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Abstract 
This paper studies the asymptotic normality of the Nelson-Aalen and the 
Kaplan-Meier estimators in a competing risks context in presence of inde-
pendent right-censorship. To prove our results, we use Robelledo’s theorem 
which makes it possible to apply the central limit theorem to certain types of 
particular martingales. From the results obtained, confidence bounds for the 
hazard and the survival functions are provided.  
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1. Introduction and Background 

The model of competing risks has been widely studied in the literature, see e.g., 
Heckman and Honoré [1], Commenges [2], Com-nougué [3], Fine and Gray [4], 
Crowder [5], Fermanian [6], Latouche, A. [7], Geffray [8], Belot [9], Njamen and 
Ngatchou ([10], [11]), Njamen ([12], [13]). In most approaches, the competing 
risks are assumed to be either all independent or all dependent. Here, the 
independent component of the potential risks constitutes an independent 
censoring variable while the other risks are kept as possibly dependent. This 
approach is used by Geffray [8]. Namely, we consider a population in which 
each subject is exposed to m mutually exclusive competing risks which may be 
dependent. For { }1, ,j m∈  , the failure time from the jth cause is a 
non-negative random variable (r.v.) jτ . The competing risks model postulates 
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that only the smallest failure time is observable, it is given by the r.v. 
( )1min , , mT τ τ=   with distribution function (d.f.) denoted by F. The cause of 

failure associated to T is then indicated by a r.v. η  which takes value j if the 
failure is due to the jth cause for a { }1, ,j m∈   i.e. jη =  if jT τ= . The 
following modeling technique is extracted in Njamen and Ngatchou [10]: we 
assume that T is, in its turn, at risk of being independently right-censored by a 
non-negative r.v. C with d.f. G. Consequently, the observable r.v. are  

( )( )min , , ,Z T C ξ ηδ= =  

where { }11 T Cδ ≤=  and where ( ).11  denotes the indicator function. As T and C 
are independent, the r.v. Z has d.f. H given by ( )( )1 1 1H F G− = − − . Let 

( ){ }sup : 1H t H tτ = <  denote the right-endpoint of H beyond which no 
observation is possible. The subdistribution functions ( )jF  pertaining to the 
different risks or causes of failure are defined for 1, ,j m=   and 0t ≥  by  

( ) ( ) [ ], , 1, ,jF t T t j j mη= ≤ = =                  (1) 

When the independence of the different competing risks may not be assumed, 
the functions ( )jF  for 1, ,j m=   are the basic estimable quantities. 

The Kaplan-Meier estimator was developed for situations in which only one 
cause of failure and the independent right-censoring are considered. Aalen and 
Johansen [14] were the first to extend the Kaplan-Meier estimator to several 
causes of failure in the presence of independent censoring. In the present 
situation, the d.f. F may be consistently estimated by the Kaplan-Meier estimator 
denoted by b n̂F . For 1, ,j m=  , the subdistribution functions ( )jF  may be 
consistently estimated by means of the Aalen-Johansen estimators denoted 
respectively by ( )ˆ j

nF , for 1, ,j m=  . Indeed, when the process of the states 
occupied by an individual in time is a time-inhomogeneous Markov process, 
Aalen and Johansen [14] introduced an estimator of the transition probabilities 
between states in presence of independent random right-censoring. The 
competing risks set-up corresponds to the case of a time-inhomogeneous 
Markov process with only one transient state and several absorbing states (that 
can be labeled 1, ,m ). Aalen and Johansen [14] obtained the joint consistency 
of ( )ˆ j

nF  to ( )jF  for 1, ,j m=   uniformly over fixed compact intervals 
[ ]0,σ  for Hσ τ< . They also obtained the joint weak convergence of the 
processes ( ) ( )( )ˆ j j

nn F F−  on fixed compact intervals [ ]0,σ  for Hσ τ< . 
The asymptotic properties of the Kaplan-Meier estimator on the distribution 

function have been studied by several authors (see Peterson [15], Andersen and 
al. [16], Shorack and Wellner [17], Breslow and Crowley [18]). 

In this paper, in a region where there is at least one observation, we are 
interested in providing asymptotic properties of the Nelson-Aalen and 
Kaplan-Meier nonparametric estimators of the functions ( )j∗Λ  and ( )jS∗ . For 

1, ,j m=   in the presence of independent right-wing censorship in the context 
of competitive risks set out in Njamen and Ngatchou ([10], [11]). 

The rest of the paper is organized as follows: Section 2 describes preliminary 
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results and rappels used in the paper. In Section 3, we obtain two laws: In 
Section 3.1, we give limit law of Nelson-Aalen’s nonparametric estimator for 
competing risks as defined in Njamen and Ngatchou [10] and Njamen [12]. In 
Sect. 3.2, we give limit law of Kaplan-Meier’s nonparametric estimator in 
competing risks as defined in Njamen and Ngatchou [10] and Njamen [13]. In 
Section 4, we give the trust Bands, including the Hall-Wellner trust Bands and 
the Nair precision equal bands. 

2. Preliminary and Rappels 

For 0t ≥ , we introduce the following subdistribution functions ( )0H  and 
( )1H  of H by:  

( ) ( ) [ ]0 , 0 ,H t Z t ξ= ≤ =  

and  

( ) ( ) [ ]1 , 0H t Z t ξ= ≤ ≠  

and for 1, ,j m=    

( ) ( ) [ ]1, , .jH t Z t jξ= ≤ =  

The relations ( ) ( ) ( )1
m j
jF t F t
=

= ∑  and ( ) ( ) ( ) ( )1 1,
1

m j
jH t H t
=

= ∑  hold for 
0t ≥  since the different risks are mutually exclusive. The relation 
( ) ( ) ( ) ( ) ( )0 1H t H t H t= +  is also valid for 0t ≥ . The relations that connect the 

observable distribution functions ( )0H , ( )1H  and ( )1, jH  to the unobservable 
distributions F, G and ( )jF  are given by:  

( ) ( ) ( )0

0
1 d ,

t
H t F G= −∫  

( ) ( ) ( )1

0
1 d ,

t
H t G F−= −∫  

and 

( ) ( ) ( ) ( )1,

0
1 d .

tj jH t G F−= −∫  

The cumulative hazard function of T and the partial cumulative hazard 
function of T related to cause j for { }1, ,j m∈   are given for 0t ≥  
respectively by the following expressions:  

( )
( )1

0 0

d d ,
1 1

t tF Ht
F H− −Λ = =

− −∫ ∫                    (2) 

( ) ( )
( ) ( )1,

1,

0 0

d d .
1 1

j j
t tj F Ht

F H− −Λ = =
− −∫ ∫                  (3) 

Let us set estimators for the different quantities. Let ( ) 1, ,
,i i i n

Z ξ
= 

 be n 
independent copies of the random vector ( ),Z ξ . We define the empirical 
counterparts of ( )0H , ( )1H , ( )1, jH  and H, for 1, ,j m∈   by: 

( ) ( ) { }
0

, 0
1

1 11 ,
i i

n

n Z t
i

H t
n ξ≤ =

=

= ∑  
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( ) ( ) { }
1

, 0
1

1 11 ,
i i

n

n Z t
i

H t
n ξ≤ ≠

=

= ∑  

( ) ( ) { }
1,

,
1

1 11 ,
i i

n
j

n Z t j
i

H t
n ξ≤ =

=

= ∑  

( ) { }
1

1 11 .
i

n

n Z t
i

H t
n ≤

=

= ∑  

The relations ( ) ( ) ( ) ( ) ( )0 1
n n nH t H t H t= +  and ( ) ( ) ( ) ( )1 1,

1
m j

n njH t H t
=

= ∑  are 
valid for 0t ≥ . As T is independently randomly right-censored by C, a 
well-known estimator for F is the Kaplan-Meier estimator defined for 0t ≥  by:  

( ) { }

( )( )
, 0

1

11ˆ 1 1 ,
1

i i
n Z t

n
i n i

F t
n H Z

ξ≤ ≠

−
=

 
 = − −
 − 

∏  

where the left-continuous modification of any d.f. L is denoted by L− . The 
Nelson-Aalen estimators of Λ  and of ( )1, jΛ  for 1, ,j m=   respectively are 
defined for 0t ≥  by:  

( )
( )1

0

d
,

1
t n

n
n

H
t

H −Λ =
−∫                         (4) 

( ) ( )
( )1,

1,

0

d
.

1

j
tj n

n
n

H
t

H −Λ =
−∫                        (5) 

The Aalen-Johansen estimator for ( )jF  is defined for 0t ≥  by:  

( ) ( ) ( )1,

0

ˆ1ˆ d .
1

tj jn
n n

n

F
F t H

H

−

−

−
=

−∫  

For all 0t ≥ , the following equalities hold:  

( ) ( )( ) ( )( )ˆˆ1 1 1n n nH t F t G t− = − −  

( )
0

ˆd
,ˆ1

t n
n

n

F
t

F −
Λ =

−∫  

where ˆ
nG , the Kaplan-Meier estimator of G, is defined for 0t ≥  by:  

( ) { }

( )( )
, 0

1

11ˆ 1 1 .
1

i i
n T t

n
i n i

G t
n H Z

ξ≤ =

−
=

 
 = − −
 − 

∏  

3. Results 

In this section, we continue the works of Njamen and Ngatchou [10], Njamen 
[12] and Njamen and Ngatchou [11]. In fact, Njamen and Ngatchou ([10], p. 9), 
studies the consistency of Nelson-Aalen’s non-parametric estimator in 
competing risks, while Njamen ([12], pp. 11-12) studies respectively the simple 
convergence and the uniform convergence in probability of Nelson-Aalen’s 
nonparametric estimator in competing risks; and Njamen and Ngatchou ([11], p. 
13) study the bias and the uniform convergence of the non-parametric estimator 
survival function in a context of competing risks. It is also shown there that this 
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estimator is asymptotically unbiased. For this purpose, we use the martingale 
approach as the authors mentioned above. 

3.1. Limit Law of Nelson-Aalen’s Nonparametric Estimator for  
Competing Risks 

In what follows, we study the asymptotic normality of Nelson-Aalen’s 
non-parametric estimator in competitive risks. For that, considering, for all 

{ }1, ,j m∈   and 0t ≥ , one has the Nelson-Aalen type cumulative hazard 
function estimator (Nelson, [19]; Aalen, [20], Njamen and Ngatchou, [10]) 
defined by  

( ) ( )
( ) ( )

0
ˆ d ,

t
n

J u
t N u

Y u
Λ = ∫                       (6) 

where ( ) ( ){ }011 Y tJ t >= . 
The cumulative risk in a region where there is at least one observation is given 

for all { }1, ,j m∈  , by (see Njamen, [12]. p. 9)  
( ) ( ) ( ) ( )

0
d ,

tj j jL s sλ∗ ∗ ∗Λ = ∫                       (7) 

with ( ) ( ) { }11
i

j
i Z tL t∗

≥=  which indicates whether the individual i is still at risk just 
before time t (the individual has not yet undergone the event). Its estimator was 
defined in Njamen and Ngatchou ([10], p. 7). 

The following theorem gives the limit law of the Neslson-Aalen estimator 
( )ˆ j

n
∗Λ  in competing risks of Njamen (2017, p. 9). This is the first fundamental 

result of this article.  
Theorem 1. 
In a region where there is at least one observation, it is assumed that 
( ) ( ) 1j

iF t∗ <  for { }1, ,i n∈   and { }1, ,j m∈  . Then, for all 0t ≥ , 
( ) ( ) ( ) ( )( ) ( ) ( )ˆ ,j j j

n in t t U t∗ ∗ ∗Λ −Λ →                 (8) 

where ( )j
iU ∗  is a centered Gaussian martingale of variance such that:  

( ) ( )

( ) ( )( )
( ) ( )
( ) ( )0

0 0

d ,

j
i

j
tj i

i j
i

U

u
U t u

y u
α

∗

∗
∗

∗

 =



=


∫
                    (9) 

where for all 0s ≥ ,  
( ) ( ) ( ) ( ) ( ) ( )1 1j j j

i i iy s F s G s∗ ∗ ∗ −   = − −                    (10) 

with ( )j
iG∗  standing for the distribution function of ( )j

iC∗  and ( )j
iα
∗  the 

instant risk function.  
To prove this theorem, we need the Robelledo theorem. In fact, the Rebolledo 

theorem below makes it possible to apply the central limit theorem for certain 
types of particular martingales.  

Theorem 2. (Rebolledo’s Theorem) 
Let 1

nn
iiM M

=
= ∑  a sequence of martingales where i i iM K A= − , iK  
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denotes a counting process and iA  its compensator. Consider the processes  

( ) ( ) ( )
0

d
t n

n nI t f s M s= ∫ , and for all 0ε > , ( ) ( ) ( ){ } ( ), 0
11 d

n

t n
n n f s

I t f s M sε ε>
= ∫ .  

Suppose that nf  and f are predictable and locally bounded 
s−
  processes such 

that  

( ) ( )0 .sup n
s

f f s n− → →∞  

Suppose also that the processes , ,i i nK A f  are bounded. Let’s for all 0t > , 

( ) ( )2
0

d
t

t f s sα = ∫ . If  

1) ( ) ( ),n tI t nα→ →∞ ;  

2) for all 0ε > , ( ), 0,n t
I nε → →∞ .  

Then, 

( )( ) ( ) ( )( ) ( )
0

, 0 d , 0 , ,
t

nI t t f s W s t n> ⇒ > →∞∫  

where ⇒  denotes the weak convergence in the space of continuous functions 
on the right, having a left-hand boundary with the topology of Skorokhod and 
where W is a Brownian motion.  

To prove Theorem 1, it is sufficient to check whether the previous conditions 
of Rebolledo’s Theorem are satisfied:  

Proof. For all { }1, ,j m∈   and 0t ≥ , ( ) ( )j
iM t∗  also decomposes into  

( ) ( ) ( ) ( ) ( ) ( )
0
d d ,

tj j j
i i iM t K t s s∗ ∗ ∗= − Λ∫  

which in turn can be written in terms of ( )j tα  by  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
d ,

tj j j j
i i i iM t K t s L s sα∗ ∗ ∗ ∗= − ∫  

which finally, can be rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d ,j j j j
i i i iK t t L t t M tα∗ ∗ ∗ ∗= +  

where ( ) ( )d j
iM t∗  can be seen as a random noise process. The martingale 

( ) ( )j
iM t∗  above represents the difference between the number of failures due to 

a specific cause j observed in the time interval [ ]0, t , i.e. ( ) ( )j
iK t∗  (see Njamen, 

[12], p.6), and the number of failures predicted by the model for the jth cause. 
This definition fulfills the Doob-Meyer decomposition. 

This martingale is used in Fleming and Harrington ([21], p. 26) and in Breuils 
([22], p. 25). 

Now, to explain the asymptotic nature of the results, we defined, for all 0t ≥ , 
{ }1, ,j m∈  , to pose:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ){ }01 1

, , 11 ,n

n n
n j n j n

i i Y ti i
N t K t Y t L t J∗ ∗

>= =

= = =∑ ∑  

In a subgroup ( )jA , where there is at least one observation, the survival 
function of ( )min ,i i iZ T C=  is defined for all 0t ≥  by:  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 .j j j
Z i iS t F t G t∗ ∗ ∗ −= − −  
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Recall also that ( )j
iF ∗  is the distribution function of iT , ( )j

iG∗  is that of iC ’s 
and ( )( ) ( )1 1 1j j

i iF G∗ ∗   − − −    that of the iZ ’s. From the Glivenko-Cantelli 
theorem, one has:  

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )
0,

sup 1 1 0 .
n

j j
i i

s t

Y s
F s G s n

n
∗ ∗ −

∈

   − − − → →∞   
    (11) 

Otherwise,  
( ) ( ) ( ) ( ){ }>0

11 ,n
n

Y t
J t =  

one has:  
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( )
0 , 1 1 0

1 11 11 0 ,n j j
i i

n

Y t n F t G t
J t n

∗ ∗ −    = − − =         

− = = → →∞


 

from which one obtains (see Theorem 3, p. 11 of Njamen, [12]),  
( ) ( ) ( )1 .nJ t n→ →∞  

Differentiating the martingale ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

d
tj j j j

i i i iM t K L s s sα∗ ∗ ∗ ∗= − ∫ , one 
has:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d ,j j j j
i i i iM t K t L t t tα∗ ∗ ∗ ∗= −  

and from  
( ) ( ) ( )( )d d ,j j

i i tt
M ar M t −

∗ ∗=    

one obtains  
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

d d d

d d .

j j j j
i i i i tt

j j j
i i it

M ar K t L t t t

ar K t L t t t

α

α

−

−

∗ ∗ ∗ ∗

∗ ∗ ∗

= −

= =








 

Consequently, the increasing process of  
( ) ( )
( ) ( )

( ) ( )
0

d , 0,
n

t j
t in

J u
D M u t

Y u
∗= ≥∫  

is given by  
( )( ) ( )
( )( ) ( )

2

20
d , 0.

n
t

t un

J u
D M t

Y u
= ≥∫  

Next, for all 0t ≥  and { }1, ,j m=  , one has  

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )
( )( ) ( )

( ) ( ) ( )

( )( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2

20 0
1 1

2

20
1

2

20

0

d ( ) d

d

d

d .

nnn nt tj j j
i i in ni i

t

n
nt j j

i i
n i

n
t n j

i
n

n
t j

in

J uJ u
n M u n L u u u

Y u Y u

J u
n L u u u

Y u

J u
n Y u u u

Y u

J u
n u u

Y u

α

α

α

α

∗ ∗ ∗

= =

∗ ∗

=

∗

∗

=

=

=

=

∑ ∑∫ ∫

∑∫

∫

∫
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Also, for all 0t ≥  and for all { }1, ,j m∈  , the process  

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( )

( ) ( ) ( ) { }
0

1

ˆ d , 1, , ,
nn tj j j

n i nn
i

J u
n t t n M u R t i n

Y u
∗ ∗ ∗

=

Λ −Λ = = ∀ ∈∑∫   

is a martingale. We apply the central limit theorem for the martingales 
(Rebolledo’s Theorem). In this purpose, we show that the condition of this 
theorem is satisfied by ( )nR t .  

One has, for all { }1, ,i n∈  ,  
( ) ( )
( ) ( )

( ) ( ) { }
0

d , 1, , ,
n

t j
n it n

J u
R n u u j m

Y u
α∗= ∀ ∈∫   

and also by the proof of the Theorem 3 of Njamen ([12], p. 11), we have:  
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1 1 , 1, .
n

j j n
i i

Y u
F u G u J u n

n
∗ ∗ −→ − − → →∞   

So that, for all { }1, ,j m∈  , when n →∞ ,  
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

0

0

d

d
, ,

1 1

n
t j

n it n

j
t i

j j
i i

J u
R u u

Y u
n

u u
t n

F u G u

α

α
β

∗

∗

∗ ∗ −

=

→ = →∞
− −

∫

∫

 

which is determinist. Thus, the first condition of Robelledo Theorem holds. 
To check the second condition, for all 0>  and 0t ≥ , define  

( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ), 0
11 d ,n

n

n
t n

n n J u
n

Y u

J u
R t n M u

Y uε   > 
  

= ∫


 

where for all 1, ,j m=  , ( ) ( ) ( ) ( )1
nn j

iiM u M u∗
=

= ∑ . 
We have to show that as n →∞ , ,n t

Z   converges to 0 in probability. 
One has, for all 0t ≥ ,  

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )

( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

, 20

20

0

11 d

11 d

11 d

0, ,

n

n

n

n

n

n

n
t n

n t J u un n
Y u

n
t n j

iJ un n
Y u

n
t j

in J u
n

Y u

J u
R n M

Y u

J u
n Y u u u

Y u

J u
n u u

Y u

n

ε

α

α

  > 
  

∗
  > 
  

∗
  > 
  

=

=

=

→ →∞

∫

∫

∫









 

because  
( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 , .

1 1

n

n j j
i i

J u
n n

Y u F u G u∗ ∗ −
→ →∞

− −
  
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Then  
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )1 0, .
n n

n n

J u J u
n n n

nY u Y u
= → →∞  

Thus, the second condition of Robelledo Theorem holds. 
The conditions of the Rebolledo Theorem are verified and by consequently, 

for all 0t ≥ ,  

( )( ) ( ) ( )( ) ( )
0

, 0 d , 0 , ,
t

nR t t f s W s t n> ⇒ > →∞∫  

with ( ) ( )2
0

d
t

t f s sγ = ∫ . 
Finally, for all 0t > ,  

 ( ) ( ) ( ) ( ) ( )( ) ( )
0

d 0, , .
t

nR t R t f s W s t nγ⇒ = →∞∫ 
 

This ends the proof of the Theorem 1.  
The following subsection gives the asymptotic law of nonparametric 

Kaplan-Meier’s estimator of the survival function in the competing risks of 
Njamen and Ngatchou ([10], p. 13). 

3.2. Limit Law of Kaplan-Meier’s Nonparametric Estimator in  
Competing Risks 

The Kaplan-Meier estimator of the survival function (Kaplan and Meier, [23]) is 
defined by 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
ˆ ˆ1 1 ,

n n

n n n
s t s t

J s N s
S t s

Y s≤ ≤

 ∆
= − ∆Λ =  − 

 
 

∏ ∏  

where ( )ˆ
n tΛ  is the Nelson-Aalen estimator and where, for a process ( )X t  

continuous to the right with a left limit such that  

( ) ( ) ( ).X t X t X t−∆ = −  

For all 1, ,j m=  , an estimator of the variance of ( ) ( ) ( ) ( )ˆ j j
nS t S t∗ , where 

( )jS∗  is the survival function associated with the subgroup ( )jA  is given by  

( ) ( )
( ) ( )
( )( ) ( )

( ) ( )2
20

ˆ d .
n

tj n

n

J s
t N s

Y s
σ = ∫  

The variance of ( ) ( ) ( ) ( )ˆ j j
nS t S t  approximated by that of ( ) ( ) ( ) ( )ˆ j jS t S t∗  

is:  
( ) ( )
( )

( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) { }
2

0

ˆ ˆ
1 1

( )

ˆ
d 1, , .

j j
n n

j j

j n
t n j

ij n

S t S
t

S t S

S s J s
s s i n

S s Y s
α

∗ ∗

−
∗

∗

  
− = −  

     

  = × ∀ ∈ 
  

∫ 

 

  (12) 

The estimator of the corresponding variance of ( ) ( )ˆ j
nS t  is given by  

( ) ( )( ) ( ) ( ) ( ) ( ) { }
2 2ˆ ˆ ˆ ˆ 1, , .j j j

n n iS t S t t i nσ = ∀ ∈              (13) 
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The following result concerning the asymptotic law of nonparametric 
Kaplan-Meier estimator and constituted the second fundamental result of this 
paper:  

Theorem 3. 
In an area where there is at least one observation, if we assume that for all 
{ }1, ,j m∈   and { }1, ,i n∈  , 

1) for all [ ]0,s t∈ ,  
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )2

0
d ,

n
s j j

i in

J u
n u u u n

Y u
α σ∗ ∗→ →∞∫   

2) for all 0ε > ,  
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
0

11 d 0 ,n

n

n
t j

in J u
n

Y u

J u
n u n

Y u ε

α ∗
  > 
  

→ →∞∫   

3) for all 0t > ,  
( ) ( )( ) ( ) ( ) ( )

0
1 d 0 .

t n j
in J u u u nα∗− → →∞∫   

Then, for all 0t >  and { }1, ,j m∈  , the non-parametric estimator ( )ˆ j
nS∗  

checks  
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )ˆ , ,j j j j

n in S t S t U t S t n∗ ∗ ∗ ∗− ⇒ − × →∞  

where ( )j
iU ∗  is the center Gaussian martingale and where ⇒  denotes the 

weak convergence in the space of continuous functions on the right, having a 
left-hand boundary with the topology of Skorokhod.  

Proof. To prove this theorem, it suffices to show that it satisfies the conditions 
of the Rebolledo Theorem. 

In an area where there is at least one observation, by posing, for all 
1, ,j m=  , 1, ,i n=  ,  

( ) ( ) ( )( )expj j
n nS t∗ ∗= −Λ   

where ( ) ( ) ( ) ( ) ( )
0

d
tj n j

n iJ u u uα∗ ∗Λ = ∫ . 

For [ [0,t τ∈  and 0τ > , we have for all 1, ,j m=   and 1, ,i n=  ,  

( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2

20

2

ˆˆ
1 d

, .

j nj
t n jn

ij nj
n nt

j
i

S u J uS
n n u u

S Y uS u

n

α

σ

−
∗

∗ ∗

∗

 
− =  

 

→ →∞

∫






 

By the proof of Theorem 3 of Njamen ([12], p.11), we deduce that  
( ) ( )
( ) ( )

( )
ˆ

1, .
j

n

j
n

S u
n

S u

∗ −

∗
→ →∞



  

Hence the 1st condition of Robolledo’s Theorem. 
For the second condition of Robolledo’s Theorem, condition B is similar to 
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the proof of Theorem 1 above, we find that for all 0ε > ,  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
2

20

ˆ
11 d 0, .n

n

j n
t n j

inj J s
nn

Y s

S u J u
n u u n

Y uS u ε

α
−

∗
 ∗  > 
  

→ →∞∫


 

So, for each 0t > ,  
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
0

ˆ
d ,

j n
t n n j

ij n
n

S u J u
n M u U t

S u Y u

−
∗

∗
⇒∫



 

where ( ) ( ) ( ) ( )1
nn j

iiM u M u∗
=

= ∑  and where  

 ( ) ( ) ( ) ( )( )20, .j j
iU t tσ∗ ∗

 
Finally,  

( ) ( )
( ) ( )

( ) ( )
ˆ

1 .
j

jn
ij

n

S t
n U t

S t
∗

∗

 
 −  ⇒ −
 
 


 

The fact that ( ) ( ) ( ) ( )j j
nS u S u∗ ∗≤ , for all [ [0,u s∈  and condition C implies:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( )( )

( )( ) ( ) ( )
( )

0

0

1 d

1 d

0 .

j j
t j j

j j
n n

t j
i

S s S u
n n u

S u S u

n J u u u

n

α

∗ ∗
∗ ∗

∗ ∗

∗

− ≤ Λ −Λ

≤ −

→ →∞

∫

∫



 



 

As ( ) ( ) ( ) ( )j j
nS t S t∗ ∗→  when n →∞ , we deduce that:  

( ) ( ) ( )( ) 0, .j j
nn S S t n∗ ∗− → →∞

  

It follows that: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

ˆ

ˆ

ˆ
( )

, .

j j
n

j j j j
n n n

j j
n n j j j

n nj
n

j j
i

n S t S t

n S t S t n S t S

n S t S t
S n S t S

S

U t S n

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗
∗

∗ ∗

−

= − + −

−
= + −

⇒ − →∞

 



 



 

This ends the proof of the theorem.  

4. Confidence Bands of Survival Function 
4.1. Confidence Intervals 

For ( )0,1α ∈ , we wish to find two random functions Lb  and Ub  such that 
0t∀ > ,  

( ) ( ) ( ) 1 .U Lb t S t b t α≥ ≥ = −    

Recall that from the previous sections, for all { }1, ,j m∈  , 
( ) ( ) ( ) ( )( ) ( ) ( )ˆ j j j

nn S t S t S t∗ ∗ ∗−  converges in distribution to a Gaussian 
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martingale centered (see Theorem 3 above). As a consequence, ( ) ( )ˆ j
nS t∗  is 

asymptotically Gaussian centered on ( )jS∗ . Given the above results, the 
estimated standard deviation of ( )jS∗ , noted ˆ

tSσ  is given for all 0t ≥  by:  

( )
( ) ( )( )

( ) ( )
*
2

2

ˆ ˆ
ˆ .

ˆt

j
n

S j
n

S t
t

S t
σ

∗

∗

∗
=
 
 


                     (14) 

Therefore a threshold confidence level ( )100 1 %α−  can be built for all 
0t ≥  and { }1, ,j m∈  , by:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ, .

t t

j jj j j j
n n n nS S

S t Z t S t S t Z t S tα ασ σ∗ ∗∗ ∗ ∗ ∗
− −− +    (15) 

Here 1 2z α−  is the 1 2α−  percentile of a standard normal distribution. 
A threshold confidence interval ( )100 1 %α−  can also be obtained for all 
{ }1, ,j m∈  , by:  

( ) ( ) ( )
*2

ˆ ˆ ,
t

jj
n S

S t zα σ ∗∗ ±                       (16) 

where 2zα  is the rank of fractile 100 2α×  of the standardized normal 
distribution. 

A disadvantage of the construction of the confidence interval (CI) with the 
previous formula is that the bound can be obtained external to the interval [ ]0,1 . 
A solution is to consider a ( ) ( )jS t∗  { }( )1, ,j m∈   transform via a continuous 
function g, differentiable and invertible such that ( ) ( )( )jg S t∗  belongs to a 
more wide space ideally unbounded and best approximate a Gaussian random 
var iable .  The de l ta  method then a l lows  for  the  es t imat ion of  

the standard deviation of the object created by ( )
( )

*ˆ
t

j

g S
σ ∗  defined by 

( )
( ) ( ) ( )( ) ( ) ( )**

ˆˆ ˆ
tt

j jj
n Sg S

t g S tσ σ∗ ∗∗′= . The confidence interval associated with the risk 

threshold α  is built as for all { }1, ,j m∈  ,  

( )( ) ( )( ) ( ) ( )( )*
1

2
ˆ ˆ ˆ .

t

jj j
n n S

g g S z g S tα σ ∗∗ ∗− ′±  

The most common transformation is ( ) ( )* *log logt tg S S =   , and in this case 
we have: for all { }1, ,j m∈  , 

( )
( )

( )

( ) ( )

( )

( )

( ) ( )

*
2

*

*

ˆ
exp

ˆ ˆlog

log log

ˆ
ˆˆ and .ˆ ˆlog

j

St
jj

n t
t

t

j zj
S SSj

nj jS
n n

S
S S

α

σ

σ
σ

∗

∗∗

 
 
 ∗ ±∗     ∗   

  ∗ ∗−  

=  

Remark 1. It is also possible to use log, square-root or logit-type 
transformations in most software defined respectively by for all { }1, ,j m∈  , 

( )( ) ( ) ( )( ) ( ) ( )( )
( )

( )
1log , sin , log .

1

j
j j j j j t

t t t t t j
t

S
g S S g S S g S

S

∗
∗ ∗ ∗ ∗ ∗−

∗

   = = =       −  
 

4.2. The Confidence Bands 

The challenge now is to find an area containing the survival function with 
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probability 1 α− , or a set of bounds ( )Lb t  and ( )Ub t  which, with 
probability 1 α− , contains ( ) ( )jS t∗  for all [ ],L Ut t t∈  and { }1, ,j m∈  . 
Among the proposed solutions, the two most commonly used are firstly Hall and 
Wellner ([24]) bands and secondly, strips Nair ([25]) (“equal precision bands”). 
If kt  is the maximum time event observed in the sample, then for the Nair 
bands, we have the following restrictions 0 L U kt t t< < ≤ , however, boter 
Hall-Wiener may authorize the nullity of Lt , let 0 L U kt t t≤ < ≤ . Technically 
obtaining these bands is complex, and their practical utility in relation to the 
point intervals is not obvious.  

Remark 2. The starting point uses the fact that for all { }1, ,j m∈  , 
( ) ( )
( ) ( )

ˆ
1

j
n

j

S t
n

S t

∗

∗

 
 − 
 
 

 converges to a centered Gaussian martingale. We then go 

through a transformation making appear a Brownian bridge ( ) [ ]{ }0 , 0,1W x x∈ , 

weighted by 
( )
1
1x x−

 at Nair, to retrieve the suitable critical value.  

In particular, because of the joined character, for a given t their extent is wider 
than that of the corresponding point IC. In what follows we give the expressions 
obtained in the absence of transformation.  

4.2.1. The Hall-Wellner Confidence Bands 
Under the assumption of continuity of survival functions ( ) ( )jS t∗  and 

( ) ( )jC t∗  respectively related to the event time and the time of censorship, Hall 
and Wellner show that for every [ ],L Ut t t∈ , the IC joined the risk threshold α  
is given for all 1, ,j m=   and 0t ≥  by:  

( ) ( ) ( ) ( ) ( ) ( ) ( )*

1
22ˆ ˆˆ, 1 ,

t

jj j
n L U nS

S t h x x n n t S tα σ
−

∗∗ ∗ ± +
 

         (17) 

where Lx  and Ux  are given by  
( ) ( )
( ) ( )( )

*

*

2

2

ˆ
, for ,

ˆ1

ti

ti

j
S

i
j

S

n t
x i L U

n t

σ

σ

∗

∗
= =

+
 

and ( ),L Uh x xα  is bounds checking 

( ) ( )0sup , .
L U

L U
x x x

W x h x xαα
≤ ≤

 
= > 

 
  

4.2.2. The Nair Precision Equal Bands 
Using a weighted Brownian bridge will notably modify the bounds to IC. For 

( )0,1α ∈ , [ ],L Ut t t∈  and all { }1, ,j m∈  , they are then given by: 
( ) ( ) ( ) ( )

*
ˆ ˆ, ,

t

jj
n L U S

S t e x xα σ ∗∗ ±                    (18) 

where ( ),L Ue x xα  satisfies 

( )
( )

( )
0

sup , .
1L U

L U
x x x

W x
e x x

x x
αα

≤ ≤

 
 = >
 − 

  
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If we compare (12) and (14), we see that the bounds relating to Nair ([25]) 
bands are proportional to the bounds IC and simply correspond to a risk 
adjustment threshold used in the past. 

5. Conclusions and Perspectives 

In this paper we have studied the asymptotic normality of Nelson-Aalen and 
Kaplan-Meier type estimators in the presence of independent right-censorship 
as defined in Njamen and Ngatchou ([10], [11]) and Njamen [12] using 
Robelledo’s theorem that allows applying the central limit theorem to certain 
types of particular martingales. From the results obtained, confidence bounds 
for the hazard and the survival functions are provided. 

As a perspective, obtaining actual data would allow us to perform numerical 
simulations to gauge the robustness of our obtained estimators. 
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