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1. Introduction

Topological indices play a significant role mainly in chemistry, pharmacology,
etc. (see [1]-[7]). Many of the topological indices of current interest in mathe-
matical chemistry are defined in terms of vertex degrees of the molecular graph.
Two of the most famous topological indices of graphs are the first and second
Zagreb indices which have been introduced by Gutman and Trinajstic in [8],
and defined as M, (G)= Z:uey(c)(d(u))2 and M,(G)= ZweE(G)d(u)d(v) ,
respectively. The Zagreb indices have been studied extensively due to their nu-
merous applications in the place of existing chemical methods which need more
time and increase the costs. Many new reformulated and extended versions of the
Zagreb indices have been introduced for several similar reasons (cf. [9]-[17]).

One of the present authors Saleh [18] has recently introduced a new matrix
representation for a graph G by defining the locating matrix Lo(G) over G.

We will redefine this representation as in the following.
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Definition 1 ([18]) Let G=(V,E) be a connected graph with vertex set
V={v,v,,---,v,} . A locating function of G denoted by L(G) is a function
L(G):V(G)— (2" U{0})" such that
L(v,)=v, = (d(vl,vl.),d(vz,v,),---,d(vn,v,. )) , where d(v,.,vj) is the distance
is called the locating

1

between the vertices v, and v, in G. The vector v,
vector corresponding to the vertex v,, where v,-v, is actually the dot product
of the vectors v, and v, in the integers space (Z*U{O})n such that v, Is
adjacentto v,.

The above locating function and huge applications of Zagreb indices moti-
vated us to introduce two new topological indices, namely first and second lo-
cating indices, based on the locating vectors.

Definition 2. Let G=(V,E) be a connected graph with a vertex set
V={v,v,,---,v,} andan edge set E(G). Then we define the first and second
locating indices as

MEG)= Y (v) and ME(G)= 3 v,
v,e¥(G) v <B(G)
respectively.

All graphs in this paper will be assumed simple, undirected and connected
unless stated otherwise. For graph theoretical terminologies, we refer [19] to the

readers.

2. Some Exact Values in Terms of Locating Indices

In this section, by considering Definition 2, we determine the first and second
W,, P, and also for
the join graph G =G, +G, such that G, and G, are both connected graphs

locating indices for the standard graphs K,, C,, K

n? n,m?>

with diameter 2 and Gwill be assumed as C,, C;-free graphs.
Theorem 3. Let G =K, be the complete graph with a vertex set

V(G)=1{w,v,,-,v,}, where n>2. Then M| (K,)=n(n-1) and

n (n - 1)(11 - 2)
—

Proof. Let v, be a locating vector corresponding to the vertex v, eV (G).
Then v, =(a,,a,,--,a,) such that ¢, =0 and ., =1. Thus ("1)2 =n-1.
But we have total 1 vertices in ¥ (G), and so M/ (K,)=n(n-1), as required.

ME(K,)=

On the other hand, for any two locating vectors v, and v, where i# j, we

n(n-1)(n-2

(-1)(-2) o
2

In the next two Theorems, we investigate the cycle C, depends on the status

definitely have v,-v, =n—2. Hence My (K,)=

of n.
Theorem 4. For an even integer n>2,let G=C,. Then
n(n®+2 2(n-2Y
wz(c) = g ()02

>"n

Proof. By labeling the vertices of the cycle C, as {v,v,,---,v,} in the anti-

clockwise direction, we obtain
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v] = 07172:37 "9252_172_25” )1 5
22 2
sz(l,o,l,z, 5__1’292_19 92 )
2
v3: 23130313“'9__2’2_13_9 33 s
2 2 2
vn: 132935"'a27£_15£_29£_2""90 5
22 2 2

n 2
o .
and hence v} =2)2 ;? e It is not difficult to see that each v, has the same

components within different location, and so each v} has the same sum as the

DOI: 10.4236/am.2019.1010057

+1)(n+2)-3n n(n®+2
form of vf:n(n )(’112 )=3n . Therefore Mf(CJz%. In addi-
tion, by the symmetry,
nin n(n
u —| =+1|(n+1) —| =+1 2
: 2( ) 2(2 ) n(n-2)
viov, =2)i(i-1)=2 -1|-2 -1|=
i i+1 ; ( ) 2 12
n*(n-2)
which gives Mr (Cn):%.l
Theorem 5. For an odd integer n23,let G=C,. Then
2 2
n°\n” -1 n(n-=1)(n-2)(n+3
MIE(Cn): ( ) and MZ»C(Cn)z ( )( )( )‘
12 12
Proof. With a similar procedure as in the proof of Theorem 4, we get
v1: 05152739'“9}1_1”1_1_lan_l_z"“sl s
2 2 2
v2: 1a0>192a“'3n_1_1’n_15n_1_13“'72 )
2 2 2
v3: 271:0:19'”7’1_1_27”_1_lsn_l:'”53 5
2 2 2
vn: 1’2’3"“’”_1,”_1_Ln_l_z’_“’o
2 2 2
which implies
n-1
2 2%2 n(nz_l)
V., = 1 = ,
LS 12
c nz(nz_l)
andso M| (C,)= 3 . Also, by the symmetry,
807 Applied Mathematics
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i=2 4
e et R ORI
=2 -1-12 -1+
6 4
_(n—l)(n—2)(n+3)
- 12

which gives the exact value of MY (C,) as depicted in the statement of theo-
rem.ll

Now we will take into account the complete bipartite graphs to determine the
locating indices.

Theorem 6. Let G=K, ,, where 1<n<m. Then
Mf (KW) = 4(712 +m2)—4(n+m)+2nm and My (Kn’m) =2nm(n+m-2).
Proof. For all 1<i<n and 1< j<m, by labeling the adjacent vertices v,

and v, ; of K, ,thelocating vectors v, of v, are given by:
n—1 m n-2 m
v]:(0727”'>2:1’1,'”,1J7v2:[2’0929"'72>1313"'31J:
n-3 m n-1 m
VS:{2,2,0’2’.“’2,1’1,'“,1j’.“’vn:[2"“’2,0’1’1"“’1],
n m—1 n m—2
v,ﬁ.l:[13'"71?092329".72]9vn+2:[17'“31’2’0’23'“32J7“'7
n m—1
vn+m:(1""’1929"'32’0}

In here, for any i=1,2,---,n, we have vl.z=4(n—l)+m and for any

i=n+l,n+2,---,n+m, we get vl.2:4(m—1)+n.Therefore
MIE(Kn’m):n(4(n—1)+m)+m(4(m—l)+n)

:4(;12 +m2)—4(n+m)+2nm.

On the other hand, for any two consecutive locating vertices v,v,, in K,
since v,-v,, =2(n+m-2),weobtain My (Kn’m ) =2nm(n+m-2).M

Since the following consequences of Theorem 6 are very special cases and
clear, we will omit their proofs.

Corollary 7. Let G=K,,, where n>1. Then M (KM) =2n(5n—4) and
My (K,,)=2n"(2n-2).

Corollary 8. Let G=K, . Then M (K,,)=2m(2m~1) and
My (K., )=2m(m-1).

The case for wheel graphs will be investigated in the following result.

Theorem 9. Let us consider G as the wheel graph W, (n24) with n+1
vertices. Then we have M (W,)=4n(n-2) and Mk (w,)=n(6n-15).

Proof. With a similar approximation as in the previous results, by labeling the
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vertices of 1/(G) in the anticlockwise direction as v,v,,---,v,,v,,; such that
v,,, isthe center of the wheel, we obtain

n-3 n-3
YV :(0,1:2329'“925151J9v2 :(1303132929'“’2»1J9
n—-2 n-3
v3 :[2,1,051,27'"7271J7""vn :(1,272:”'52)1a0:1])
Vo :(1,1,---,1 Oj.

Now for any locating vector v, corresponding to a vertex v, (ie{l,2, ,n}) ,
wehave v> =4n+9 and v’ =n.Hence M, (W,)=4n(n-2).
For M, (W,), by labeling the vertices as above, we have

v =(0:192;27"':2>171J9v2 =[190319252)"'92a1j5
n-3

n-3

v, :[2,1,0,1,2,---,2,1J,v4 =[2,2,1,0,1,2,---,2,1],
n-2

- 7

n-1

v5 :[23252)1907152)”.’291j5.."vn :(152)23"'929170)1j5

n n-3
Vo =[l,l,~-,l,0j.

Bearing in mind the permutation of components 1,0,1 in each vector v,,
where i=1,2,---,n, it is easy to see that any two adjacent vertices v, and v,
(i,j € {1,2,--~,n}) satisfy v,-v, =4n-11 and v, v, =2n-4 for
i=1,2,---,n.Hence My (W,)=n(6n-15).1

The result for determining of locating indices on path graphs can be given as
in the following.

Theorem 10. Let G=P, (n>3). Then

n-1

MIL(P,,):z(n_j)(n_j+3l)(2n_2j+l)’

~

and

n=1

wt(p) =28 == (=g =)

= 3 '

Proof. Assume that Gis the graph P, (n>3). By labeling the vertices from
left to right as v,,v,,---,v,

according to the locating function, the correspond-
ing vector for each vertex v, eV (G) (i=1,---,n) will be the form of

v, :(0’1’2,3’...,7[—]),1}2 :(1,0,1,2’...’;1—2),...,

By applying the symmetry on components between the vector pairs v,,v,
and v,,v, ,,--- and so on, we can see that
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n— j+l)(2n—2j+l)

wf (r) =258 - E AL

For M; (P,), we see that

n

n-=1

vwy =(0-1)+(1:0) 4o+ (n—1)(n—2) = i(i-1),

i=1

n-1

v, vy =(1-2)+(0-1)+--+(n=2)(n-3) = i(i-1),

i=l1

n-l1
vyev, =2 i(i-1),
i1

However, by the symmetry between the components of the vectors as men-

tioned above, we get
—ln—j n—1(n—j n—j
uE () =2555(-1) =25 52 - 34
i F P

which can be rewritten as in the form

n— ]+1)(2n 2]+1) (n—j)(n—j+1)]

i () -2 LT ’

- l(n—j)(n—j—i-l)(n—j—l).
3

=2

J=1

This complete the proof.ll

It is known that from the elementary textbooks the join G =G, +G, of
graphs G, and G, with disjoint vertex sets ¥, and V, and edge sets E|
and E, isthe graph union G, UG, together with all the edges joining ¥, and
V,. In the following theorem we find first and second locating indices for the
join graph G.

Theorem 11. Let G=G,+G, such that G, and G, are both connected
graphs with diameter 2 and G is a C, or C;-free graph. Assume that G, has
n, verticesand m, edgeswhile G, has n, verticesand m, edges. Then

MF(G)=2nn, +4(n12 +n—n —nz)—6(m1 +m,),

and
My (G)=2(mn, +myny ) —4(m, +m, )+ 2mn, (n, +n, =2).

Proof. Assume that G satisfies the conditions in the statement of theorem. Let
us label the vertices of the graph Gas

Vs Voo sV s Vi s1o Va2 5 Vi 0

v eV( ) Also let v be

where v,v,,--,v, eV(G,) and v Vis2s' > Vo iy

n+l2

the locating vector corresponding to the vertex vsuch that ve V' (G)):

= 0’1’...’1’ 2’...’2 ’1’...’1 3

deg(v)  m—deg(v)-1 ny
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Then v* =n, +4n —4-3deg(v).
Similarly, for any vertex we ¥V (G, ), the locating vector w corresponding to

w.

w: 1’."’1’0!1!'..’1! 2’."’2

n dcg(w) ny 7deg(w)71

So w’ =n +4n, —4—-3deg(w). Therefore, by the above equalities on v’
and w’, we obtain
M (G)=n,(n, +4n, —4)—6m, +n, (n, +4n, —4)—6m,

=2nn, +4(er2 +n; —n, —nz)—6(m1 +m,).

Now, let us make partition to the set of vertices of Gas

A={u-v:u,veV(G)},
B={u-v:uyveV(G,)},
C={u-v:ueV(G),veV(G,)}

Hence M; (G) can be written as > w-v+y _uv+y _uv.To

u-veC

get > u-v forany two adjacent vertices u,ve ¥V (G,), let us consider

u: 051!".715 27..'52 515".91
Ll Srnlnbi)
deglu) m-deg(u)-1

v=[1,0,2,---,2, 1,---,1 ,1,---,1|.

deg(u)-1 nmy—deg(u)-1 ny
We then have
u-v =2(deg(u)-1)+2(n, —deg(u)-1)+n, =n, +2n, —4

which implies )" u-v=m, (n, +2n —4). With a similar calculation, we get
zweﬁ,uov =m,(n, +2n,—4).

Next, we need to calculate ) u-v.To do thatlet us take u eV (G;) and
veV(G,), and then labeling as

u= O,l,"',l, 2’...’2 ’1’...’1
—_—
deg(u) m—deg(u)-1 ny

y= 1’...’1’ 1,...’1 ’0’1’...’1’ 2’...’2
—_— —_—
deg(u)+1  ny—deg(u)-1 deg(v) ny —~deg(v)-1

Hence we get
u-v =deg(u)+2(n —deg(u)—1)+deg(v)+2(n, —deg(v)-1)
=2(n, +ny)—4—(deg(u)-deg(v))

andso Y u-v=mnn(2(n+n,)—4)=2nm —2nm,.
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After all above calculations, we finally obtain
My (G)=m, (n,+2n,—4)+m, (n, +2n, —4)
+mn, (Z(n1 +ny)— 4) —2n,m, —2nm,
=2(mn, +myn, ) —4(m, +m, )+ 2mn, (n, +n, =2).

Hence the result.l

3. Locating Indices of Firefly Graphs

We recall that a firefly graph F,, , . , (§20,,20 and n-25-2t-120)
is a graph of order n that consists of s triangles, ¢ pendant paths of length 2 and
n—2s—2t—1 pendent edges that are sharing a common vertex (cf. [20]). Let
F, be the set of all firefly graphs F,,, , , . Note that F, contains the stars
S, (E Fyona ), stretched stars (E Fy i ) , friendship graphs i; . Ooj
butterfly graphs (E F;,O,n—Zs—l)' 2

and

In the next theorem we present the first and second locating indices for the
firefly graph. In our calculations, for simplicity, we denote n—2s—-2¢t—1 by a
single letter /

Theorem 12. Let G=F,,; (5s>0,6>0 and [>0) be a firefly graph of or-
der n. Then

M (G) =4l +16ls+26lt — 21 +16s + 525t —10s + 38> — 281,

and

ME(G) =21 +16ls + 131t — 21 + 24s* + 5251 — 205 + 226> ~17t.

Proof.Let G=F,,, (5s>0,/>0 and />0)isa firefly graph of order n. Let

us label the vertices with clockwise direction as
VisVas s Voi1o Vass2o Vasa3o s Vasarat o Vaseis2o
v2.v+1+3 PR v2s+l+t+l s V2.v+1+t+2 > v2s+l+t+3 PR v2x+2t+l+1 H
where v, isthe center of the firefly graph and

V,, V5,000,V | vertices of triangles,
2s

VasrasVasezs' s Vagass - Vertices of pendent edges,
1

VsoiriasVasaresst s Vagarrs - Vertices of pendent path of length 1,

t

Vasrrnrans Vassisazs' s Vasearsrar - Vertices of pendent path of length 2.

t

Now we calculate the corresponding vectors v, for each vertex v, eV (G),

where i=1,2,---,25+2¢+1+1, as in the following:

22, 20
2s 1 t

v[ :(0’1’15."91’1’1’.“3171’1’.“319252!...92'}’
t

v2 :(1’07192727"'72)2)2)..'92’2725..‘)2)3937.‘.93]’

25-2 1 t
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v3 :(191’052929...’2!2!2"..52’2!2!“‘!27353!‘“!3]5

252 ! t t

v4 :[1’2727071’2727...’27272’...727272’...’273935...53j7
t

25—4 1 t

[ ——

254 1 t t

vs :(1527251’0’2’2’...’25272’...5272’27...52’3’35...53J7

v2X+1 :[lazaza'"a2717072725“'7292:27"':293737'”:3J7
t

25-2 ! t

v23+2 :[152329“'92:0,232"“’2,232""’293535"'53]’
t

2s -1 t

v2s+3 :(152527...72!27072’25...92’2’2’...52’3!3’...53J5
t

2s -2 t

v23+[+1 :[1:2725“'7292727."7250,2927“"2,3 3573J

2s 1-1 t t

v2S+1+2 :[192329'"’29232""’290:292a'"32a1’3:39'"’3]

2s 1 -1 t-1

v2s+l+t+l :[1:252a"'32a252a"'32a252""32’033’3:"'33,1j9

2s ! t-1 t-1

v25+1+[+2 :(293737'“93:3’37'":371’373:“"3709474""54],

2s 1 -1 t-1

v23+]+1+3 :(293533'“93a3’39"'a3s3’1s3a3>"'333054’49'"a4js

2s ! =2 =2

v2s+l+2t+1 :[293:3a”‘93’3935"')37373""73a1:474:”')4:0]~

2s 1 t-1 t-1
Suppose that 4,B,C,D <V (G) such that
A= {Vz s V3o s Vognn } ,C= {V2s+1+2s"2s+1+3a”'»V2s+1+z+1} >
B= {v2s+2’v2x+3’“"v2s+l+l } ,D= {V2S+I+t+2 s Vogitiis3s™ "o Vasioraial }

Therefore we can write

ME(G)=2 v+ v+ 2 v+ 30

ved veB veC veD

For the calculation of ZVEAVZ , we have the cases v} =2s+/+¢+4t =25+ +5t

and
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v =2+4(25—2)+4l+4+91 = 4 +85+131 -6,

where i=2,3,---,25+1. Hence

sz :2s+l+5t+25(4l+85+13t—6)

ved

=2s+1+5t+8sl+16s* +26st—12s
=1—10s+5¢+8ls + 265t +16s>.

On the other hand, for the calculation of Zve sz , we have
v =1+4(2s)+4(1-1)+41+9t =41 +8s+131 -3,

where for i=2s+1,2s+2,---,2s+/+1. Thus

Dov?=1(41+8s+13t—3) =41 +8ls+13Ir -3l

veB
Thirdly to calculate Zve Cv2 , we have
v; =2+4(2s)+4l+4(t-1)+9(t—1) =4I +8s+13r 11,

where i=2s+[+2,1,2s+[+3,---,2s+[+¢+1, and so

DvP =1(41+8s+13t—11) =41 +8ts +131* —111.

veC
Finally, for the case of Zve sz , we get
v; =3+9(25)+91+9(r—1)+16(r—1) =91 +18s+25¢ - 22,

where i =V, ;0. Vaiiin3s s Vagiase - ThiS gives

D ov? =1(91+18s+25t—22) =91l +18ts + 25> — 22¢.

veD

By collecting all above calculations, we obtain

ME(G)=2 v +2 v 4D v+ 30’

ved veB veC veD

=[—10s+5¢t+8Is + 265t + 165> + 41> +8Is + 131t -3/
+ 41 +8ts +13¢> =11t + 92 +18ts + 25> — 22¢
= 412 41615 + 261t — 21 + 165> + 525t — 105 + 38> — 28¢,

as required.

Before starting to calculate the index MY (G):ZWE};( &)

remind that for any two adjacent vertices zand vwill be denoted by u ~v.Now,

v,-u;, we should

let us again consider the same subsets 4, B, Cand D of V' (G). Therefore we
firstly have
Sovew =2s(1+2(25—2+1+1)+3t) = 25(2/ +4s+5 3)
v;ed
= 4sl+8s” +10st —6s.
Yoviv, =1(2(2s+1-1+1)+3t) =1(20 + 45 +5—2)
v,eB
=21* +4sl+5It-2I.
Yovv, =t(1+2(2s +1+1—1)+2t) =12 +4s + 41 1)
v;eC

=21l + 4ts + 41 — 1.
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Secondly,
Z{ iV =25(1+4(25—2+1+1)+9t)=2s(4+8s+13t - 7)
v,€A—\v
Vi®Visl
=85/ +16s” + 265t —14s.
Thirdly,

v, v, =t(2+6(2s+1+1-1)+12(1-1))
v;eC,v, €D

=1(6/+12s+18t—16) = 611+ 1215 +181> —161.

Again, by collecting all above calculations, we obtain

L —
M, (G)—ZVI-v,.+Zv1‘vi+Zvl~vl.+ Z Vv, + Z Vv,
v;eAd v;eB v;eC v[eAf{vl} u;€C,v;i €D
Vi AV Vi ®Vitt

=451 +8s” +10st — 65+ 21> + 4sl + 51t — 21 + 2t + dts + 4> — ¢
+8s/+16s% +26st —14s + 6t +12¢s + 18> —16¢
=20% +16ls + 131t — 21 + 245> + 525t —20s + 22¢* —171.

These all above processes complete the proof.ll

Corollary 13. 1) For any friendship graph of order n,
MF(G)=4n"-13n+9 and M; (G)=6n"-22n+16.
2) For any butterfly graph of order n,
M (G)=4n"-10n-6s+6 and M; (G)=8ns—24s—6n+2n" +4.

4. Conclusion

In this paper, two new topological indices based on Zagreb indices are proposed.
The exact values of these new topological indices are calculated for some stan-
dard graphs and for the firefly graphs. These new indices can be used to investi-
gate the chemical properties for some chemical compound such as drugs, bridge
molecular graph etc. For the future work, instead of defining these new topolog-
ical indices based on the degrees of the vertices, we can redefine them based on
the degrees of the edges by defining them on the line graph of any graph. Similar

calculations can be computed to indicate different properties of the graph.
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