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ABSTRACT

In this paper we consider Weinstein operator. We define and study the continuous Gabor transform associated with this
operator. We prove a Plancherel formula, an inversion formula and a weak uncertainty principle for it. As applications,
we obtain analogous of Heisenberg’s inequality for the generalized continuous Gabor transform. At the end we give the
practical real inversion formula for the generalized continuous Gabor transform.
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1. Introduction

We consider the Weinstein operator defined on
R® x]0,00[ by:

d+l A2
6_+2/3+1 0 ,,B>—1=Ad+/3ﬂ
Xd+1 aXdH 2

Ay =

G 8Xi2

where A, is the Laplacian for the d-first variables and
L, the Bessel operator for the last variable, given by

o’ L 2p+1 0 1

= > ——
== B :
aXdH Xd+1 aXd+1 2

For d > 2, the operator A, is the Laplace-Beltrami
operator on the Riemanian space R®x]0,00[ equipped
with the metric

ds? = x2A/e-n EIildxi2
i=1

(cf. [1]).

The Weinstein operator A, has several applications
in pure and applied Mathematics especially in Fluid Me-
chanics (cf. [3]).

The harmonic analysis associated with the Weinstein
operator is studied by Ben Nahia and Ben Salem (cf.
[1,2]). In particular the authors have introduced and
studied the generalized Fourier transform associated with
the Weinstein operator. This transform is called the
Weinstein transform. In this work we are interested to the
Gabor transform associated with Weinstein operator.

Time-Frequency analysis plays a central role in signal
analysis. Since years ago, it has been recognized that the
global Fourier transform of a long time signal has a little
practical value to method is preferred to the classical
Fourier method, whenever the time dependence of the
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analyzed signal is of the same importance as its fre-
quency dependence.

However, there exist strict limits to the maximal Time-
Frequency resolution of this transform, similar to Heisen-
berg’s uncertainty principles in the Fourier analysis.

In fact, Dennis Gabor [4] was the first to introduce the
Gabor transform, in which he uses translations and modu-
lations of a single Gaussian to represent one dimensional
signal. Other names for this transform used in literature,
are: short time Fourier transform, Weyl-Heisenberg trans-
form, windowed Fourier transform.

In this paper, we are interested a generalized Gabor
transform associated for the Weinstein transform. More
precisely, we give here general reconstruction formulas
and we give many applications. In the classical case the
Gabor transform is very fundamental and has many ap-
plications to Mathematical Sciences.

The paper is organized as follows. In Section 2, we re-
call the main results about the harmonic analysis related to
the Weinstein operator. In Section 3, we introduce the
analogue of the continuous Gabor transform associated
with the Weinstein operator and we give some harmonic
properties for it (Plancheral formula, Li, inverse formula,
weak uncertainty for it). The Section 4 is devoted to prove
the analogous of Heisenberg’s inequality for the general-
ized continuous Gabor transform. In Section 5 using the
kernel reproducing theory given by Saitoh [5] we study the
problem of approximative concentration. In the last section
we give a practical real inversion formulas and extremal
function for the Weinstein-Gabor transform.

2. Preliminaries

In order to confirm the basic and standard notations we

APM



204 H. MEJJAOLI, A. O. A. SALEM

briefly overview the Weinstein operator and related har-
monic analysis. Main references are [1,2].
In the following we denote by

R =R x[0,o] .

Rid+2 = Ri-ﬂ XRiH )

X=Xy Xg s Xy ) = (X, X,y ) e RS

B! (0,n):= {X eR{™ x| < n} .

C. (Rd”) the space of continuous functions on R®*',
even with respect to the last variable.

c’ (Rd“) the space of functions of class C° on
R®*", even with respect to the last variable.

£, (Rd”) the space of C” -functions on R®*' even
with respect to the last variable.

S, (Rd“) the Schwartz space of rapidly decreasing
functions on R"*' | even with respect to the last variable.

D, (Rd“) the space of C” -functions on R**' which
are of compact support, even with respect to the last

variable.
We consider the Weinstein operator A, defined by

Vx=(X, %y, ) € R x]0,00 ,
Apf )= A T (XX )+ Ly T (XX ),

fec(m), W

where A, is the Laplace operator on R‘, and L,
the Bessel operator on ]O,oo[ given by

2
d N 24+1 d 1

= , B>——. 2
dxgﬂ Xd+1 dxd+1 ﬁ 2 ()

SXd+1

ﬂvxd+l :

The Weinstein kernel A is given by

A(%2) =", (XgnZen)s
d+l | edel @)
forall(x,z)eR T xC,

where j,(Xy,,24,,) is the normalized Bessel function.
The Weinstein kernel satisfies the following properties:
1) Forall z,teC®", we have

A(z,t)=A(t,z); A(z,0)=1and
A(Az,t)=A(z,4t), forall A e C.

2) For all veN"", xeR’" and zeC*', we
have

“)

M

|D;A(x,z)| <|x
T
0z --- 07,8

exp ([ fim 2

), )
where D) = and |V|=vl+---+vd“. In

particular

vyeR, 7 f (y)_—r(ﬂﬂ)1

_ﬁr(mz
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|A(x,y)| <1, forall x,y e R} (6)

We denote by LZ(]RT') the space of measurable
functions on R!"  such that

[ esoy = (e

If ||L3/3(R3+]) = essxz;g)+1 | f (X)| <o,

1
()" dy ()] <ensif 1< p <,

where dgp, is the measure on R®*" given by

24+1
Xd +1 dx

(211)% 2T (B+1)

du, (X', X4 ) =

The Weinstein transform is given for f in L} (R‘i“)
by
A (W[t 00
for all y e RY*.

Some basic properties of this transform are the fol-
lowing:
: 1 d+1
D Forfin L, (]R+ ) ,

[ CEllp ey <Ny oy ®)
2) For fin S*(]Rd“) we have
Fa (85 1)) == 7 (F)(y), for all y e RE. (9)
3) For all fin L, (RI"), if 7 (f) belongs to
L, (Ri“ ) , then
f(y)= RTIJ{N(f)(x)A(x,y)dyﬂ(x),a.e. (10
4) For feS*(Rd”),ifwe define
Fa (D)) =R, (1)(-y),
then
FoFy = FyFy =1d. (1

Proposition 1. 1) The Weinstein transform %, is a
topological isomorphism from S, (R**') onto itself and
forallfin S, (R*"),

J.Ri“ f (X)|2 dpy (X) = J-Rgﬂ Fu ( f )(f)r duy (f) (12)

2) In particular, the Weinstein transform f — 7, ( f)
can be uniquely extended to an isometric isomorphism
from L}, (]R‘i”) onto itself.

The generalized translation operator z,, x € R’", as-
sociated with the operator A, is defined by

]J':f (x’+ YA X+ Y+ 2% Yo cos&)(sin 0)” do
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where f eC, (Rd“).

By using the Weinstein kernel, we can also define a
generalized translation. For a function f e L;(Ri“)
and yeR!" the generalized translation r,f is de-
fined by the following relation:

Fa (7, 1) () = A (% ¥) Fy (F)(x). (13)

For example, for t> 0, we see that

e[ +1yI?

7, (e"”‘sz )(x) =e (b )A(—i2ty,x). (14)
By using the generalized translation, we define the

generalized convolution product f*,g of functions

f.gel, (Ri“) as follows:

f*ﬁ g( ) de+1Txf( y'ayd+1)g(y)dﬂﬂ(y). (15)

This convolution is commutative and associative and
satisfies the following propositions:

Proposition 2. 1) For all f,gel (}Rd”), fx,q
belongs to L, (R¢*") and

Fau(f#9)= % ()% (9). (16)
1 1 1

2) Let 1<p,q,r<o such that —+———=1. If
p g r

fel (Ri”) and gely (Ri“) , then
fx,gely (R‘i”) and

"f *ﬂ g"uﬂ(Rgﬂ) < "f"Lg(Ri”) g"l_%(Ri“)' (17)

Proposition 3. Let f,g e L}, (R$™). Then
f+,gel} (RS if and only if Z, ()%, (g) be-
longsto L, (R{™), and in this case we have
Fu(f259)=F ()R (9)-

An immediate consequence of Proposition 3 and the
Plancherel formula that will be used in the next section is
the following.

Proposition 4 Let f and g be in L, (R?™). Then, we

have
2
IRTI fy g(x)| duzy (%)

- J‘Ri”

where both sides are finite or infinite.

(18)

Fo (D& R ()(E) duty (£)

3. The Continuous Weinstein Gabor
Transform

Notations. We denote by:
Xy, pe [1 oo] the space of measurable functions f on
R R with respect to the measure
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dw, (X, y)=dug(x)du, (y) such that

10,0, = (oo

1
f (x,y)|p da)ﬁ(x,y))p <o,

I<p<w

(x,y)|<oo

Definition 1. For any function g in Lj(R{") and
any v eR!*", we define the modulation of g by v as:

g|2)], (19)

where Ty, Ye Ri” , are the Weinstein translation
operators given by (13).
Remark 1. Forgin L, (R‘i*l) , we have

1L, = esssup

Mg:=g, :=fw( 7

3 (m07) = ||9||L3,(Rg+l) :
We consider the family g, ,, v,ye Ri“ defined by
9, (x)=7.,9, (x), xe R,

Definition 2. Let g be in L Rd“) For a function f
in L7, (RY™) we define its continuous Weinstein Gabor
transform by

Gy £ (¥v) = [ (X)0,., (X)dazy (x). (20)
which can also be written in the form
G, f(y.v)=1%,0,(y) @1

where ﬁ(x)zh(—x).
Theorem 1. ( LfB inversion formula).
Let g be in (L} (RY")AL; (RS))\{0}. Then, for

any function fin L, (Ri“ ) , we have

(0= [ g Go (D)(120)7.,8, (), (1.9)

(22)
in L (Ri“) , where
do, (v,y):=du, (y)du, (v)
and satisfies
A -

n—oo

For proof this theorem we need the following Lem-
mas.

Lemma 1. Let g be as above. For any positive integer
n define the two functions

G, (x)

= IBS”(o,n) Ri+‘A(§’ X)|‘7{N (

0. ) () duy (v)dagy (£),
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for xeR!", and

Hn (5) = J‘BSH(O,n)
for &eR?". Then

§)|2 dpt, (v),

Fu (9

<

Bd+1

.[Bd*' 0.n)

) BdH(O,n)

A§x|f

I/\

]Rd +1

]Rliﬂ
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G, e} (RI"), H, e L, (R ) L5 (RYY),
and %, (G,)=H,.

Proof. Using the Cauchy-Schwartz inequality we obtain

AEXF (8 day (8] ity (v)

D day () oy ).

Therefore by Fubini theorem, the inversion theorem, the Plancherel formula and Proposition 3

|d’uﬁ’ ) C.[Bf“(o,n).[Ri*‘

< CIBE“(O,n)IRi“

- CIBd“(O n)-[Rd”
- C.[Bd” o,n)

= CIBd” 0.n)

I]Rdﬂ

Ri“

2
7, |9 (

A(&X)| 5 (9.)(¢

R |7

Ll ]Rd”

Rd+l

)y (£)] iy () ()

0 )00 e () 1)

: F sy 0

Ruq) d'u,b‘ (V)

) dpy (v) <.

That H, e Llﬂ (Ri” ) NLy (Ri”) is easily checked. Finally, using Fubinis theorem we obtain

Fa' (Ho)(y)=
= [ AEY) [gsn 0

- jBf”(O,n) RYH

Lemma 2. Let g be as above. For any positive integer
n the function

G, (x)

= .[Bf”(o,n) rY+ g9, )(é)r d'uﬂ (é:)d'uﬂ (V)’

A(EX)| A (
can be written
Gn (X) J‘Bdﬂ

Proof. From Proposition 3 we have
G, (x)

gv ﬂQV( )dfuﬂ(v)’

= omles AEXIT () dty () (€)

=g iom 7 (175 (00 )(X) ity ()
- Bi‘*‘(o,n)(gv 5 O (X))dﬂﬁ (v)-
Lemma 3. Let g be in (L}(]Ri”)m L (R‘i“))\{o} :

Then, for any function fin L}, (R‘i“) , we have

f,=G,*, f. (23)

Copyright © 2012 SciRes.

A(&Y)| 5 (9,)(¢

gt Ha (E)A(S:Y)dry (S)
w (9.)(2) dugy (v)da ()

) ity (v)dasy (£) =Gy (y):

Proof. We have

fa (x)

.[B“*‘ OnJ.]Rd*l 7,9, ( )dwﬂ (V’y)
.[BE“ 0.n) ( )(X)d/uﬂ (V)
J.BE” f *p g, * s QV( )dfuﬂ( )
=Jaoo )IRd+l 7, (y)8, % 9, (-y)de, (v.y)
=L O 9 (¥) (1) ()

JRM 7, £ (¥) Gy (=y)du, (y)
=fx, G, (x).

z f

On the follow we justify the use of Fubinis theorem in
the last sequence of equalities observe that

.[BE“(O,n).[Rd*‘ H(Y)a, %4 9, (-y)da, (v, y)
< J.Bfﬂ(o,n) *,0,%, 0, (x)|dyﬁ (v).

Now, using Proposition 3 and hypothesis on g we see
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that g, *,9, € Li, (Ri”). Next using Young’s inequal-
ity and Parseval theorem we obtain

4. 0. L
< " f "L/, ]Rd*l

<C " f "L%(Ri”

(]Rdﬂ)
g ”L“;(Ri*' )

) 9||L;(Rg+l)

and

fasoom|f 5 8. % 6. (%]t (v)
<C([ g0 35 (V)

Il )l s POy

The proof is complete.
Proof. of Theorem 1.

It follows from Proposition 3 and Lemma 1 that
f el (Ri*l) and

‘E/V(fn)an]{N(f)‘

By this, the Plancherel formula, the fact that H, —1
pointwise as N — oo, and the dominated convergence
theorem, it follows that

"f - "L%(Ri*')

= [ooa | (1)(E) = H, () B (£)(E) duty ()

= [ B (A=, (&) dugy ()0
as N — oo which achieves the proof.

Proposition 5. For fin L (R?") and g in L, (R?")
we have

o, ”w,w/, <[l ey

Proposition 6. (Plancherel formula).
Let g be in L (RS™). Then, for all fin L} (RS™),
we have
|9 ¢

Proof. Using relation (18), Fubini’s theorem and
Plancherel’s formula for the Weinstein transform, we
have

0l o) (24)

f ”Lf,;(]lﬂ”) : (25)

2,05 = "g"LZﬁ(Ri”)

2

Juso Jaon | %5 0] (¥)dat (y)daty (v)

= Jugfon B ()N 17 (0)(E) daty (&) daty (v)
= [agafego ( )N 2 (1o )(£)duty (£)day (v)
= Jon ol B (N (10l J(v)daty (v)ds (£)

= " f "Lfg(R‘i*‘)

As in the classical case, the continuous Weinstein Ga-

g"LZﬂ(R‘i*‘) :

Copyright © 2012 SciRes.

bor transform preserves the orthogonality relation. How-
ever, we have the following result.

Corollary 1. Let g be in L} (Rd*‘) Then, for all f, h
in L (Rd“) we have

fRd+1fRd+lg f(y.,v)Gh(y.v)du, (y)du, (v)

(26)
—||9|| IRM FOOR(x)da ().

In what follows, we show the weak uncertainty prince-
ple for the continuous Weinstein Gabor transform.

Proposition 7. Let g be in L (Ri”) such that
g || =1 andfin L@(R‘f‘).Suppose that

5 (m07)
||f||L ) =1 Then, for UcR*' xR and £>0
satlséylng
” |gf (y.v |d‘"ﬂ (y.v)=1-e,
we have
w,(U)2(1-¢),
where

w,(U):= J.u da, (X, y) <o
Proof. From the relation (24) we deduce that

||ggf <1.

0,04

Thus,
1=e<[[ |6, 1 (y.v) deo, (y.v)

<[G [, @ (V)< e, (V).

This achieves the proof.
Proposition 8. Let fbe in Ly, (R%"), gin Ly (RY")
such that ||g|| =1 and pe[2,). Then,

L}(Rdj‘)

G, f (y.v)| da, (y.v) < ||f||f% oo @D

J.]R‘l” R

Proof. Using Proposition 5 and Proposition 6 the result
follows by applying the Riesz-Thorin interpolation theo-
rem.

4. Uncertainty Principles of Heisenberg Type

In this section we will to prove the Heisenberg inequality
for the generalized continuous Gabor transform.
Proposition 9. (Uncertainty principle of Heisenberg
type for %, ).
Let f be in Li, (Ri*l) , the following inequality holds
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1 1
(e X 15 (OO ity GO (LI (0 i () )22[ﬂ+1+ j||f||Lz

Proof. We obtain the result by combining the Heisen- Type for G, ).

berg inequalities for the classical Fourier transform and vg fedal i (da
Fourier-Bessel transform. Let g be in L, <R+ ) - Then, for all fin L, (R+ )’

Theorem 2. (Uncertainty principles of Heisenberg the following inequality holds

(o

Proof. Let us assume the non-trivial case that both in- arbitrary, Heisenberg’s inequality for Weinstein trans-
tegrals on the left hand side of (28) are finite. Fixing v form gives that

: ; d
X"2|‘7{N(f)(x)|2 d'uﬂ ) (IRd+‘jR“ 1”y" |g f y’ | dwﬂ(y’ )) [ﬂ+1+ )"g"L2 Rd“ f”L2 Rd”) (28)

1

(L P15 64 DO 0y O (T I 19 T 0 ity () 2 0125 119, (0 it ()

Integrating over v and using Cauchy Schwartz inequality we obtain
1
5 1
(.[R3+'.[Rd+l ||y||2\fw g f(~"’))(y)‘ dug (y)dp (v ) (J.Ra JRu 1||y|| |g fF(y.v | da’/x(y=v))2
(5418

Thus, using the fact that

G, f(y.v )| da, (y,v).

2
froa S IV |70 (G4 £ ()] bty ()i () =0l oo oIV 1 (1) OO it ().
we obtain
1
"g"Lzﬂ(]Ri” (.[Rd*' "X"2 |~7{N (f )| d,uﬂ ) (J.Rd IJ']Rd 1||y|| |g f y, | da)ﬂ (y, V))z
(01 D ot 0 )= 8412l I
This proves the result. (Lii (RiH )m L (Riu ))\{O} . Then, G, (L; (Riﬂ )) is
5. Reproducing Kernel a reproducing kernel Hilbert space in X} with kernel
Corollary 2. (Reproducing Kernel). Let g be in function
1 _ 1 _ _ ,
W (Ysv'5¥ov) = ———— [ 0u7, G, (X) 7,0, (X)dpty (X) = ———7,0, *, G, (=) (29)
”g”Lzﬂ(Ri*‘) : "g"Lfg(Rﬂ”)
The kernel is pointwise bounded: Proof. We have
vy ssforall (y), Gy T (¥v) = [ (¥) 8, (X) iy (¥).
(y, V) eR{xR{™ Using the relation (26), we obtain
G f (y’ ) J.]Rd” RY* G f ( )gg (quy)(x',v')d,uﬂ (X)'dfuﬂ (V)

”g”L2 Rd“

Copyright © 2012 SciRes. APM
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On the other hand using Proposition 3, one can easily
see that for every y,v,v'e Ri“ , the function

| YR Y
X G, (9, ) (V)
"g"L};(Ri”)
:;T g,*,0 ,(_x)
lol oy
Gy (2)
belongs to L, (R‘i”) . Therefore, the result is obtained.
In the following theorem, we will show that the por-
tion of the continuous Weinstein Gabor transform lying
outside some sufficiently small set of finite measure
cannot be arbitrarily too small. Then, in order to prove a
concentration result of the continuous Weinstein Gabor
transform, we need the following notations:
P,: X} — X, the orthogonal projection from X

onto G, (Lfg (Ri”)).

R, :X; — X, the orthogonal projection from X
onto the subspace of function supported in the subset
U c R xR with @, (U) <.

We put

A :sup{”PU ng||2’wﬂ Ve X, = 1}. 31)

The essential result of this section is the following.
Theorem 3. (Concentration of G, f insmall sets) Let

gbein (L (RY")AL; (RI))\{0} and
U cRIMxRY with @, (U)<1. Then, for all f in
L, (RS") we have

|9, f - 2.6, f "2,@/,
2 (1=, (U)ol eso)
Proof. From the definition of R, and P, we have
|9, T - 2, T . =|(1-rsR,)g, f
Then, using the Proposition 6 we get

It -2 1L, 2l6fL., (-[RR]) - 33

(32)

f "L%(]Ri”) :

2,a)ﬂ

>0l e Fly ey (- [RA])- 64

As Py is a projection onto a reproducing kernel Hil-
bert space, then, from Saitoh [5], P, can be represented
by

PoF (:9) = [y aaF (Y D (20550 ) dity (1),
with W, defined by (29). Hence, for F e X; arbitrary, we have

RBF(Y:9)= [, n0 20 (V) F(Yor) G (V515 ysv)dey (¥',7)

and its Hilbert-Schmidt norm

" RP ||Hs - (.[Rid“xRi”*z

By the Cauchy-Schwartz inequality we see that
IRB. 2 [RP (35)

On the other hand, from (29) and Fubini’s theorem, it
is easy to see that

||F>U P ||HS < Jo, (V). (36)

1
10 () P (v sy day (v)da, (v.0))

Thus, from the relations (34), (35) and (36) we obtain
the result.

6. Practical Real Inversion Formulas for gg

Let seR.We define the space H} (R‘i”) by

H; (R‘i”):z {f el (Ri”):(1+||§||2 )S/z Fu(f)ell (Riu )}

The space H; (Ri“) provided with the inner product

(£ 0p ey = Lo (14161°) 5 ()(E)F, (0)(£)dty (€). G7)

2

and the norm ||f H;(Riﬂ)

=(f, f>H;(1R3+')’ is a Hilbert

space.

Copyright © 2012 SciRes.

Proposition 10. Let g be a function in
L, (RI)NL; (RS, and veRY™. The integral trans-
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form G, (..v
H;(Ri*l),sin R, ,into L}(Ri*'),andwe have

), is a bounded linear operator from

||g f |||_2 Rd“ _"g"L/, Rd*'

Rd+1)

Proof. We proceed as [6] we obtain the result.
Definition 3. Let g be a function in

L2 (Rd”)ﬂL“’(Rd”) Let r>0, veR*" and

seR. . We define the Hilbert space H*(RI")
subspace of H° 5 (RS with the inner product

<f h)H” = <f h)HS(Rd“) <ggf( )g h( )>L2(1R“*‘)

f,heHj (R,

as the

The norm associated to the inner product is defined by:

I[; sfeee) 6o F (-

Hrs i L@(R‘“‘)

We proceed as [6] we prove the following results.
Proposition 11. Let g be a function in

L@(Ri”)ﬂL’;(Ri”). For 32/3+1+%, the Hilbert

space H;’S(Ri”) admits the following reproducing
kernel:

A(EX)A(E,y)d
Py (%.Y)= [y ¢ X)2 5(5 y) ”f(g) .
r(1+]el”) +. (o) (£)
Theorem 4. Let g be a function in

L, (RE)NL; (RE). Let szﬁ+1+%.

. l).For any h in Lzﬂ (R‘i”) and for any r>0, the
infinitum

f 38
Fmul: S 09

is attained by a unique function f, given by

fin ()= [ooa N(Y)Q (6 Y)dt (y), (39)

p(een) =G F (-v)

Copyright © 2012 SciRes.

where

Q(X%Y)=Q,(xY)
¢ Anle)@nEnaey (40)
(el ) (108 @)

2)Let 1,6>0 and h,h; in L (R?") such that

(Rdﬂ) < 5

Then

S
s (pd+l <—
MR T 24

3)Let r>0.Iffisin Hj(RI") and h=G, f(.v).
Then

* *
1:r,h - fr,h5

—>0asr—0.

*
fr,h -

2
H;(mi”)
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