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Abstract 
 
In this paper, we consider the wave equation with zero order term. We use the compactness uniqueness ar-
gument and some result of I. Lasiecka and D. Tataru in [4] to prove, directly, the exponential decay rate of 
the perturbed energy. 
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1. Introduction 
 
Consider the boundary feed-back system 
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Fix a point 0x  of n . Set 0 = ( ) = x xh h x   and 
 = sup ( ) : .R h x



x   Assume that for some constant 
 we have 0 > 0h

  0 1= : . 0  and = : . 0 .x h x h      h  

For all > 0,  we define the perturbed energy of the 
system (1) by  for all  
Here  is the usual energy defined by  

      = ,E t E t t  0.t 
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In the case of  V. Komornick and E. Zuazua in 
[3] have shown that 

= 0,q
E  decays exponentially. When 

0q  , there is some difficulty to obtain this result since 
we have a lower order term with respect to the energy in 
some multiplier estimate (see (3.5) in [3]). The purpose 
of this paper is to overcome this kind of difficulty, where 
we prove an useful estimate then by the compactness 
uniqueness argument we absorb the lower order term. 
Finally, we employ some result of I. Lasiecka and D. 
Tataru in [4]. 

In all this paper,  is a generic positive constant in-
dependent of the initial data and it may change from line 
to line. 

C

2. Exponential decay rate of E  

Using the multiplier method we can show that the energy 
 of the system (1) is a decreasing function. That is, for 

all  we have 
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The proof of the main theorem involves two lemmas. 
Lemma 1 For all two positive constants  and S 

such that 0

T
>T S T , where 0  is some sufficiently 

large positive constant, we have for 
T

  sufficiently small 
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Here   d = d d .Q x t
Proof. First we have from the definition of E   

         1 1E t E t E t     ,  (4) 

where   is the constant verifying 
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   = dtt y My x E t 


 .  

On the other hand, we have (see (3.5) in [3]) 
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Integrate over  ,S T  use (4) with   sufficiently 
small and by the decreasing of  , we find E
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With   sufficiently small we find the desired result. 

To absorb the lower order term 
2

d
T

S

y Q

  from the  

estimate (3) we apply the compactness uniqueness argu-
ment (see for example [1]). 

Lemma 2 For , where  is sufficiently 
large, we have 
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where  d = d d .t 
Proof. First, we have from (3) 
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On the other hand, by (2)  
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Then, with   sufficiently small, we find  
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by (6), we find 
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Now, we come back to the proof of (5). 
It is sufficient to prove (see [1]] that, for some  

large enough, we have 
0T
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We argue by contradiction. There exists a sequence of 
solutions  ky  of system (1) such that 
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where  represents the energy of . kE ky

Let, for all , k     =k k kE t E t t   , where 

  = dk ktt y My


k x . 

If we apply (7) with   and 

0 , we obtain by (8), (9) and (4) that 
   = ,kE t E t  = 0S

=T T   0kE  is 
bounded and therefore there exists a subsequence  ky  
such that 
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and 
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Using (8) and passing to the limit, we obtain 
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   This contradicts 

(9). 
If 0y  , then  is solution of  = tz y

 0= 0 in 0, ,  ttz z qz T  
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Then, for  sufficiently large, . So,  is a 
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If we multiply the first equation by , integrate over 
 and use the first Green’s formula we find 
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thus . = 0y
We give, now, the proof of the main result. 
Theorem 3 For any initial data  0 1,y y D , the en-

ergy perturbed E  is exponentially stable.  
Proof. If we insert (5) in (3) we find 
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If we choose  sufficiently large we find  
such that 

0T 0 < < 1r
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for all  0

This imply that 
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If we apply (10) repeatedly on the intervals  
, , we get   0 0, 1mT m T  = 0,1,m 
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Using lemma 3.3 in [4] to obtain for all m 
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where  S t  is the solution of the system  

     
   

1 =

0 = 0 .
tS t r S t

S E

 



0
 

Here we have used         1
=S t I p S t S t

    

      
1

1
= 1

r
I I S t

r

 
 
 

,

0

r S t  . 

The last system have the solution  
 then      1= 0r tS t e E 

     1
0 0  for all .r mE mT e E m    

Let  then  0 ,t T

0 0=  where 0 ,t T mT T    

0

 

this imply that  

0 0 0=  where = 2 .t mT T T T       

Then by (11) 

     0 0= .E t E mT E mT      

So 

   
 

 
 

 
2 01 1

0 0
0 0 0

t Tt
r r

T TE t E mT e E e E


   

 
   

   .  

Thus 

    00  for ,   tE t c E e t T  

 2 1= c e r  and 
0

1
= .  r

T
 where 

Remark 4 We can treat exactly in the same way the 
situation of the second order hyperbolic equation with 
variable coefficients, linear zero order term and polyno-
mial growth of the nonlinear feedback near the origin. In 
this case, we use the Riemann geometric approach to 
handle the case of the variable coefficients principal part 
(see [2]] to show, directly, that we have an exponential 
or polynomial decay rate of the perturbed energy func-
tional defined for all > 0  by 

        
1

2= ,E t E t t E t


 


  

where   depends on the behavior of nonlinear damping 
at the origin. 
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