Minimal Surfaces and Gauss Curvature of Conoid in Finsler Spaces with (α, β)-Metrics ${ }^{*}$

Dinghe Xie, Qun He
Department of Mathematics, Tongji University, Shanghai, China
Email: x_dinghe8707@126.com

Received December 26, 2011; received March 18, 2012; accepted March 26, 2012

Abstract

In this paper, minimal submanifolds in Finsler spaces with (α, β)-metrics are studied. Especially, helicoids are also minimal in (α, β)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with (α, β)-metrics are given. Last, the Gauss curvature of the conoid in the 3-dimension Randers-Minkowski space is studied.

Keywords: Isometrical Immersion; Minimal Submanifold; (α, β)-Metric; Conoid Surface; Gauss Curvature

1. Introduction

In recent decades, geometry of submanifolds in Finsler geometry has been rapidly developed. By using the Busemann-Hausdorff volume form, Z. Shen [1] introduced the notions of mean curvature and normal curvature for Finsler submanifolds. Being based on it, Bernstein type theorem of minimal rotated surfaces in Rand-ers-Minkowski space was considered in [2]. Later, Q. He and Y. B. Shen used another important volume form, i.e., Holmes-Thompson volume form, to introduce notions of another mean curvature and the second fundamental form [3]. Thus, Q. He and Y. B. Shen constructed the corresponding Bernstein type theorem in a general Minkowski space [4].
The theory of minimal surfaces in Euclidean space has developed into a rich branch of differential geometry. A lot of minimal surfaces have been found in Euclidean space. Minkowski space is an analogue of Euclidean space in Finsler geometry. A natural problem is to study minimal surfaces with Busemann-Hausdorff or HolmesThompson volume forms. M. Souza and K. Tenenblat first studied the minimal surfaces of rotation in RandersMinkowski spaces, and used an ODE to characterize the BH-minimal rotated surfaces in [5]. Later, the nontrivial HT-minimal rotated hypersurfaces in quadratic (α, β) Minkowski space are studied [6]. N. Cui and Y. B. Shen used another method to give minimal rotational hypersurface in quadratic Minkowski (α, β)-space [7]. However, these examples only consider the special (α, β)metrics either Randers or quadratic. Therefore, what is the case with the general (α, β)-metric?

[^0]The main purpose of this paper is to study the conoid in (α, β)-space. It includes minimal submanifolds in Finsler spaces with general (α, β)-metric ($F=\alpha \phi\left(\frac{\beta}{\alpha}\right)$) and the Causs curvature in Randers-Minkowski 3-space. We present the equations that characterize the minimal hypersurfaces in general (α, β)-Minkowski space. We prove that the conoid in Minkowski 3 -space with metric $F=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ is minimal if and only if it is a helicoid or a plane under some conditions. Finally, similar to [7], we give the Gauss curvature of conoid in Randers-Minkowski 3-space and point out that the Gauss curvature is not always nonpositive on minimal surfaces.

2. Preliminaries

Let M be an n-dimensional smooth manifold. A Finsler metric on M is a function $F: T M \rightarrow[0, \infty)$ satisfying the following properties: 1) F is smooth on $T M \backslash\{0\} ; 2$) $F(x, \lambda y)=\lambda F(x, y)$ for all $\lambda>0 ; 3)$ The induced quadratic form g is positively definite, where

$$
\begin{align*}
& g:=g_{i j}(x, y) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}, \\
& g_{i j}:=\frac{1}{2}\left[F^{2}\right]_{y^{\prime} y^{j}} . \tag{1}
\end{align*}
$$

Here and from now on, $[F]_{y^{i}},[F]_{y^{i} y^{j}}$ mean $\frac{\partial F}{\partial y^{i}}$, $\frac{\partial^{2} F}{\partial y^{i} \partial y^{j}}$, and we shall use the following convention of index ranges unless otherwise stated:

$$
1 \leq i, j, \cdots \leq n ; \quad 1 \leq \alpha, \beta, \cdots \leq m(>n) .
$$

The projection $\pi: T M \rightarrow M$ gives rise to the pullback bundle $\pi^{*} T M$ and its dual $\pi^{*} T^{*} M$, which sits over $T M \backslash\{0\}$. We shall work on $T M \backslash\{0\}$ and rigidly use only objects that are invariant under positive rescaling in y, so that one may view them as objects on the projective sphere bundle $S M$ using homogeneous coordinates.

In $\pi^{*} T^{*} M$ there is a global section $\omega=[F]_{y^{i}} \mathrm{~d} x^{i}$, called the Hilbert form, whose dual is $l=l^{i} \frac{\partial}{\partial x^{i}}$,
$l^{i}=y^{i} / F$, called the distinguished field.The volume element $\mathrm{d} V_{S M}$ of $S M$ with respect to the Riemannian metric \hat{g}, the pull-back of the Sasaki metric on $T M \backslash\{0\}$, can be expressed as

$$
\begin{equation*}
\mathrm{d} V_{S M}=\Omega \mathrm{d} \tau \wedge \mathrm{~d} x \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\Omega:=\operatorname{det}\left(\frac{g_{i j}}{F}\right), \quad \mathrm{d} x=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}, \tag{3}\\
\mathrm{~d} \tau:=\sum_{i=1}^{n}(-1)^{i-1} y^{i} \mathrm{~d} y^{1} \wedge \cdots \wedge \mathrm{~d} y^{i} \wedge \cdots \wedge \mathrm{~d} y^{n} . \tag{4}
\end{gather*}
$$

The volume form of a Finsler n-manifold (M, F) is defined by

$$
\begin{equation*}
\mathrm{d} V_{M}:=\sigma(x) \mathrm{d} x, \quad \sigma(x):=\frac{1}{c_{n-1}} \int_{S_{x} M} \Omega \mathrm{~d} \tau \tag{5}
\end{equation*}
$$

where c_{n-1} denotes the volume of the unit Euclidean $(n-1)$-sphere $S^{n-1}, S_{x} M=\left\{[y] \mid y \in T_{x} M\right\}$.

Let (M, F) and (\tilde{M}, \tilde{F}) be Finsler manifolds, and $f: M \rightarrow \tilde{M}$ be an immersion. If
$F(x, y)=\tilde{F}(f(x), \mathrm{d} f(y))$ for all $(x, y) \in T M \backslash\{0\}$, then f is called an isometric immersion. It is clear that

$$
\begin{equation*}
g_{i j}(x, y)=\tilde{g}_{\alpha \beta}(\tilde{x}, \tilde{y}) f_{i}^{\alpha} f_{j}^{\beta} \tag{6}
\end{equation*}
$$

for the isometric immersion $f:(M, F) \rightarrow(\tilde{M}, \tilde{F})$, where $\tilde{x}^{\alpha}=f^{\alpha}(x), \quad \tilde{y}^{\alpha}=f_{i}^{\alpha} y^{i}, \quad f_{i}^{\alpha}=\frac{\partial f^{\alpha}}{\partial x^{i}}$. Let $\left(\pi^{*} T M\right)^{\perp}$ be the orthogonal complement of $\pi^{*} T M$ in $\pi^{*}\left(f^{-1} T \tilde{M}\right)$ with respect to \tilde{g}, and set

$$
\begin{align*}
& h^{\alpha}=f_{i j}^{\alpha} y^{i} y^{j}-f_{k}^{\alpha} G^{k}+\tilde{G}^{\alpha} \\
& h_{\alpha}=\tilde{g}_{\alpha \beta} h^{\beta}, \quad h=\frac{h^{\alpha}}{F^{2}} \frac{\partial}{\partial \tilde{x}^{\alpha}} \tag{7}
\end{align*}
$$

where $f_{i j}^{\alpha}=\frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}, G^{k}$ and \tilde{G}^{α} are the geodesic coefficients of F and \tilde{F} respectively. We can see that $h \in\left(\pi^{*} T M\right)^{\perp}$ (see (1.14) in [3]), which is called the
normal curvature. Recall that for an isometric immersion $f:(M, F) \rightarrow(\tilde{M}, \tilde{F})$, we have (see formulae (2.14) and (3.14) of Chapter V in [8])

$$
\begin{equation*}
G^{k}=\phi_{\beta}^{k}\left(f_{i j}^{\beta} y^{i} y^{j}+\tilde{G}^{\beta}\right) \tag{8}
\end{equation*}
$$

where $\phi_{\beta}^{k}=f_{l}^{\alpha} g^{l k} \tilde{g}_{\alpha \beta}$. From (2.7), it follows that

$$
\begin{equation*}
h^{\beta}=p_{\alpha}^{\perp \beta}\left(f_{i j}^{\alpha} y^{i} y^{j}+\tilde{G}^{\alpha}\right) \tag{9}
\end{equation*}
$$

where $p_{\alpha}^{\perp \beta}:=\delta_{\alpha}^{\beta}-f_{i}^{\beta} \phi_{\alpha}^{i}$. Set

$$
\begin{equation*}
\mu=\frac{1}{c_{n-1} \sigma}\left(\int_{S_{x^{M}}} \frac{h_{\alpha}}{F^{2}} \Omega \mathrm{~d} \tau\right) \mathrm{d} \tilde{x}^{\alpha} \tag{10}
\end{equation*}
$$

which is called the mean curvature form of f. An isometric immersion $f:(M, F) \rightarrow(\tilde{M}, \tilde{F})$ is called a minimal immersion if any compact domain of M is the critical point of its volume functional with respect to any variation vector field. Then f is minimal if and only if $\mu=0$.

3. Minimal Hypersurfaces of (α, β)-Spaces

Here and from now on, we consider general (α, β)-metric. Let $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$, where $\phi(s)$ is a positive C^{∞} function on $\left(-b_{0}, b_{0}\right)$,

$$
\begin{aligned}
& \alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}, \quad \beta=b_{i}(x) y^{i} \\
& \|\beta\|_{\alpha}=\sqrt{a^{i j} b_{i} b_{j}}=b\left(0<b<b_{0}\right)
\end{aligned}
$$

If $\phi(s)=1+s$, then F is a Randers metric. If α is an Euclidean metric and β is parallel with respect to α, F is a locally Minkowski metric and (M, F) is called an (α, β)-Minkowski metric. By [9], F is a Finsler metric if and only if $\phi(s)$ satisfies

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad|s| \leq b<b_{0} \tag{11}
\end{equation*}
$$

Let

$$
\begin{equation*}
A=\operatorname{det}\left(a_{i j}\right), \quad g=\operatorname{det}\left(g_{i j}\right), \quad \Omega=\frac{g}{F^{n}} \tag{12}
\end{equation*}
$$

It have been proved ([9]) that

$$
\begin{equation*}
g=\phi(s)^{n} H(s) A \tag{13}
\end{equation*}
$$

where

$$
H(s)=\phi\left(\phi-s \phi^{\prime}\right)^{n-2}\left[\phi-s \phi^{\prime}+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right]
$$

In the following part, we will discuss minimal hypersurfaces in Minkowski space with (α, β)-metric. Let $f:(M, F) \rightarrow(\tilde{M}, \tilde{F})$ be an isometric immersion,
$\tilde{F}=\tilde{\alpha} \phi(s)=\tilde{\alpha} \phi\left(\frac{\tilde{\beta}}{\tilde{\alpha}}\right)$, where

$$
\tilde{\alpha}=\sqrt{\tilde{a}_{\alpha \beta} \tilde{y}^{\alpha} \tilde{y}^{\beta}}, \quad \tilde{\beta}=\tilde{b}_{\alpha} \tilde{y}^{\alpha}
$$

Since f is an isometric immersion, we get

$$
F=f^{*} \tilde{F}=\alpha \phi\left(\frac{\beta}{\alpha}\right)
$$

where

$$
\begin{aligned}
& \alpha=\sqrt{a_{i j} y^{i} y^{j}}, \quad a_{i j}=\tilde{a}_{\alpha \beta} f_{i}^{\alpha} f_{j}^{\beta} \\
& \beta=b_{i} y^{i}, \quad b_{i}=\tilde{b}_{\alpha} f_{i}^{\alpha}
\end{aligned}
$$

Note that (M, F) is a hypersurface of (\tilde{M}, \tilde{F}), let $n=n^{\alpha} \tilde{e}_{\alpha}$ be the unit normal vector field of $f(M)$ with respect to $\tilde{\alpha}$ and $n=\tilde{n}^{\alpha} \tilde{e}_{\alpha}$ be the unit normal vector field of M with respect to \tilde{g}, respectively. That is

$$
\begin{gathered}
\sum_{\alpha} n^{\alpha} f_{i}^{\alpha}=0, \quad \tilde{g}_{\alpha \beta} \tilde{n}^{\alpha} f_{i}^{\beta}=0, \\
\tilde{\alpha}(n, n)=\tilde{a}_{\alpha \beta} n^{\alpha} n^{\beta}=1, \quad \tilde{g}(n, n)=\tilde{g}_{\alpha \beta} \tilde{n}^{\alpha} \tilde{n}^{\beta}=1 .
\end{gathered}
$$

There exist a function $\lambda(x, y)$ on $S M$, such that

$$
\tilde{g}_{\alpha \beta} \tilde{n}^{\beta}=\lambda \tilde{a}_{\alpha \beta} n^{\beta}
$$

where $\lambda=\tilde{g}(n, n)=(\tilde{a}(n, n))^{-1}$. Then

$$
\begin{equation*}
\tilde{n}^{\alpha}=\lambda \tilde{g}^{\alpha \beta} \tilde{a}_{\beta \gamma} n^{\gamma} \tag{14}
\end{equation*}
$$

From above, we know that f is minimal if and only if

$$
\begin{equation*}
n^{\alpha} \int_{S_{x} M} \frac{h_{\alpha}}{F^{2}} \Omega \mathrm{~d} \tau=0 \tag{15}
\end{equation*}
$$

From (3.3) and (3.4), and in a similar way as in [5], we can get

$$
\begin{aligned}
h_{\alpha} & =\tilde{g}_{\alpha \gamma} h^{\gamma}=\tilde{g}_{\alpha \gamma}\left[\left(f_{i j}^{\beta} y^{i} y^{j}+\tilde{G}^{\beta}\right) \tilde{g}_{\beta \delta} \tilde{n}^{\delta}\right] \tilde{n}^{\gamma} \\
& =\lambda^{2}\left[\left(f_{i j}^{\beta} y^{i} y^{j}+\tilde{G}^{\beta}\right) \tilde{a}_{\beta \delta} n^{\delta}\right] \tilde{a}_{\alpha \gamma} n^{\gamma} . \\
g & =\frac{A}{\lambda^{2} \tilde{A}} \tilde{g}=\frac{A}{\lambda^{2} \tilde{A}} \phi^{n+1} \tilde{H} \tilde{A}=\frac{\phi^{n+1} \tilde{H} A}{\lambda^{2}} .
\end{aligned}
$$

Then (3.5) is equivalent to

$$
\begin{align*}
& n^{\alpha} a_{\alpha \beta} \int_{S_{M} M} \frac{\left(\phi-s \phi^{\prime}\right)^{n-1}\left[\phi-s \phi^{\prime}+\left(\tilde{b}^{2}-s^{2}\right) \phi^{\prime \prime}\right]}{\tilde{\alpha}^{n+2}} \tag{16}\\
& \cdot\left(f_{i j}^{\beta} y^{i} y^{j}+\tilde{G}^{\beta}\right) \mathrm{d} \tau=0 .
\end{align*}
$$

If $\tilde{F}=\tilde{\alpha} \phi\left(\frac{\tilde{\beta}}{\tilde{\alpha}}\right)$ is an (α, β)-Minkowski metric, then $\tilde{G}^{\beta}=0$. In Minkowski- (α, β) space, f is minimal if and only if

$$
\begin{equation*}
f_{i j}^{\beta} n^{\beta} \int_{S_{x} M} \frac{y^{i} y^{j}\left(\phi-s \phi^{\prime}\right)^{n-1}\left[\phi-s \phi^{\prime}+\left(\tilde{b}^{2}-s^{2}\right) \phi^{\prime \prime}\right]}{\tilde{\alpha}^{n+2}} \mathrm{~d} \tau=0 \tag{17}
\end{equation*}
$$

Theorem 1 Let (M, F) be a hypersurface of (\tilde{M}, \tilde{F}), and $\tilde{F}=\tilde{\alpha} \phi\left(\frac{\tilde{\beta}}{\tilde{\alpha}}\right)$ be an (α, β)-Minkowski metric. Then $f:(M, F) \rightarrow(\tilde{M}, \tilde{F})$ is a minimal immersion if and only if

$$
\begin{align*}
& f_{i j}^{\beta} n^{\beta} \int_{S_{x}} y^{i} y^{j}\left(\phi(\tilde{\beta})-\tilde{\beta} \phi^{\prime}(\tilde{\beta})\right)^{n-1} \tag{18}\\
& \cdot\left[\phi(\tilde{\beta})-\tilde{\beta} \phi^{\prime}(\tilde{\beta})+\left(\tilde{b}^{2}-\tilde{\beta}^{2}\right) \phi^{\prime \prime}(\tilde{\beta})\right] \mathrm{d} \tau=0
\end{align*}
$$

where S_{x} is a sphere such that $\alpha=1$.
Now, we consider the conoid in 3-dimensional (α, β) Minkowski space paralleling to x^{3}-axis. Set $\tilde{F}=\tilde{\alpha} \phi\left(\frac{\tilde{\beta}}{\tilde{\alpha}}\right)$, where

$$
\tilde{\alpha}=\sqrt{\left(\tilde{y}^{1}\right)^{2}+\left(\tilde{y}^{2}\right)^{2}+\left(\tilde{y}^{3}\right)^{2}}, \quad \tilde{\beta}=\tilde{b} \tilde{y}^{3}
$$

and \tilde{b} is a constant. Let $f=(u \cos v, u \sin v, h(v))$, where $h(v)$ is a unknown function. Then

$$
\begin{gathered}
\left(f_{i}^{\alpha}\right)_{2 \times 3}=\left(\begin{array}{ccc}
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & h^{\prime}
\end{array}\right) \\
\left(\begin{array}{lll}
\tilde{y}^{1} & \tilde{y}^{2} & \tilde{y}^{3}
\end{array}\right)=\left(\begin{array}{ll}
y^{1} & y^{2}
\end{array}\right)\left(\begin{array}{ccc}
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & h^{\prime}
\end{array}\right) \\
=\left(\begin{array}{lll}
y^{1} \cos v-u y^{2} \sin v & y^{1} \sin v+u y^{2} \cos v & y^{2} h^{\prime}
\end{array}\right) .
\end{gathered}
$$

Assume that $y^{1}=\cos \theta, y^{2}=\sqrt{\frac{1}{u^{2}+\left(h^{\prime}\right)^{2}}} \sin \theta$, $\theta \in[0,2 \pi]$, then

$$
\begin{aligned}
\tilde{\alpha} & =\sqrt{\left(\tilde{y}^{1}\right)^{2}+\left(\tilde{y}^{2}\right)^{2}+\left(\tilde{y}^{3}\right)^{2}} \\
& =\sqrt{\left(y^{1}\right)^{2}+\left(u^{2}+\left(h^{\prime}\right)^{2}\right)\left(y^{2}\right)^{2}}=1
\end{aligned}
$$

Note that the normal vector of the surface is

$$
n=\left(\frac{-h^{\prime} \sin v}{\sqrt{\left(h^{\prime}\right)^{2}+u^{2}}}, \frac{h^{\prime} \cos v}{\sqrt{\left(h^{\prime}\right)^{2}+u^{2}}},-\frac{u}{\sqrt{\left(h^{\prime}\right)^{2}+u^{2}}}\right)
$$

and

$$
\begin{aligned}
& \left(f_{11}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \\
& \left(f_{12}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
f_{21}^{\alpha}
\end{array}\right)_{1 \times 3}=\left(\begin{array}{lll}
-\sin v & \cos v & 0
\end{array}\right), \\
& \left(f_{22}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
-u \cos v & -u \sin v & h^{\prime \prime}
\end{array}\right)
\end{aligned}
$$

Set

$$
\begin{align*}
W^{i j}= & \int_{S_{x}} y^{i} y^{j}\left(\phi(\tilde{\beta})-\tilde{\beta} \phi^{\prime}(\tilde{\beta})\right) \\
& \cdot\left[\phi(\tilde{\beta})-\beta \phi^{\prime}(\tilde{\beta})+\left(\tilde{b}^{2}-\tilde{\beta}^{2}\right) \phi^{\prime \prime}(\tilde{\beta})\right] \mathrm{d} \tau \tag{19}
\end{align*}
$$

Then (3.8) is equivalent to

$$
\begin{equation*}
\sum_{\alpha=1}^{3}\left(2 f_{12}^{\alpha} n^{\alpha} W^{12}+f_{22}^{\alpha} n^{\alpha} W^{22}\right)=0 \tag{20}
\end{equation*}
$$

Since S_{x} is symmetric with respect to y^{1} and $\tilde{\beta}$ is a function only depending on y^{2},

$$
\begin{aligned}
W^{12}= & \int_{S_{x}} y^{1} y^{2}\left(\phi(\tilde{\beta})-\tilde{\beta} \phi^{\prime}(\tilde{\beta})\right) \\
& \cdot\left[\phi(\tilde{\beta})-\tilde{\beta} \phi^{\prime}(\tilde{\beta})+\left(\tilde{b}^{2}-\tilde{\beta}^{2}\right) \phi^{\prime \prime}(\tilde{\beta})\right] \mathrm{d} \tau=0
\end{aligned}
$$

Therefore, (3.10) becomes to

$$
u h^{\prime \prime} W^{22}=0, \forall u
$$

However, $W^{22}=0$ is impossible. Recall that

$$
W^{22}=\int_{S_{x}}\left(y^{2}\right)^{2} \frac{\lambda^{2} g}{\phi^{n+2}(s)} \mathrm{d} \tau, \quad \phi(s)>0
$$

and y^{2} is not identically vanishing, we can obtain $W^{22}>0$. Then $h^{\prime \prime}=0$,

$$
h=c v+d
$$

where c, d are arbitrary constants.
Theorem 2 Let $\left(V^{3}, \tilde{F}\right)$ be an (α, β)-Minkowski space, $\tilde{F}=\tilde{\alpha} \phi\left(\frac{\tilde{\beta}}{\tilde{\alpha}}\right), \tilde{\beta}=\tilde{b} \tilde{y}^{3}$, and
$f=(u \cos v, u \sin v, h(v))$ be a conoid. Then fis minimal if and only iff is a helicoid or a plane.

Remark 3.1 From theorem 2, we can affirm that a helicoid is minimal not only in Euclidean space but also in (α, β) Minkowski space, where $\tilde{\beta}=\tilde{b} \tilde{y}^{3}$. This is an interesting result for minimal surfaces.

But whether the result hold if the condition $\tilde{\beta}=\tilde{b} \tilde{y}^{3}$ is not satisfied? Now we consider the following condition:

$$
\begin{aligned}
\tilde{\beta} & =\tilde{b}_{1} \tilde{y}^{1}+\tilde{b}_{2} \tilde{y}^{2}+\tilde{b}_{3} \tilde{y}^{3} \\
& =\left(\tilde{b}_{1} \cos v+\tilde{b}_{2} \sin v\right) y^{1}+\left(\tilde{b}_{2} \cos v-\tilde{b}_{1} \sin v\right) y^{2}
\end{aligned}
$$

where $\tilde{b}_{1}, \tilde{b}_{2}, \tilde{b}_{3}$ are not all zeros. To simplify the computation, we only discuss quadratic (α, β)-metric:
$F=\alpha+k \frac{\beta^{2}}{\alpha}$. Set $B_{1}=\tilde{b}_{1} \cos v+\tilde{b}_{2} \sin v$,
$B_{2}=\tilde{b}_{2} \cos v-\tilde{b}_{1} \sin v$. Then (3.8) becomes an equation respect to u :

$$
\begin{align*}
& C_{5}(v) u^{5}+C_{4}(v) u^{4}+C_{3}(v) u^{3} \\
& +C_{2}(v) u^{2}+C_{1}(v) u+C_{0}(v)=0 \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{5}=\frac{15}{8} B_{2}^{4} h^{\prime \prime} \\
& C_{4}=\frac{15}{2} B_{1} \tilde{b}_{3}\left(\tilde{b}_{3}^{2}\left(h^{\prime}\right)^{2}+B_{2}^{2}\right) h^{\prime} h^{\prime \prime}
\end{aligned}
$$

$$
\begin{equation*}
R i c=\overline{R i c}+\frac{1}{4 F^{2}}\left(3 r_{00}^{2}-2 F r_{00 \mid 0}\right) \tag{22}
\end{equation*}
$$

where $\overline{R i c}$ denotes the Ricci curvature tensor of the induced Riemannian metric $\alpha=f^{*} \tilde{\alpha}, r_{00}=b_{i \mid j} y^{i} y^{j}$ and $b_{i \mid j}$ denote the coefficients of the covarient derivatives of β with respect to α. Then the Gauss curvature of the surface is given by

$$
\begin{align*}
K(x, y) & =\frac{\operatorname{Ric}(y)}{F^{2}} \tag{23}\\
& =\bar{K}+\frac{1}{4 F^{4}}\left(3 r_{00}^{2}-2 F r_{00 \mid 0}\right)
\end{align*}
$$

where $x=f(u, v), \quad \bar{K}$ denotes the Gauss curvature with respect to α.

Denote $z_{i}^{\alpha}=\frac{\partial f^{\alpha}}{\partial \zeta^{i}}$ and $z_{i j}^{\alpha}=\frac{\partial^{2} f^{\alpha}}{\partial \zeta^{i} \partial \zeta^{j}}$. Then

$$
\begin{aligned}
& \left(z_{i}^{\alpha}\right)_{2 \times 3}=\left(\begin{array}{ccc}
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & h^{\prime}(v)
\end{array}\right), \\
& \left(z_{11}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right), \\
& \left(z_{12}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
z_{21}^{\alpha}
\end{array}\right)_{1 \times 3}=\left(\begin{array}{lll}
-\sin v & \cos v & 0
\end{array}\right), \\
& \left(z_{22}^{\alpha}\right)_{1 \times 3}=\left(\begin{array}{lll}
-u \cos v & -u \sin v & h^{\prime \prime}
\end{array}\right) .
\end{aligned}
$$

Noting that the Gauss curvature is computed in Euclidean space as follows:

$$
\bar{K}=\frac{L N-M^{2}}{E G-F^{2}},
$$

where

$$
\begin{array}{cc}
L=z_{11}^{\alpha} \cdot n^{\alpha}, & M=z_{12}^{\alpha} \cdot n^{\alpha}, \\
E=z_{1}^{\alpha} \cdot z_{1}^{\alpha}, & F=z_{22}^{\alpha} \cdot n_{1}^{\alpha} \cdot z_{2}^{\alpha}, \\
& G=z_{2}^{\alpha} \cdot z_{2}^{\alpha} .
\end{array}
$$

By direct computation, we can obtain

$$
\begin{equation*}
\bar{K}=-\frac{h^{\prime 2}}{\left(u^{2}+h^{\prime 2}\right)^{2}} . \tag{24}
\end{equation*}
$$

Meanwhile, the coefficients of $\alpha=f^{*} \tilde{\alpha}$ are given by

$$
\begin{gathered}
\left(a_{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & u^{2}+\left(h^{\prime}\right)^{2}
\end{array}\right), \\
\left(a^{k l}\right)=\left(a_{k l}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{u^{2}+\left(h^{\prime}\right)^{2}}
\end{array}\right),
\end{gathered}
$$

where $a_{i j}=z_{i}^{\alpha} z_{j}^{\beta} \delta_{\alpha \beta}$. It is easy to verify that $\bar{\Gamma}_{i j}^{k}=a^{k l} z_{l}^{\alpha} z_{i j}^{\beta} \delta_{\alpha \beta}$. By a direct computation, we have

$$
\bar{\Gamma}_{i j}^{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & -u
\end{array}\right),
$$

$$
\bar{\Gamma}_{i j}^{2}=\left(\begin{array}{cc}
0 & \frac{u}{u^{2}+\left(h^{\prime}\right)^{2}} \\
\frac{u}{u^{2}+\left(h^{\prime}\right)^{2}} & \frac{h^{\prime} h^{\prime \prime}}{u^{2}+\left(h^{\prime}\right)^{2}}
\end{array}\right) \text {. }
$$

Since $b_{i}=\tilde{b} z_{i}^{3}$,

$$
b_{i \mid j}=b_{i, \zeta^{j}}-b_{s} \bar{\Gamma}_{i j}^{s}=\tilde{b}\left(\begin{array}{cc}
0 & -\frac{h^{\prime} u}{u^{2}+h^{\prime 2}} \\
-\frac{u}{u^{2}+h^{\prime 2}} & h^{\prime \prime}-\frac{h^{\prime} h^{\prime \prime}}{u^{2}+h^{\prime 2}}
\end{array}\right) \text {. }
$$

From $b_{i|j| k}=b_{i \mid j, \zeta^{k}}-b_{i \mid s} \bar{\Gamma}_{j k}^{s}-b_{s \mid j} \bar{\Gamma}_{i k}^{s}$, we have

$$
\begin{aligned}
& b_{1| | \mid 2}=\frac{2 \tilde{b} u^{2} h^{\prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \\
& b_{2| | \mid 1}=b_{1|2| 1}=\frac{\tilde{b} u^{2} h^{\prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \\
& b_{1|2| 2}=b_{2| | \mid 2}=\frac{\tilde{b} u h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}\left(h^{\prime 2}-u^{2}\right), \\
& b_{2|2| 1}=-\frac{2 \tilde{b} u^{3} h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}} \\
& b_{2|2| 2}=-\frac{2 \tilde{b} h^{\prime} u^{2}}{u^{2}+h^{\prime 2}}\left(\frac{1}{u^{2}+h^{\prime 2}}+h^{\prime \prime 2}\right) .
\end{aligned}
$$

Besides,

$$
\begin{aligned}
r_{00}= & b_{i \mid j} y^{i} y^{j}=-\frac{2 \tilde{b} u h^{\prime}}{u^{2}+h^{\prime 2}} y^{1} y^{2}-\frac{u^{2} h^{\prime \prime}}{u^{2}+h^{\prime 2}}\left(y^{2}\right)^{2} \\
r_{00 \mid 0}= & b_{i|j| k} y^{i} y^{j} y^{k}=\frac{4 \tilde{b} u^{2} h^{\prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}\left(y^{1}\right)^{2} y^{2} \\
& +\frac{2 \tilde{b} u h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}\left(h^{\prime 2}-2 u^{2}\right) y^{1}\left(y^{2}\right)^{2} \\
& -\frac{2 \tilde{b} h^{\prime} u^{2}}{u^{2}+h^{\prime 2}}\left(\frac{1}{u^{2}+h^{\prime 2}}+h^{\prime \prime 2}\right)\left(y^{2}\right)^{3}
\end{aligned}
$$

Then, from (4.2) and (4.3), we obtain the following theorem.

Theorem 4 Let $\left(V^{3}, \tilde{F}\right)$ be an Randers-Minkowski space with $\tilde{\beta}=\tilde{b} \tilde{y}^{3}$, the Gauss curvature of the conoid $f(u, v)=(u \cos v, u \sin v, h(v))$ at $x=f(u, v)$ in direction of $y=\xi e_{1}+\eta e_{2}$ is given by

$$
\begin{aligned}
K(x, y)= & -\Gamma^{0}+\frac{1}{4 F^{4}}\left[12 \tilde{b}^{2} \Gamma^{1} \xi^{2} \eta^{2}-8 \tilde{b} F \Gamma^{2} \xi^{2} \eta\right. \\
& \left.+12 \tilde{b} \Gamma^{3} \xi \eta^{3}-4 \tilde{b} \Gamma^{4} \xi \eta^{2}+4 \tilde{b} F \Gamma^{5} \eta^{3}+3 \Gamma^{6} \eta^{4}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \Gamma^{0}=\frac{h^{\prime 2}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \quad \Gamma^{1}=\frac{u^{2} h^{\prime 2}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \quad \Gamma^{2}=\frac{u^{2} h^{\prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \\
& \Gamma^{3}=\frac{u^{3} h^{\prime} h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}, \quad \Gamma^{4}=\frac{u h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}}\left(h^{\prime 2}-2 u^{2}\right), \\
& \Gamma^{5}=\frac{u^{2} h^{\prime}}{u^{2}+h^{\prime 2}}\left(\frac{1}{u^{2}+h^{\prime 2}}+h^{\prime \prime 2}\right), \quad \Gamma^{6}=\frac{u^{4} h^{\prime \prime}}{\left(u^{2}+h^{\prime 2}\right)^{2}} .
\end{aligned}
$$

Note that a helicoid is minimal if and only if it is a conoid with respect to (α, β)-metrics (where $\tilde{\beta}=\tilde{b} y^{3}$). Let $h(v)=c v+d \quad(c$ is a constant), then the Gauss curvature of this surface is given by

$$
\begin{equation*}
K(x, y)=-\Pi^{0}+\frac{1}{F^{4}}\left[3 \tilde{b}^{2} \Pi^{1} \xi^{2} \eta^{2}-\tilde{b} F \Pi^{2} \eta\left(2 \xi^{2}+\eta^{2}\right)\right] \tag{25}
\end{equation*}
$$

where

$$
\Pi^{0}=\frac{c^{2}}{\left(u^{2}+c^{2}\right)^{2}}, \quad \Pi^{1}=\frac{c^{2} u^{2}}{\left(u^{2}+c^{2}\right)^{2}}, \quad \Pi^{2}=\frac{c u^{2}}{\left(u^{2}+c^{2}\right)^{2}} .
$$

However, for a given point $x=f(u, v)$, in which directions of $T_{x} S, K(x, y)>0, K(x, y)=0$, $K(x, y)<0$?

1) If $\stackrel{\eta}{=} 0$, then $K(x, y)<0$ for any $c \neq 0$;
2) If $\stackrel{\frac{\xi}{=}}{=} 0$, Since

$$
F=\alpha+\beta=\sqrt{a_{i j} y^{i} y^{j}}+b_{i} y^{i}=\left(\sqrt{u^{2}+c^{2}}|\eta|+c \tilde{b} \eta\right)
$$

Equation (4.4) becomes

$$
K(x, y)=-\frac{1}{\left(u^{2}+c^{2}\right)^{2}}\left[c^{2}+\frac{2 c \tilde{b} u^{2}}{\left(\sqrt{u^{2}+c^{2}}|\eta|+c \tilde{b} \eta\right)^{3}} \eta^{3}\right]
$$

If $c>0$, let $\eta<0$, then

$$
K(x, y)=-\frac{1}{\left(u^{2}+c^{2}\right)^{2}}\left[c^{2}+\frac{2 c \tilde{b} u^{2}}{\left(c \tilde{b}-\sqrt{u^{2}+c^{2}}\right)^{3}}\right]
$$

we can also make $c^{2}+\frac{2 c \tilde{b} u^{2}}{\left(c \tilde{b}-\sqrt{u^{2}+c^{2}}\right)^{3}}<0$, then
$K(x, y)>0$; Otherwise, let $\eta>0$, then

$$
K(x, y)=-\frac{1}{\left(u^{2}+c^{2}\right)^{2}}\left[c^{2}+\frac{2 c \tilde{b} u^{2}}{\left(c \tilde{b}+\sqrt{u^{2}+c^{2}}\right)^{3}}\right]
$$

we can make $c^{2}+\frac{2 c \tilde{b} u^{2}}{\left(c \tilde{b}+\sqrt{u^{2}+c^{2}}\right)^{3}}<0$, then
$K(x, y)>0$. In sum, the Gauss curvature is not nonpositive anywhere.

REFERENCES

[1] Z. Shen, "On Finsler Geometry of Submanifolds," Mathematische Annalen, Vol. 311, No. 3, 1998, pp. 549576. doi:10.1007/s002080050200
[2] M. Souza, J. Spruck and K. Tenenblat, "A Bernstein Type theorem on a Randers Space," Mathematische Annalen, Vol. 329, No. 2, 2004, pp. 291-305. doi:10.1007/s00208-003-0500-3
[3] Q. He and Y. B. Shen, "On the Mean Curvature of Finsler Submanifolds," Chinese Journal of Contemporary Mathematics, Vol. 27C, 2006, pp. 431-442.
[4] Q. He and Y. B. Shen, "On Bernstein Type Theorems in Finsler Spaces with the Volume form Induced from the Projective Sphere Bundle," Proceedings of the American Mathematical Society, Vol. 134, No. 3, 2006, pp. 871-880. doi:10.1090/S0002-9939-05-08017-2
[5] M. Souza and K. Tenenblat, "Minimal Surfaces of Rotation in a Finsler Space with a Randers Metric," Mathematische Annalen, Vol. 325, No. 4, 2003, pp. 625-642. doi:10.1007/s00208-002-0392-7
[6] Q. He and W. Yang, "The Volume Forms and Minimal Surfaces of Rotation in Finsler Spaces with (α, β)-Metrics," International Journal of Mathematics, Vol. 21, No. 11, 2010, pp. 1401-1411. doi:10.1142/S0129167X10006483
[7] N. Cui and Y. B. Shen, "Minimal Rotated Hypersurface in Minkowski (α, β)-Space," Geometriae Dedicata, Vol. 151, No. 1, 2010, pp. 27-39. doi:10.1007/s10711-010-9517-4
[8] H. Rund, "The Differential Geometry of Finsler Spaces," Springer-Verlag, Berlin, 1959.
[9] Z. Shen, "Landsberg Curvature, S-curvature and Riemann Curvature," In: Z. Shen, Ed., A Sampler of Finsler Geometry, MSRI Series, Cambridge University Press, Cambridge, 2004.
[10] Z. Shen, "Differtial Geometry of Spray and Finsler Spaces," Kluwer Academic Publishers, Berlin, 2001.

[^0]: *Project supported by NNSFC (no. 10971239, no. 10771160) and the Natural Science Foundation of Shanghai (no. 09ZR1433000).

