

L-Topological Spaces Based on Residuated Lattices

Zhudeng Wang¹, Xuejun Liu²

¹Department of Mathematics, Yancheng Teachers University, Yancheng, China ²School of Computer and Information Technology, Zhejiang Wanli University, Ningbo, China Email: zhudengwang2004@yahoo.com.cn, lm88134005@126.com

Received September 14, 2011; revised October 10, 2011; accepted October 20, 2011

ABSTRACT

In this paper, we introduce the notion of *L*-topological spaces based on a complete bounded integral residuated lattice and discuss some properties of interior and left (right) closure operators.

Keywords: Residuated Lattice; L-Topological Space; Interior Operator; Left (Right) Closure Operator

1. Introduction

Residuation is a fundamental concept of ordered structures and the residuated lattices, obtained by adding a residuated monoid operation to lattices, have been applied in several branches of mathematics, including *L*-groups, ideal lattices of rings and multivalued logic. Commutative residuated lattices have been studied by Krull, Dilworth and Ward. These structures were generalized to the non-commutative situation by Blount and Tsinakis [1].

Definition 1.1. [1-4]. A residuated lattice is an algebra $L = (L, \land, \lor, \cdot, \rightarrow, \mapsto, 0, 1)$ of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(L1) (L, \wedge, \vee) is a lattice,

(L2) $(L, \cdot, 1)$ is a monoid, *i.e.*, \cdot is associative and $x \cdot 1 = 1 \cdot x = x$ for any $x \in L$,

(L3) $x \cdot y \le z$ if and only if $x \le y \to z$ if and only if $y \le x \mapsto z$ for any $x, y, z \in L$.

Generally speaking, 1 is not the top element of *L*. A residuated lattice with a constant 0 is called a pointed residuated lattice or full Lambek algebra (*FL*-algebra, for short). If $x \le 1$ for all $x \in L$, then *L* is called integral residuated lattice. An *FL*-algebra *L* which satisfies the condition $0 \le x \le 1$ for all $x \in L$ is called *FL*_w-algebra or bounded integral residuated lattice (see [2]). Clearly, if *L* is an *FL*_w-algebra, then $(L, \land, \lor, 0, 1)$ is a bounded lattice.

A bounded integral residuated lattice is called commutative (see [5]) if the operation \cdot is commutative. We adopt the usual convention of representing the monoid operation by juxtaposition, writing *ab* for $a \cdot b$.

The following theorem collects some properties of bounded integral residuated lattices (see [1-4,6].

Theorem 1.1. Let *L* be a bounded integral residuated lattice. Then the following properties hold.

1) $x \to x = x \mapsto x = 1$, $1 \to x = 1 \mapsto x = x$.

Copyright © 2012 SciRes.

2)
$$x \rightarrow (y \mapsto z) = y \mapsto (x \rightarrow z)$$
.
3) $x(x \mapsto y) \le x \land y, (x \rightarrow y)x \le x \land y, x \le y \rightarrow xy,$
 $y \le x \mapsto xy$.
4) $(x \mapsto y)(y \mapsto z) \le x \mapsto z,$
 $(y \rightarrow z)(x \rightarrow y) \le x \rightarrow z$.
5) If $x \le y$, then $xz \le yz, zx \le zy, x \rightarrow z \ge y \rightarrow z,$
 $x \mapsto z \ge y \mapsto z, z \rightarrow x \le z \rightarrow y$ and $z \mapsto x \le z \mapsto y.$
6) $x \le y$ if and only if $x \rightarrow y = 1$ if and only if
 $x \mapsto y = 1.$
7) $xy \mapsto z = y \mapsto (x \mapsto z), xy \rightarrow z = x \rightarrow (y \rightarrow z).$
8) $(x \lor y) \rightarrow z = (x \rightarrow z) \land (y \mapsto z).$
9) $x \rightarrow (y \land z) = (x \rightarrow y)(x \rightarrow z),$
 $x \rightarrow (y \land z) = (x \rightarrow y)(x \rightarrow z).$

If bounded integral residuated lattice L is complete, then

$$x \to z = \lor \{ y \in L \mid yx \le z \}, x \mapsto z = \lor \{ y \in L \mid xy \le z \}$$

Thus, it follows from some results in [7] that

Theorem 1.2. Let *L* be a complete bounded integral residuated lattice and $a, b, a_j, b_j \in L(j \in J)$. Then the following properties hold.

1) $a(\bigvee_{j\in J} b_j) = \bigvee_{j\in J} ab_j$ and $(\bigvee_{j\in J} a_j)b = \bigvee_{j\in J} a_jb$, *i.e.*, the operation \cdot is infinitely \lor -distributive.

2)
$$(\lor_{j \in J} a_j) \rightarrow b = \land_{j \in J} (a_j \rightarrow b)$$
 and

$$(\lor_{j \in J} a_j) \mapsto b = \land_{j \in J} (a_j \mapsto b).$$

$$3) \quad a \to (\land_{j \in J} b_j) = \land_{j \in J} (a \to b_j) \quad and$$

 $a \mapsto (\wedge_{j \in J} b_j) = \wedge_{j \in J} (a \mapsto b_j)$, i.e., the two residuation operations \rightarrow and \mapsto are all right infinitely \wedge -distributive (see [8]).

4)
$$(\wedge_{j\in J} a_j) \rightarrow b \ge \bigvee_{j\in J} (a_j \rightarrow b)$$
 and
 $(\wedge_{j\in J} a_j) \mapsto b \ge \bigvee_{j\in J} (a_j \rightarrow b).$

5)
$$a \to (\bigvee_{j \in J} b_j) \ge \bigvee_{j \in J} (a \to b_j)$$
 and
 $a \mapsto (\bigvee_{j \in J} b_j) \ge \bigvee_{j \in J} (a \mapsto b_j).$

Let us define on *L* two negations, \neg^{L} and \neg^{R} : $\neg^{L}x = x \rightarrow 0$ and $\neg^{R}x = x \mapsto 0$.

For any $x, x_j (j \in J), b \in L$, it follows from Theorems 1.1 and 1.2 that

$$\neg^{L} \neg^{R} x \ge x, \quad \neg^{R} \neg^{L} x \ge x, \quad x \to \neg^{L} y = \neg^{L} (xy),$$
$$x \mapsto \neg^{R} y = \neg^{R} (xy), \quad x \to \neg^{R} y = y \mapsto \neg^{L} x,$$
$$\neg^{L} \neg^{R} \neg^{L} x = \neg^{L} x, \quad \neg^{R} \neg^{L} \neg^{R} x = \neg^{R} x,$$
$$x \mapsto y \le \neg^{R} y \to \neg^{R} x, \quad x \to y \le \neg^{L} y \mapsto \neg^{L} x,$$
$$\neg^{L} (\vee_{j \in J} x_{j}) = \wedge_{j \in J} \neg^{L} x_{j}, \quad \neg^{R} (\vee_{j \in J} x_{j}) = \wedge_{j \in J} \neg^{R} x_{j},$$
$$\neg^{L} (\wedge_{j \in J} x_{j}) \ge \wedge_{j \in J} \neg^{L} x_{j}, \quad \neg^{R} (\wedge_{j \in J} x_{j}) \ge \wedge_{j \in J} \neg^{R} x_{j}.$$

A bounded residuated lattice *L* is called an involutive residuated lattice (see [3]) if $\neg^{L} \neg^{R} x = \neg^{R} \neg^{L} x = x$ for any $x \in L$. In a complete involutive residuated lattice *L*,

$$x \mapsto y = \neg^{R} y \to \neg^{R} x, \ x \to y = \neg^{L} y \mapsto \neg^{L} x,$$
$$\neg^{L} \left(\wedge_{j \in J} x_{j} \right) = \wedge_{j \in J} \neg^{L} x_{j}, \ \neg^{R} \left(\wedge_{j \in J} x_{j} \right) = \wedge_{j \in J} \neg^{R} x_{j}.$$

In the sequel, unless otherwise stated, L always represents any given complete bounded integral residuated lattice with maximal element 1 and minimal element 0.

The family of all *L*-fuzzy set in *X* will be denoted by L^X . For any family μ , $\mu_j \in L^X (j \in J)$ of *L*-fuzzy sets, we will write $\neg^L \mu$, $\neg^R \mu$, $\lor_{j \in J} \mu_j$ and $\land_{j \in J} \mu_j$ to denote the *L*-fuzzy sets in *X* given by

$$(\neg^{L} \mu)(x) = \neg^{L} (\mu((x)), (\neg^{R} \mu)(x) = \neg^{R} (\mu((x)), (\bigtriangledown_{j \in J} \mu_{j})(x) = \bigvee_{j \in J} \mu_{j}(x), (\land_{j \in J} \mu_{j})(x) = \bigwedge_{j \in J} \mu_{j}(x).$$

Besides this, we define 1_x , $0_x \in L^X$ as follows: $1_x(x) = 1 \forall x \in X$ and $0_x(x) = 0 \forall x \in X$.

2. L-Topological Spaces

A completely distributive lattice *L* is called a *F*-lattice, if *L* has an order-reversing involution ': $L \rightarrow L$. When *L* is a *F*-lattice, Liu and Luo [9] studied the concept of *L*-topology. Below, we consider the notion of *L*-topological space based on a complete bounded integral residuated lattice.

Definition 2.1. Let $\tau \subseteq L^X$. If τ satisfies the following three conditions:

(LFT1) $0_x, 1_x \in \tau$,

- (LFT2) $\mu, \nu \in \tau \Longrightarrow \mu \land \nu \in \tau$,
- (LFT3) $\mu_i \in \tau \Longrightarrow \bigvee_{i \in J} \mu_i \in \tau$,

then τ is called an *L*-topology on *X* and (L^X, τ) *L*-topological space.

When L = [0,1], called an *L*-topological space (L^X, τ) an *F*-topological space.

Every element in τ is called an open subset in L^X . Let $\tau'_L = \{\neg^L \mu | \mu \in \tau\}$ and $\tau'_R = \{\neg^R \mu | \mu \in \tau\}$. The elements of τ'_L and τ'_R are called, respectively, left closed subsets and right closed subsets in L^X .

Definition 2.2. Let τ be an *L*-topology on *X* and μ *L*-fuzzy subset of *X*. The interior, left closure and right closure of μ w.r.t τ are, respectively, defined by

$$\operatorname{int}(\mu) = \bigvee \{ \eta \in \tau | \eta \leq \mu \},$$
$$cl_L(\mu) = \wedge \{ \xi \in \tau'_L | \mu \leq \xi \},$$
$$cl_R(\mu) = \wedge \{ \zeta \in \tau'_R | \mu \leq \zeta \}.$$

int, cl_L and cl_R are, respectively, called interior, left closure and right closure operators.

For the sake of convenience, we denote $int(\mu)$, $cl_L(\mu)$, and $cl_R(\mu)$ by μ^o , μ_L^- and μ_R^- , respectively.

In view of Definitions 2.1 and 2.2, for any $\mu \in L^X$,

$$\mu^{o} = \vee \left\{ \eta \in \tau \middle| \eta \leq \mu \right\} \in \tau,$$

$$\mu_{L}^{-} = \wedge \left\{ \neg^{L} \xi \middle| \mu \leq \neg^{L} \xi, \xi \in \tau \right\}$$

$$= \neg^{L} \left(\vee \left\{ \xi \middle| \mu \leq \neg^{L} \xi, \xi \in \tau \right\} \right) = \neg^{L} \mu_{1},$$

$$\mu_{R}^{-} = \wedge \left\{ \neg^{R} \zeta \middle| \mu \leq \neg^{R} \zeta, \zeta \in \tau \right\}$$

$$= \neg^{R} \left(\vee \left\{ \zeta \middle| \mu \leq \neg^{R} \zeta, \zeta \in \tau \right\} \right) = \neg^{R} \mu_{2}$$

where

$$\mu_{1} = \vee \left\{ \xi \middle| \mu \leq \neg^{L} \xi, \xi \in \tau \right\} \in \tau,$$
$$\mu_{2} = \vee \left\{ \zeta \middle| \mu \leq \neg^{R} \zeta, \zeta \in \tau \right\} \in \tau,$$

i.e., μ^o is just the largest open subset contained in μ , μ_L^- and μ_L^- are, respectively, the smallest left closed and right closed subsets containing μ .

For any $\mu \in L^X$,

$$\neg^{L}(\mu^{o}) = \neg^{L}(\vee\{\eta \in \tau | \eta \leq \mu\}) = \wedge\{\neg^{L}\eta | \eta \leq \mu, \eta \in \tau\}$$
$$\geq \wedge\{\neg^{L}\eta | \neg^{L}\mu \leq \neg^{L}\xi, \eta \in \tau\} = (\neg^{L}\mu)_{L}^{-}.$$

Similarly, $\neg^{R}(\mu^{o}) \ge (\neg^{R}\mu)_{R}^{-}$.

Theorem 2.1. If *L* is an involutive residuated lattice and $\mu \in L^X$, then

1)
$$\neg^{L}(\mu^{o}) = (\neg^{L}\mu)_{L}^{-}$$
 and $\neg^{R}(\mu^{o}) = (\neg^{R}\mu)_{R}^{-};$
2) $\mu^{o} = \neg^{L}(\neg^{R}\mu)_{R}^{-} = \neg^{R}(\neg^{L}\mu)_{L}^{-};$
3) $(\neg^{L}\mu)^{o} = \neg^{L}\mu_{R}^{-}, (\neg^{R}\mu)^{o} = \neg^{R}\mu_{L}^{-},$

$$\mu_{L}^{-} = \neg^{L} \left(\neg^{R} \mu \right)^{o} and \quad \mu_{R}^{-} = \neg^{R} \left(\neg^{L} \mu \right)^{o}.$$
Proof. When *L* is an involutive residuated lattice,

$$\neg^{R} \left(\neg^{L} \mu \right) = \neg^{L} \left(\neg^{R} \mu \right) = \mu \forall \mu \in L^{X}.$$
1) If $\eta \in L^{X}$ and $\neg^{L} \mu \leq \neg^{L} \eta$, then

$$\mu = \neg^{R} \left(\neg^{L} \mu \right) \geq \neg^{R} \left(\neg^{L} \eta \right) = \eta.$$

Thus, $\neg^{L}(\mu^{o}) = (\neg^{L}\mu)_{L}^{-}$. Similarly, $\neg^{R}(\mu^{o}) = (\neg^{R}\mu)_{L}^{-}$.

2) It follows from 1) that

$$\mu^{o} = \neg^{R} \neg^{L} \left(\mu^{o} \right) = \neg^{R} \left(\neg^{L} \mu \right)_{L}^{-},$$
$$\mu^{o} = \neg^{L} \neg^{R} \left(\mu^{o} \right) = \neg^{L} \left(\neg^{R} \mu \right)_{R}^{-}.$$

3) By 2), we see that

$$\left(\neg^{L}\mu\right)^{o} = \neg^{L}\left(\neg^{R}\neg^{L}\mu\right)^{-}_{R} = \neg^{L}\left(\mu^{-}_{R}\right),$$

$$\left(\neg^{R}\mu\right)^{o} = \neg^{R}\left(\neg^{L}\neg^{R}\mu\right)^{-}_{L} = \neg^{R}\left(\mu^{-}_{L}\right),$$

$$\neg^{L}\left(\neg^{R}\mu\right)^{o} = \neg^{L}\left(\neg^{R}\left(\neg^{L}\neg^{R}\mu\right)^{-}_{L}\right) = \mu^{-}_{L},$$

$$\neg^{R}\left(\neg^{L}\mu\right)^{o} = \neg^{R}\left(\neg^{L}\left(\neg^{R}\neg^{L}\mu\right)^{-}_{R}\right) = \mu^{-}_{R}.$$

Theorem 2.2. Let $\mu, \nu \in L^X$. Then the following properties hold:

1)
$$(1_{x})^{o} = 1_{x}, (0_{x})_{L}^{-} = (0_{x})_{R}^{-} = 0_{x}.$$

2) $\mu^{o} \leq \mu, \mu \leq \mu_{L}^{-}, \mu \leq \mu_{R}^{-}.$
3) If $\mu \leq v$, then $\mu^{o} \leq v^{o}, \quad \mu_{L}^{-} \leq v_{L}^{-}, \quad \mu_{R}^{-} \leq v_{R}^{-}.$
4) $(\mu^{o})^{o} = \mu^{o}, \quad (\mu_{L}^{-})_{L}^{-} = \mu_{L}^{-} \quad and \quad (\mu_{R}^{-})_{R}^{-} = \mu_{R}^{-}.$
5) $(\mu \wedge v)^{o} = \mu^{o} \wedge v^{o}.$
6) If $\neg^{L} (x \wedge y) = \neg^{L} x \vee \neg^{L} y \forall x, y \in L, then$
 $(\mu \vee v)_{L}^{-} = \mu_{L}^{-} \vee v_{L}^{-}.$
7) If $\neg^{R} (x \wedge y) = \neg^{R} x \vee \neg^{R} y \forall x, y \in L, then$
 $(\mu \vee v)_{R}^{-} = \mu_{R}^{-} \vee v_{R}^{-}.$

Proof. By Definition 2.2, it is easy to see that 1)-3) hold.

4) By 2) and 3), we have that $(\mu^o)^o \le \mu^o$. On the other hand, $\mu^o \in \tau$ and $\mu^o \le \mu^o$. Thus, it follows from Definition 2.1 that $\mu^o \le (\mu^o)^o$ and so $(\mu^o)^o = \mu^o$. We can prove in an analogous way that $(\mu_L^-)^-_L = \mu_L^-$ and

$$\left(\mu_{R}^{-}\right)_{R}^{-}=\mu_{R}^{-}.$$

5) Clearly, $(\mu \wedge \nu)^o \leq \mu^o \wedge \nu^o$. Noting that $\mu^o \wedge \nu^o \in \tau$, we see that

$$\mu^{o} \wedge \nu^{o} = \left(\mu^{o} \wedge \nu^{o}\right)^{o} \leq \mu^{o} \wedge \nu^{o}.$$

Thus, $(\mu \wedge \nu)^o = \mu^o \wedge \nu^o$. 6) There exist $\mu_1, \nu_1 \in \tau$ such that $\mu_L^- = \neg^L \mu_1$, $\nu_L^- = \neg^L \nu_1$. If $\neg^L (x \wedge y) = \neg^L x \vee \neg^L y \forall x, y \in L$, then $\mu \vee \nu \leq \mu_L^- \vee \nu_L^- = \neg^L \mu_1 \vee \neg^L \nu_1 = \neg^L (\mu_1 \wedge \nu_1) \in \tau_L^-$. Thus, $(\mu \vee \nu)_L^- \leq \mu_L^- \vee \nu_L^-$. Clearly, $(\mu \vee \nu)_L^- \geq \mu_L^- \vee \nu_L^-$. Therefore, $(\mu \vee \nu)_L^- = \mu_L^- \vee \nu_L^-$. 7) Similar to (6). **Theorem 2.3.** Let $f: L^X \to L^X$ be a mapping. Then

Theorem 2.3. Let $f: L^* \to L^*$ be a mapping. Then the following two statements hold.

1) If the operator f on L^{X} satisfying the following conditions:

(C1) $f(1_{\chi}) = 1_{\chi},$ (C2) $f(\mu) \le \mu \forall \mu \in L^{\chi},$ (C3) $f(\mu) x = f(\mu) x = f(\mu),$

(C3) $f(\mu \wedge v) = f(\mu) \wedge f(v) \forall \mu, v \in L^{X}$, then $\tau = \{\xi | f(\xi) = \xi, \xi \in L^{X}\}$ is an L-topology on X. Moreover, if the operator f also fulfills (C4) $f(f(\mu)) = f(\mu) \forall \mu \in L^{X}$,

then with the L-topology τ , $f(\mu) = \mu^{\circ}$ for every $\mu \in L^{X}$, i.e., f is the interior operator w.r.t τ .

2) If the operator f on L^{X} satisfying the following conditions:

(C1) $f(0_x) = 0_x$, (C2) $\mu \le f(\mu) \forall \mu \in L^X$, (C3) $f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X$, then a) when $\neg^L(x \land y) = \neg^L x \lor \neg^L y \forall x, y \in L$,

$$\tau_1 = \left\{ \eta \left| f\left(\neg^L \eta\right) = \neg^L \eta, \eta \in L^X \right\} \right\}$$

is an L-topology on X, moreover, if the operator f also fulfills

(C4) $f(f(\mu)) = f(\mu) \forall \mu \in L^X$, and $\neg^L : L^X \to L^X$ is a bijection, then with the L-topology τ_1 ,

 $f(\mu) = \mu_L^- \forall \mu \in L^X$, i.e., f is the left closure operator w.r.t τ_1 ;

b) when $\neg ^{R}(x \land y) = \neg ^{R}x \lor \neg ^{R}y \forall x, y \in L,$ $\tau_{2} = \left\{ \xi | f(\neg ^{R}\xi) = \neg ^{R}\xi, \xi \in L^{X} \right\}$

is also an L-topology on X, moreover if (C4) holds and $\neg^R : L^X \to L^X$ is a bijection, then with the L-topology τ_2 , $f(\mu) = \mu_R^- \forall \mu \in L^X$, i.e., f is the right closure operator w.r.t τ_2 .

Proof. 1) Refer to the proof of Theorem 2.2.21 in [9]. 2) Clearly, $0_x, 1_x \in \tau_1$. If $\eta_1, \eta_2 \in \tau_1$, then

$$\begin{split} f\left(\neg^{L}\left(\eta_{1}\wedge\eta_{2}\right)\right) &= f\left(\neg^{L}\eta_{1}\vee\neg^{L}\eta_{2}\right) \\ &= f\left(\neg^{L}\eta_{1}\right)\vee f\left(\neg^{L}\eta_{2}\right) = \neg^{L}\eta_{1}\vee\neg^{L}\eta_{2} \\ &= \neg^{L}\left(\eta_{1}\wedge\eta_{2}\right), \end{split}$$

i.e.,
$$\eta_1 \wedge \eta_2 \in \tau_1$$
. If $\eta_j \in \tau_1(j \in J)$, then

Copyright © 2012 SciRes.

$$f\left(\neg^{L}\left(\lor_{j\in J}\eta_{j}\right)\right) = f\left(\land_{j\in J}\neg^{L}\eta_{j}\right) \le \land_{j\in J}f\left(\neg^{L}\eta_{j}\right)$$
$$= \land_{j\in J}\neg^{L}\eta_{j} = \neg^{L}\left(\lor_{j\in J}\eta_{j}\right).$$

Combing with (C2'), we have that

$$f\left(\neg^{L}\left(\lor_{j\in J}\eta_{j}\right)\right) = \neg^{L}\left(\lor_{j\in J}\eta_{j}\right).$$

Thus, $\forall_{j\in J} \eta_j \in \tau_1$ and so τ_1 is an *L*-topology on *X*. For any $\mu \in L^X$,

$$f\left(\mu_{L}^{-}\right) = f\left(\wedge\left\{\neg^{L}\xi\right|\mu \leq \neg^{L}\xi, \xi \in \tau_{1}\right\}\right)$$
$$\leq \left(\wedge\left\{f\left(\neg^{L}\xi\right)\right|\mu \leq \neg^{L}\xi, \xi \in \tau_{1}\right\}\right)$$
$$= \wedge\left\{\neg^{L}\xi\right|\mu \leq \neg^{L}\xi, \xi \in \tau_{1}\right\} = \mu_{L}^{-},$$

i.e., $f(\mu) \le f(\mu_L^-) \le \mu_L^-$. Moreover, if (C4) holds and $\neg^L : L^X \to L^X$ is a bijection, then

$$f(\mu) \ge \wedge \left\{ \eta \in L^{X} \mid f(\eta) = \eta \ge \mu \right\}$$
$$= \wedge \left\{ \neg^{L} \xi \mid \mu \le \neg^{L} \xi, \xi \in \tau_{1} \right\} = \mu_{L}^{-}$$

Therefore, $f(\mu) = \mu_L^-$, *i.e.*, *f* is the left closure operator w.r.t τ_1 .

We can prove in an analogous way that τ_2 is an *L*-topology on *X* and the corresponding *f* is the right closure operator w.r.t τ_2 .

3. Acknowledgements

This work is supported by Science Foundation of Yancheng Teachers University (11YSYJB0201).

REFERENCES

- K. Blount and C. Tsinakis, "The Structure of Residuated Lattices," *International Journal of Algebra and Computation*, Vol. 13, No. 4, 2003, pp. 437-461.
- [2] N. Galatos, P. Jipsen, T. Kowalski and H. One, "Residuated Lattices: An Algebraic Glimpse at Substructural Logics," Elsevier, Amsterdam, 2007.
- [3] L. Z. Liu and K. T. Li, "Boolean Filters and Positive Implicative Filters of Residuated Lattices," *Information Sciences*, Vol. 177, No. 24, 2007, pp. 5725-5738. doi:10.1016/j.ins.2007.07.014
- [4] Z. D. Wang and J. X. Fang, "On v-Filters and Normal v-Filters of a Residuated Lattice with a Weak vt-Operator," *Information Sciences*, Vol. 178, No. 17, 2008, pp. 3465-3473. doi:10.1016/j.ins.2008.04.003
- [5] U. Hohle, "Commutative, Residuated L-Monoids," In: U. Hohle and E. P. Klement, Eds., *Non-Classical Logics and Their Applications to Fuzzy Subsets*, Kluwer Academic Publishers, Boston, Dordrecht, 1995, pp. 53-106.
- [6] A. M. Radzikowska and E. E. Kerre, "Fuzzy Rough Sets Based on Residuated Lattices," In: J. F. Peter *et al.*, Eds., *Transactions on Rough Sets II*, LNCS 3135, 2004, pp. 278-296.
- [7] Z. D. Wang and Y. D. Yu, "Pseudo-t-Norms and Implication Operators on a Complete Brouwerian Lattice," *Fuzzy Sets and Systems*, Vol. 132, No. 1, 2002, pp. 113-124. doi:10.1016/S0165-0114(01)00210-X
- [8] Z. D. Wang and J. X. Fang, "Residual Operations of Left and Right Uninorms on a Complete Lattice," *Fuzzy Sets* and Systems, Vol. 160, No. 1, 2009, pp. 22-31. doi:10.1016/j.fss.2008.03.001
- [9] Y. M. Liu and M. K. Luo, "Fuzzy Topology," World Scientific Publishing, Singapore, 1997.