. Let  *π TM


 

be the orthogonal complement of  in *π TM  * 1π f TM   

with respect to g , and set  

2

,

, ,

k
kf G G

h
h

i j
ijh f y y

h g h
F x

   








 








 

 


          (7) 

where 
2

i jij

f
f

x x


 

 
kG G ,  and   are the geodesic  

coefficients of F and F
 *πh T




 respectively. We can see that 
 (see (1.14) in [3]), which is called the 

normal curvature. Recall that for an isometric immersion 

M

  : , ,f M F M F   , we have (see formulae (2.14) and 
(3.14) of Chapter V in [8])  

  ,k k i j
ijG f y y G 

  

.k lk
l

           (8) 

g gfwhere      From (2.7), it follows that  

  ,i j
ijh p f y y G   


  

: .i
ip f  

          (9) 

where        Set  

2
1

1
d d ,

S Mxn

h
x

c F
 



   
 
         (10) 

which is called the mean curvature form of f. An isomet- 
ric immersion    : , ,f M F M F  

0

 is called a minimal 
immersion if any compact domain of M is the critical 
point of its volume functional with respect to any varia- 
tion vector field. Then f is minimal if and only if   . 

3. Minimal Hypersurfaces of (α, β)-Spaces  

Here and from now on, we consider general (α, β)-metric. 

Let 
   s s C is a positive F s , , where 


  

function on  0 0,b b

 

,  

 , ,i j i
ij ia x y y b x y    

 00 .ij
i ja b b b b b


      

  1If s s  , then F is a Randers metric. If    is 
an Euclidean metric and   is parallel with respect to 
 , F is a locally Minkowski metric and (M, F) is called 
an (α, β)-Minkowski metric. By [9], F is a Finsler metric 
if and only if  s  satisfies  

     2 2
0( ) 0,s .s s b s s s b b       

   

  (11) 

Let  

det , det , .ij ij n

g
A a g g

F
   

    ,
n

     (12) 

It have been proved ([9]) that  

g s H s A

     2 2 2 .
n

H s s s b s

             (13) 

where  

               

In the following part, we will discuss minimal hyper- 
surfaces in Minkowski space with (α, β)-metric. Let 

  : , ,M F M F    be an isometric immersion,  

 

f


F s 


 

   
 

  


, where  
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 ,, .y y b ya   
      

tric immer

   

Since f is an isome sion, we get  

*F f ,F


    
 

  

where  

, ,

, .

j

i
i i i

a y y a a f f

b y b b f

i j
ij ij i

 









 

 




 

hat (M, F) is a hype  of  ,Note t rsurface M F  , let 
n n e

   be the unit norm eld of al vector fi  f M  with 
respect to   and n n e

   it n mal vector 
fiel ect to 

 be the un or
d of M with resp g ely. That is  , respectiv

0, 0,i in f g n f   



     

   , 1 , 1.n n a n g n n g n n   
          ,n 

There exist a function  ,x y  on SM, s ch that  

,

u

g n a n 
   

   1
, ,a n n

 

 where g n n


   . Then  

g a .n n 
  14) 

From above, we know that f is mini al if and only if  

               (

m

2
d 0.

h

F
               (15) 

 
ca

G

xS M
n 

From (3.3) and (3.4), a



nd in a similar way as in [5], we
n get  

 i j
ij

i j

h g h g f y y  g n n

 2 .ijf y y G a n a n

 
        

  

   
     

  

  
 

1

2
.n 1
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nA A HA
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Then (3.5) is equivalent to  

 



 

 d 0.i j
ijf y y G 

1 2 2

2
x

n

nS M

s s b s
n a



    







       


    (16) 

  

If F


 

  
 

 


 is an (α, β)-Minkowski metric,  

0 . In Minkowski-(α, β) space, f is minimal if and 
only if  

then 

G 

   1 2 2n
s s b s


   


        

2
x

n
d 0.

i j

ij S M

y y
f n


 

em 1 Let (M, F) be a hypersurface of 




(17) 

Theor M F  ,  

and 


F 

 

  
 

 


 be an (α, β)-Minkowski metric. Then  

  : , ,f M F M F    is a minimal immersion if and 
only if 

 
 

 
     2 2( )

i j
ij Sx

f n y y

b

 

       



  

1n
( )   

d 0,    

   

    
   (18) 



xS  is a sphere such that 1where   .  
Now, we consider the conoid in 3-dimensional (α, β)-  

Minkowski space paralleling to x3-axis. Set 


 
 


 , F 
 




where  

     2 2 21 2 3 3, ,y y y by           

and b  is a constant. Let  sin , cos ,f u v u , v h v
where  h v  is a unknown function. Then  

 
2 3

cos sin 0
,

sin cosi

v v
f

u v u v h




 
   

 

 

1

1 2 1 2 2

cos sin 0

s

cos sin sin cos .

v v

v h

y v uy v y v uy v y h


   2 3 1 2

sin co
y y y y y

u v u


   

  

 

Assume that 
 

  

1 2
22

1
cos , siny y

u h
  


,  

 0, 2π ,   then  

     

     

2 2 21 2 3

2 221 2 2 1.

y y y

y u h y

   

   

   
 

Note that al vector of the surface is  

 

 the norm

   2 2 22 2 2

sin cos
, , ,

h v h v u
n

h u h u h u

           

 

and  

   

     

   

11 1 3

12 211 3 1 3

22 1 3

0 0 0 ,

sin cos 0 ,

= cos sin .

f

f f v v

f u v u v h



 





 





  

 

 

Set  

    
       2 2 d ,

ij i j

Sx
W y y

b

   

       

 

      

   

   
 (19) 
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Then (3.8) is equivalent to  

 22
222 0.n W      (20) 

Since 

3
12

12
1

f n W f 

 
     

xS  is symmetric with resp  1 ect to y  and   
is ion only ding on a funct  depen  2y ,  

    
     

12 1 2

2 2

Sx
W y y

b

   

     

 

   

   

      d    


  
22 0, .W u   

ver, 22 0W   is impossible. Recall th

0,
 

Therefore, (3.10) becomes to

uh

Howe at  

   
 

2
222 2

2
d , 0

x
nS

g
W y s

s

  
    ,

and 2y  is not identically vanishing, we can obtain 
W . Then 0h  ,  

,h cv d   

w
The Let  3 ,V F  be an (α, β)-Minkowski  

22 0

here c, d are arbitrary constants. 
orem 2  

space, 3,F by      , and  


 
 
 




  sin ,cos ,f u v
if and only if f i

u v h v  be a conoid. Then f i mal 
s a helicoid or a plane.  

ma
helicoid al n t
in (α, β) ski s where 3by    . This is an 
interesting result for mini surf  

ition 3by     
is  we co
tion:  

s mini

Re rk 3.1 From theorem 2, we can affirm that a 
is minim  o  only in Euclidean space but also 
 Minkow pace, 

mal aces. 
But whether the result hold if the cond

 not satisfied? Now nsider the following condi- 


1 2 3

1 2 3

cos sin

b y b y b y

b v b v



 

    
    1 2
1 2 2 1cos sin ,y b v b v y    

  

where 1 2 3, ,b b b    are not all zeros. To simplify the com- 
putation, we only discuss quadratic (α, β)-metric:  

2

F k



  . Set 1 1 2cos sinB b v b v   ,  

 
 

3
3

0 0,

C v u

u C v

 

 
      (21) 

where  

2 2 1cos sinB b v b v   . Then (3.8) becomes an equation 
respect to u:  

   
   

5 4
5 4

2
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4
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  42 2
0 3 1 13 1 .C k b B B h    

Since (3.11) is valid for any u, we can obtain  

 0 0, ,5 , .iC i v    

If 1 0b   or 2 0b  , then 1 0B   or 2 0B  , such 
that . Therefore, when 1 2,b b   are not all zeros,   0h v 
 h v const . That is to say a minimal conoid hypersur- 

face is a plane with respect to the given metric above.  
Theorem 3 Let  3 ,V F  be an (α, β)-Minkowski  

space, where 
2

F k



 
 


b    satisfying  

1 2 3b y b y b y          ( ,b b   are not all zeros). Then a 
m ne.  

4. Gauss Curvature of Conoid in Randers 

all kn

m
dy the Gauss curvatu n Min- 

kowski-Randers 3-space around x3-axis in the direction 
#

1 2 3 1 2

inimal conoid hypersurface in  3 ,V F  is a pla

3-Space 

As we own, the Gauss curvature of a minimal sur- 
face is nonpositive everywhere in Euclidean space. Then, 
a fact honatural problem arises: whether this lds for 

inimal surfaces in Minkowski-Randers 3-space? In this 
section, we stu re of conoid i

 , that is # 3by    . Consider the conoid  
    , cos , sin ,f u v u v u v h v , w 0  and v Shere u 1 .  

Let 1 de f
u

    
, 2 de f

v

    
. Then 1 2y e e  

es a natur

  

giv al coordinates  , , ,u v    on its tangent 
bundle. In this section we shall use the convention that 
1 , 2i j   and 1 , 3   . Besides, the notations 

1 2: , :u v    and 1 2: , :y y    are also used. 
Note that the induced 1-form *f    on the surface 

is closed. Then the Ricci curvature tensor of *F f F   
is given by ([10], Page 118)  
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 (4.2) and (4.3), we obtain the following 
theorem. 

Theorem 4 Let 

Then, from

 3 ,V F  be an Randers-Minkow  
space with 3by    , the Gauss curvature of the conoid 

ski

   , cos , sin ,u v u v u v h v  at  ,f x f u v  in direc- 
tion of 1 2y e e    is given by  

  0 2 1 2 2 2 2
4

3 3 4 2 5 3 6 4

1
, 12 8

4

12 4 4 3 ,
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F
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 , 0K x y  . In sum, the Gauss curvature is not nonposi- 
tive anywhere. 
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