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ABSTRACT

In this paper, we introduce the notion of L-topological spaces based on a complete bounded integral residuated lattice
and discuss some properties of interior and left (right) closure operators.
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1. Introduction

Residuation is a fundamental concept of ordered struc-
tures and the residuated lattices, obtained by adding a
residuated monoid operation to lattices, have been applied
in several branches of mathematics, including L-groups,
ideal lattices of rings and multivalued logic. Commuta-
tive residuated lattices have been studied by Krull, Dil-
worth and Ward. These structures were generalized to the
non-commutative situation by Blount and Tsinakis [1].

Definition 1.1. [1-4]. A residuated lattice is an algebra
L=(L,AV,,—,01) of type (2, 2,2, 2, 2,0,0) sat-
isfying the following conditions:

(L1) (L,A,v) isalattice,

(L2) (L,-1) is a monoid, i.e., -
x-1=1-x=x forany xel,

(L3) x-y<z ifandonlyif x<y—z ifandonly if
y<xr>z forany x,y,zelL.

Generally speaking, 1 is not the top element of L. A
residuated lattice with a constant 0 is called a pointed
residuated lattice or full Lambek algebra (FL-algebra, for
short). If x<1 for all xelL, then L is called integral
residuated lattice. An FL-algebra L which satisfies the
condition 0<x<1 forall xelL is called FL,-algebra
or bounded integral residuated lattice (see [2]). Clearly, if
L is an FL,-algebra, then (L,A,v,0,1) is a bounded
lattice.

A bounded integral residuated lattice is called com-
mutative (see [5]) if the operation - is commutative. We
adopt the usual convention of representing the monoid
operation by juxtaposition, writing ab for a-b.

The following theorem collects some properties of
bounded integral residuated lattices (see [1-4,6].

Theorem 1.1. Let L be a bounded integral residuated
lattice. Then the following properties hold.

1) xox=xx=1, lox=1>Xx=X.

is associative and

Copyright © 2012 SciRes.

2) x> (yP2)=yH(x—>17).

3) X(x>y)<XAY, (X>Y)XSXAY, X<y XY,
Yy <X Xy.

4) (xpy)(yPz)<x 1z,
(yo>z)(x>y)<x—>z.

5) If x<y,then xz<yz,zx<zy, X>22Yy—>1,
XI5 ZI2Yy2,25>X<z—>Yy and Z+> X<z Y.

6) x<y if and only if x—>y=1 if and only if
Xt y=1.

) Xy 2=y (x> 2),xy >2=x—->(y > 7).
8) (xvy)—>z=(x>2)A(y—>12),

(xvy)m z=(xz)A(yH 2).

9) x> (yaz)=(x—>y)(x—>12),

x> (yaz)=(x->y)(x>2).

If bounded integral residuated lattice L is complete,
then

x—>z=v{yel|lyx<z}, x> z=v{yel|xy<z}

Thus, it follows from some results in [7] that

Theorem 1.2. Let L be a complete bounded integral
residuated lattice and a,b,a;,b; e L(jeJ). Then the
following properties hold.

1) a(v bj):v ab; and (\/jEJ aj)b:vjEJ a;b,
i.e., the operation - is infinitely \ -distributive.

2) (via;)>b=n,,(a; —>b) and

(aj |—>b).

3) a—(A;,b;)=A;,(a—>b;) and

jed jed

(VjeJ a; ) =b=n,

ar> (Ajby)=r,, (amb;), ie., the two residuation
operations — and + are all right infinitely A -dis-
tributive (see [8]).

4) (/\J-EJEiJ-)—>b2vjEJ

(aj N b) and

</\jEJaj)l—)b2Vj€J (aj —)b).
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5) a—(vj,b;)2v,(a—>b;) and

b;)> v, (arb;).

ais (Vb

L R

Let us define on L two negations, —~ and —":
—*x=x—0 and —="x=xm-0.
For any x,x;(jeJ),bel, it follows from Theo-

rems 1.1 and 1.2 that
=fxzx, ftxzx, x>ty ==t (xy),
X =ty ==%(xy), x>="y=y X
R e e D e
R R L L
X y<—Ry > -fx, x> y<-tys 2ty
)X,

L _ L R —
- (VjeJXj)_/\jeJ_' Xj’ -/ (Vjeij)_/\

je

L L R R
- (/\jeJ Xj)ZAjeJ_' Xj' - (/\jeJ Xj)Z/\jeJ_' Xj'

A bounded residuated lattice L is called an involutive
residuated lattice (see [3]) if —"—"x=-="="x=x for
any xe L. Inacomplete involutive residuated lattice L,

X3 y=—"y > "X, X>y=="y "X,
—|L(/\

In the sequel, unless otherwise stated, L always repre-
sents any given complete bounded integral residuated
lattice with maximal element 1 and minimal element 0.

The family of all L-fuzzy set in X will be denoted by
L*. Forany family u, ;e " (jel) of L-fuzzy sets,
we will write =z, ="p, vy gy and A p; to de-
note the L-fuzzy sets in X given by

(=" (%) == (e (), (=) () = =" (((%)),
(vjeJ H; )(X) = Vies Hj (%), (/\je.] H; )(X) = Njes Hj (x).

Besides this, we define 1,,0, €L as follows:
1, (x)=1vxe X and 0, (x)=0vxeX .

. L R _ R
jed Xj)_/\jeJ_' Xj’_' (/\jeJ Xj)_/\je.]_' Xj'

2. L-Topological Spaces

A completely distributive lattice L is called a F-lattice, if
L has an order-reversing involution : L — L. When L is
a F-lattice, Liu and Luo [9] studied the concept of L-
topology. Below, we consider the notion of L-topological
space based on a complete bounded integral residuated
lattice.

Definition 2.1. Let < L*. If ¢ satisfies the fol-
lowing three conditions:

(LFT1) 0,.1, e,

(LFT2) p,ver=> unver,

(LFT3) wyer= v, 4 €T,
then 7 is called an L-topology on X and (L*,7) L-
topological space.
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When L =[0,1], called an L-topological space (L*,7)
an F-topological space.

Every elementin 7 is called an open subset in L* .

Let 7/ :{ﬂL/J|,uez'} and 7} :{—|R,u|yer} . The
elements of 7/ and 7, are called, respectivély, left
closed subsets and right closed subsets in L* .

Definition 2.2. Let 7 be an L-topology on X and
L-fuzzy subset of X. The interior, left closure and right

closureof x w.rt z are, respectively, defined by
int(u)=v{nern<ul,
ol (4)=n{éerlu<él,
cly (1) =n{¢ erp|us<c).

int, cl, and cl, are, respectively, called interior, left
closure and right closure operators.
For the sake of convenience, we denote int(u),

cl (u), and clg(x) by 4, u and ug, respec-
tively.
In view of Definitions 2.1 and 2.2, for any e L,

w=vinetn<uler,
uo=n{=tus-teger

=t fdus—reger))=—tu,
te = Felus ¢ g er)

=R (v{§|ysﬁR§,cjer})=ﬂRuz,

where
y =v{§|,u£—.L§,§er} €T,
1 =v{{|lu<=F¢ ¢ erler,
i.e., u° is just the largest open subset contained in g,

4, and g are, respectively, the smallest left closed
and right closed subsets containing .
Forany uelX,

—* (u°):—|L(v{ﬂer|n£u}):/\{—|Lry|77S,u,r]ez'}
> /\{—|L77|—.L,u£—|L§,77 € z’} :(—|L,u)l.
similarly, =" (x°)>(-" ,u); .

Theorem 2.1. If L is an involutive residuated lattice
and xel”, then

1) - (#0)=(=w), and =F(u)=(="4), ;

2) ﬂo —_t (_'R/l) —_R ("L,U); :

R
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== (=Ru) and g == (<u)’

Proof. When L is an involutive residuated lattice,
_|R(_‘L/J):_|L(_|R'u):ﬂv'ue X

DIf nel” and =u<-"n, then

p==" (=) 2= (<) =n.

Thus, = (u°) = (~4a)
~(#)=(="),

2) It follows from 1) that

,UO :_‘R_|L<Iuo):_|R(ﬁLlu) ,

Similarly,

/Io —_L_R (ﬂo ) —_t (_|Ry);
3) By 2), we see that
_|L,u)° -t _|R_|Lﬂ ; __t (z”r_e)’

Theorem 2.2. Let u,vel*. Then the following

properties hold:
1) (1X)O:1x'(o><)l:(0x);:0w
2) WS S, ps g,
AIf u<v, then u°<v°, p <v, wz<v
o () =, (),
5) (uav)
6) If =" (xAy)=="xv-'yvx yelL, then

= u and (ug) = s

=u’ AV,

(vv) =p vv,.

I =" (xAy)=="xv="yvx,yel, then
(vv), =g v vg.

Proof. By Definition 2.2, it is easy to see that 1)-3)
hold.

4) By 2) and 3), we have that (,u" )O <u°. On the
other hand, «° ez and u° < u°. Thus, it follows from
Definition 2.1 that u° g(ﬂ")o and so (u° )O =u°.
We can prove in an analogous way that ( s ); =y, and

(#z), = e

Copyright © 2012 SciRes.

5) Clearly, (zav)” <u°Av°. Noting that

u° Av® er, we see that
u1° AV° :(,uO /\1/0)0 <u® AV,

Thus, (unv) =u° Ave.

6) There exist u,v,er
V== vl

If = (xAy)=="xv="yvx,yel, then
uvvSpi vy ==tp v =ty ==" (g Avy)er . Thus,
(uvv) <p vvi. Clearly, (uvv) >p vv.

Therefore (avv) =p Vv

7) Similar to (6).

Theorem 2.3. Let f:L* — L* be a mapping. Then
the following two statements hold.

1) If the operator f on L* satisfying the follwing
conditions:

such that 4 =—"‘,

€1 f(1,)=1,.
(C2) f( ) W uel”,
(C3) f(,u/\v):f( ) ()V,u,veLX,
then r_{§|f =¢ &elX} is an L-topology on X.

Moreover, if the operator f also fulfills

(C4) f(f(,u)):f(y)v,ueLx,
then with the L-topology 7, f(u)=pu
wel*, ie.,fisthe interior operator w.r.t r.

2) If the operator f on L* satisfying the follwing
conditions:

(C1) f(04)=0

0o

for every

(C2) usf(u)VuelX,

(C3) f(,uvv):f(,u) ()V,u,veL then

a)when =" (xAy)=="xv="yvx yel,
a={nlt(="n)=~tnnet]

is an L-topology on X, moreover, if the operator f also
fulfills

(C4) f(f(u))="f(u)Vuel”, and =" :L* -
is a bijection, then with the L-topology 7, ,
f(,u):,u[Vye L*, i.e., fis the left closure operator
w.rt z;

b) when —%(xAy)=="xv-"yvx,yelL,

o, ={gf(-Re)=—Fece )

is also an L-topology on X, moreover if (C4) holds and
—R: X > L* is a bijection, then with the L-topology
7,, f(u)=pVuel®, ie, fis the right closure op-
eratorw.rt z,.
Proof. 1) Refer to the proof of Theorem 2.2.21 in [9].
2) Clearly, 0,,1, ez If n,7n, ez, then

f(=" (mang)) = f("mv="m)
= f(—anl)\/ f (—|L772
=="(mAm),
ie, mamer.If nyer(jel), then

) = ﬁL771 v ﬁl_772
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f (_'L (VieJ ;i )) =f (Aje.] _‘L77j) Nies | (_‘L77j)
=Njes _‘L77j =" (VjeJ 17; )
Combing with (C2"), we have that
f (ﬁL (VjeJ nj )) == (VjeJ ur )

Thus, Vialli €4 and so z, is an L-topology on X.
Forany uelX,

f(,u[)z f(A{ﬁL§|ﬂS—'L§1§ETl})
(A f ,U<_‘ 5,/;611})
{_|'-§y<—. 5611})2;![,

ie., ( _)< 4. Moreover, if (C4) holds and
-+ LX —> LX is a bijection, then
{ € LX| f =n> ,u}
L _
A{ﬁ §|u<ﬁ géenf=u.

Therefore,
erator w.rt z,.

We can prove in an analogous way that 7, is an L-
topology on X and the corresponding f is the right closure
operator w.r.t z,.

f(u)=p, ie, fis the left closure op-
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