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Abstract 

In this paper, the case of the interaction of a flat compression pulse with a 
layered cylindrical body in an infinite homogeneous and isotropic elastic me-
dium is studied. The problem by the methods of integral Fourier transforms 
is solved. The inverse transform numerically by the Romberg method is cal-
culated. With a time of toast and a decrease in momentum, the accuracy is 
not less than 2%. Taking into account the diffracted waves the results are ob-
tained. 
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1. Introduction 

Various issues related to the interaction of bodies with a continuous medium 
(the creation of effective mathematical models is, theoretical and experimental 
methods for the study of non-stationary problems of dynamics) are described in 
monographs [1] [2] [3] [4] [5]. We have to deal with these questions when solv-
ing a wide variety of tasks. Their successful solution is associated with the fur-
ther harmonic interaction of various sciences: aerodynamics, the theory of elas-
ticity and plasticity, soil mechanics and underground structures, and others. The 
range of tasks for solving which is necessary to take into account the influence of 
the environment on the behavior of structures, structures and systems is conti-
nuously expanding: problems of pipe transport, defect scope, calculation of ele-
ments of nuclear reactors, seismic effects and others. Despite the great successes 
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achieved recently in this area, many problems still remain unresolved. The 
problems of unsteady interaction of deformable bodies with elastic media and 
with the ground are especially poorly studied. In the future, it is necessary to pay 
more attention to the following issues: building more accurate schemes (models) 
of the interaction of waves (of varying intensity) and bodies with deformable 
barriers; development and creation of computing systems based on modern 
computers for solving applied dynamics problems. 

The problems of the no stationary dynamics of a homogeneous isotropic li-
nearly elastic medium in cylindrical coordinates are given in the work of C. 
Chree [6]. Some problems of the dynamics of elastic cylindrical bodies are given 
in [7] [8]. In [9] [10], using the Laplace transform in time, the problem of radial 
oscillations of a thick-walled sphere immersed in an infinite elastic medium was 
investigated by specifying the uniform unsteady pressure. The stress-strain state 
of a hollow elastic cylinder surrounded and filled with acoustic or elastic media, 
under the action of non-stationary loads applied on the side surfaces, was inves-
tigated in [11] [12]. 

Some issues related to the diffraction of no stationary waves on cavities and 
absolutely rigid obstacles are considered in the works of A.N. Guzz, V.D. Ku-
benko and M.A. Cherevko [13] and Y.H. Pao and C.C. Mowa [14]. Works de-
voted to these problems are partially cited in the reviews of A.G. Gorshkov [15]. 
A general approach to solving plane diffraction problems in elastic media, based 
on the method of boundary integral equations, was developed by G.D. Manos 
and D.E. Beskos [16], D.M. Cole, D.D. Kosloff and J.B. Minster [17]. 

The influence of various factors on the behavior of a smooth infinitely long 
thin cylindrical shell during the diffraction of a plane shock wave on it (a plane 
problem) was studied by many authors [18]-[23]. The interaction of a plane mo-
bile shock wave with a thin-walled structure consisting of coaxial cylindrical 
shells was considered in [24] [25]. Recently, considerable attention has been paid 
to the problems of non-stationary dynamics associated with the calculation of 
engineering structures for the action of seismic loads. The works of K. Fujita [26] 
are devoted to determining the response of some types of structures to seismic 
effects (Harouma and G.W. Housnera [27]). The creation of universal algo-
rithms for calculating piecewise-homogeneous cylindrical bodies under the in-
fluence of non-stationary loads is an actual unsolved problem. 

2. Statement and Methods for Solving the Problem of the  
Interaction of Non-Stationary Waves with a Cylindrical  
Body with a Liquid 

The problem of the action of non-stationary waves on layered cylindrical bodies 
with radius Rk is considered. The motion vector of the medium is connected 
with the potentials Nϕ  and kψ  by means of the formulas 

( ) ( )1,2, ,k k kgrad rot k Nϕ= + =u ψ . 

Suppose that the elastic medium is in plane strain conditions in the plane. In 
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polar coordinates ,r θ , the basic ratios of the plane problem are 

1 1,k k k k
rk ku u

r r r rθ
ϕ ψ ϕ ψ

θ θ
∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂
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here kλ  and kµ  the Lame elastic constants of the k-th layer; kρ —density of 
the material of the k-th layer; , ,rrk k r kθθ θσ σ σ —components of the stress tensor 
of the k-th layer. 

Non-stationary stress waves ( )i
xxσ  and ( )i

xyσ , whose front is parallel to the lon-
gitudinal axis of the cylinder, fall on a layered cylinder (Figure 1). 

The basic equations of the theory of elasticity for this problem of plane strain 
in displacement potentials are reduced to the following:  

( )
2

2
2 2

2
2

2 2

1 ; 1,2, ,

1 .

к
j

j
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j
j

j

j N
c t

c tρ
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∂
∇ = =

∂

∂
∇ =

∂



                (1) 

where Uj and jψ  are the displacement potentials of the j-th layer, срj and jсβ
—are the phase velocities of the extension and shear waves of the j-th layer. 

Suppose that time t is counted from the moment when the incident pulse 
touches the surface of the external (N − 1)-th cylinder at point Nr r= , 0θ = . 
Until that moment, peace remains. In accordance with the foregoing, the task of 
finding the field of diffracted waves and the stress-strain state caused by the in-
cident pulse [17] 

( ) ( )
( ) ( ) ( )

0

0

ˆ ,

ˆ ˆ,
1

i
xx

i N
xy N PN

N

H t

H t t t x r C

σ σ

ν
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ν

=

= = − +
−

              (2) 

0σ —the amplitude of the incident waves; ( )ˆH t —the unit Heaviside func-
tion, reduces to solving differential Equations (1). Boundary conditions on the 
contact of two cylindrical surfaces should be equal to displacement and tension 

( ) ( ) ( )1 1 1

1 1 1

: ; ; ;

; ; .
к rrк r к rzкrr к r к rz к

к к к к к к

r а

u u w w
θ θσ σ σ σ σ σ

ϑ ϑ
+ + +

+ + +

= = = =

= = =  

At infinity ( r →∞ ), the perturbations must die out. If Nϕ  and Nψ —diverging 
waves, then 

0, 0N Nϕ ψ→ →  at 2 2 2x y z+ + →∞ . 

The problem is solved under the following zero initial conditions [19]: 
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Figure 1. The effect of non-stationary waves on a layered body. 
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             (3) 

where 1, 2, ,j N=  ; Nt = j—is the number of cylindrical layers; j N=
—environment. 

It is required to determine the dynamic stress-strain state of the cylinder and 
its environment caused by the incident voltage pulse (2). 

3. Solution Methods 

To solve the plane problem, the integral Laplace transform (or Fourier transform) 
over time t is often used. When applying the integral Laplace transform for a 
function ( )f t  that is integral in the sense of Lebegue on any open interval 
0 t T< < , is expressed by the formula 

( ) ( ) ( )
0

e dL stf s f t t L f t
∞

−= =   ∫  

The function ( )Lf s  is usually called the image (transform ant), the function 
of the ( )f t —original. The inversion of the Laplace transform is determined by 
the formula 

( ) ( ) ( )11 e d
2π

i
st L L

i

f t f s s L f s
i

γ

γ

+ ∞
−

− ∞

 = =  ∫ , 

where the integral is taken along the path to the right of the singularities of the 
integrand. Using the Laplace transform problem, the interaction of non-stationary 
waves with a layered cylindrical body is a time-consuming task. Under the 
integral function is complex and has a complex form. Therefore, to find the ex-
act expression of the original and bring to the numerical calculation is almost 
impossible. This method is applied in the work of V.D. Kubenko [1] for the 
problem of interaction of non-stationary waves of the cavity and obtained some 
particular solutions. Therefore, to solve this problem, the Fourier integral trans-
form is used [28]. 

Integral Fourier transform. The stress field caused by the forces (2) satisfies 
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the wave Equation (1), i.e. every cylindrical layer satisfies it. To solve the above 
problem, apply the t-integral Fourier transform with respect to time 

( ) ( ) ( ) ( )1 1d ; d
2π 2π

F i F iξ ξφ ξ φ φ φ ξ ξ
+∞ +∞

− Ω Ω
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Using zero initial conditions, we obtain the depicted problem 
2 2
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                 (5) 

where Ω —Fourier transforms parameter; ,F F
j jϕ ψ —image of the Fourier 

transform of functions ( )j tϕ  and ( )j tψ  respectively. Then the solution of 
Equations (4) and (5) will be 
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Coefficients 0 , , , , ,n nj nN nj nj nNA A A B С C —determined from the boundary con-
ditions (7)-(8), which are placed on the contact of two cylindrical surfaces. 
Boundary conditions at nr R=  taking into account the incident waves (1) take 
the form 

а) ( )
( )1 ,i FF F

rrN rrN rr Nσ σ σ −+ =  
b) ( )

( )1 ,i FF F
r N r N r Nθ θ θσ σ σ −+ =  
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∞

=
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01 0e .PNP N Cσ σ − Ω=  

Substituting (5) and (6) into the boundary conditions (7) and (8), we obtain a 
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system of complex algebraic equations with ( )4 3j +  unknowns in the form 

[ ]{ } { }Z g P= ,                        (9) 
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jZ   —4 × 4 matrix, the elements of which are of the nth order first and second 
kind Bessel and Henkel functions; { }g —Vector columns of unknown coeffi-
cients; { } { }T

1 2 3 40,0, ,0, , , ,N N N NP P P P P−  —vector columns characterizing the 
falling loads, where 1 2 3 4, , ,N N N NP P P P  corresponds to ( ) ( ) ( ) ( ), , ,i F i F i F i F

rrN r N rN Nu uθ θσ σ . Let 
the stepped waves interact with a cylindrical hole when 0r r=  and a stress-free 
hole ( )0rr rr a r aθσ σ

= =
= = . The only voltage that does not vanish at 0r r= , is 

the ring voltage 0nθθσ σ . Applying the Fourier transform to the equation of 
motion and the boundary conditions [5], we obtain the expression for ring 
stresses at ( )0 cosrr H t ntσ σ= , ( )0 sinr H tθσ τ θ= : 
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   

 

Expression ( )1,2,3,4,5k k∆ =  given in [20]. The improper integral (10) is 
solved numerically using the developed algorithms [21]. Practically, the calcula-
tion (10) on a computer can be carried out as follows. Since infinite numerical 
integration is unthinkable, the integral (10) is replaced by  

( )
[ ]

1 01 1*

1 2 3 4 5

1 e d .
2π

b

a

i t
n

rω

θθ
ω

σ − Ω∆ Ω
= Ω

Ω ∆ ∆ + ∆ ∆∫             (11) 

Values of the limits of integration ,a bω ω  are selected depending on the type 
of incident pulse. Numerical values of spectral density ( ) ( )i F

rrσ Ω  from (9) of 
the final incident pulse; only in a small frequency range is significantly different 
from zero. Limits of integration ,a bω ω  should be selected in accordance with 
this range and taking into account the required accuracy. At the same time, the 
question remains open as to what error the neglect of the contribution of inte-
grals of the type (10), within the limits of integration of −∞  to aω  and from 

bω  to ∞ . The numerical summation of the infinite sum (10) is, of course, also 
impossible. However, it was shown in [22] that for sufficiently large n (the 
n-order of the Bessel and Henkel functions), we can construct an asymptotic re-
presentation of the general term of this sum. As a result, it becomes possible to 
either estimate the error of the transition from an infinite to a finite sum, or ap-
proximate summation of an infinite sum. In view of the above, we keep in (10) 
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an infinite sum. The calculation by the considered method is reduced to the 
construction of two calculation algorithms: coefficients ( )( ), 1, 2keZ k eΩ =  (11) 
and integral (10). The first and second algorithms do not depend on the type of 
mathematical model of the object.  

4. Calculation Algorithm 

Magnitude 0nθθσ σ  from (11) is calculated on a computer as follows. All 
numeric parameters required for calculations are specified. The following no-
tation is introduced: 1x = Ω , 2 1x n= Ω , where 1 1 1P Sn C C= ; 1PCωαΩ = . 
For two values ( )1,2kx k =  Bessel function is determined ( )nI ξ  и 

( )( )1,2, ,10nN nξ = 
. These arrays are calculated by the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

2 1
, ,n n n n n n

n
u u u u I Nξ ξ ξ ξ ξ ξ

ξ − −

−
= − =       (12) 

As shown in [23], the absolute value of the Bessel function decreases rapidly 
with increasing index, starting from the moment when the index exceeds the 
argument. In this case, the direct use of formula (12) does not lead to the goal. 
Nevertheless, the calculation by (12) is possible, if by the recurrence formula 

( ) ( ) ( ) ( )1 2

2 1
n n n

n
I I Iξ ξ ξ

ξ + +

−
= −                 (13) 

in the direction of decreasing index (from n = N to n = 0), an auxiliary function 
is calculated ( )nI ξ . To calculate the integral (11) of the integrand function 

( ) ( ) ( )( )1 0 1 0 1 1 2 3 4 5, , , ei tr t rχ ΩΩ = ∆ Ω Ω ∆ ∆ + ∆ ∆  

can be integrated numerically by writing it in the form 

( ) ( ) ( )1 0 1 0 2 0, , , , , , .r t x r t ix r tχ Ω = Ω − Ω  

The falling pulse ( ) ( )i
xxσ Ω  [23] is described by the expression  

( ) ( ) ( ) ( )1 2, , ,i
xx f t if tσ Ω = Ω − Ω  

where ( ) ( )1 2, , ,f t f tΩ Ω —real functions. Using Euler’s formula for ( )xp i tΩ
, 

dividing (18) into real and imaginary (19) parts, after some transformations we 
get 

( ) ( )1 2
1 , , d
2πn x t ix tθθσ

∞
∗

−∞

= Ω − Ω Ω  ∫             (14) 

Dividing the integral (14) into two terms 

( ) ( ) ( ) ( )
0

1 2 1 2
0

1 1, , d , , d
2π 2πn x t ix t x t ix tθθσ

∞

−∞

= Ω − Ω Ω+ Ω − Ω Ω      ∫ ∫ .  (15) 

And replacing the variable in the first integral Ω  on −Ω , will have 

( ) ( ) ( ) ( )1 1 2 2
0

1 , , , , d .
2πn x t x t i x t x tθθσ

∞

= Ω − −Ω − Ω − −Ω Ω      ∫    (16) 

Since (16) is the inverse Fourier transform and contains the real value in the 
left-hand side [24], the relation  

https://doi.org/10.4236/am.2019.106031


S. I. Ibrohimovich et al. 
 

 

DOI: 10.4236/am.2019.106031 442 Applied Mathematics 

 

( ) ( ) ( ) ( )1 1 2 2, , ; , , .x t x t x t x tΩ = − −Ω Ω = − −Ω             (17) 

Considering it, from (17) we finally get 

( ) ( )1 2
2 , , d .
π

b

a

n x t ix t
ω

θθ
ω

σ ∗ = Ω + Ω Ω  ∫  

The value of integral (17) can be found numerically using the Romberg me-
thod [9] [10]. The basic algorithm of this method is given in the first chapter. 
When calculating the integral using the Romberg method, one has to repeatedly 
calculate the integrand. The inverse Fourier transform for some image, the orig-
inal of which is known in advance, showed that with an integration step length 
of 0.01, the error of the procedure does not exceed 0.3% - 0.5%. 

Numerical results are presented for the ring voltage at 0r r= , caused by the 
incident flat shock wave with a stepped distribution of voltage over time. Nu-
merical results were obtained for 0.25ν = : 1 1 0.5S PС С = ; 0 и 90θ =   . To 
determine the integral (17) of the boundary of the integral aω  and bω  have 
chosen 410 , 1,2,3,4,5N N− − =  , а step 0.1,0.01,0.001h = . At 5N =  and 

6N =  the value of the ring voltage differs from the previous one by the fifth 
decimal place. Change *

θθσ  depending on the τ  at various 0,1,2,3,4,5n =  
shown in Figure 2, Figure 3 and Figure 4. The results of our numerical calcula-
tions were compared with known results [20]. The values obtained differ by ap-
proximately 30% at n = 0.1: the maximum ring stress at 0.01h =  and 90θ =  
is 2.962/3.0; and on work [11] [12]—3.28/3.0 ( 4.71τ ≈ ). 

 

 

Figure 2. The dependence of ring stresses on time, with different n. 
 

 

Figure 3. The dependence of ring stresses on time, with different n. 
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Figure 4. The dependence of the ring voltage on time τ . 

5. Diffraction of Non-Stationary Waves on a Cylindrical Body 

Let the inner boundary ( )0r r=  free from voltage, and on contact with the en-
vironment, the condition of equality of displacements and stresses (7) [25] [26]. 
After the Fourier transform, we obtain the cylindrical Bessel Equations (13) and 
(16), the solution of which has the form (7) and (8). In our problem there will be 
six arbitrary constants, which are determined from the boundary conditions (8). 
Here are some of them: 
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τ
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θ

τ
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σ µ δ δ

+∞∞
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= = −∞

+∞∞
− Ω
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+∞∞
− Ω

= = −∞

+∞∞
− Ω
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 = + Ω 

 = + Ω 

 = + Ω 

∑∑ ∫

∑∑ ∫

∑∑ ∫

∑ ∫
2

1=
∑

 

where , , ,nk nk n nC D A B —arbitrary constants: ( )c
nk kn nC σ= ∆ , ( )D

nk kn nD σ= ∆ , 
( )A

n n nA δ= ∆ , ( )B
n n nB σ= ∆ ; ( )k

knσ  and n∆ —square complex matrices (6 × 6). 
The remaining elements of the stress tensor are written similarly (17)  

( ) ( ) ( ) ( ) ( ) ( )

Re Im , Re Im ,
Re Im , Re Im ,

Re Im , 1, 2, Re Im ,

e cos sin , 1, 2,3, 4,5

nk nk nk nk nk nk

n n n n n n

e e e k k k
n n n mn mn mn
i t

C C i C D D i D
A A i A B B i B

i e i

t i t m

δ δ δ ε ε ε
Ω

= + = +

= + = +

= + = = +

= Ω + Ω =

       (18) 

Substituting (18) into (17), after some transformations, we obtain the stress 
tensor 

2

1 0
Re d .

b

a

ji ij
k n

ω

ω

σ σ
∞

= =

′= Ω∑∑ ∫                      (19) 

All these procedures are stored in the memory of the machine. A universal 
algorithm for calculating integrals of type (19) has been developed. The results 
of the calculations are shown in Figure 5 with  
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Figure 5. The dependence of the ring voltage of time τ . 
 

( )1 2 0 1 1 290 0.2; 0.25; 0.5; 0.1; 0.1r r E Eθ ν ν η= = = = = =  

The obtained data are compared with known results [25] [26]. When inte-
grating the limit 4 210 , 4, 10a b hω ω− −= = =  the results of my calculation are 
different from the data on ≈20%. Similar results were obtained for cylindrical 
shells in an elastic medium. The equation of motion of cylindrical shells has the 
form [27], and the circumferential stress *

θθσ  in the shell but here 

2 2 0n nC D= = . Change in peripheral voltage ( )*
090 , r rθθσ θ = =  depending on 

the τ  shown in Figure 6, where 1 is the results of [28], 2 are mine for given 
( )( )1 00.04; 2h r h r r= = − . Similar results were obtained in [28], but the au-

thors believe that 2 2
1 12 0h R∈ = = , those. They take into account the bending 

moment. In the case of elastic cylindrical bodies, the determination of the 
stress-strain state of an object and its environment under the action of 
non-stationary waves is based on building a sequence of incident pulses from 
stationary components, where each pulse is a change in time of unsteady voltage 
in the incident wave.  

Figure 7 shows the change in circumferential voltage *
θθσ   

( )( )0 0 1 0 190 , , 2,r r r r r r r rθ = = = + − = , depending on the τ .  
The difference between the stresses on the outer and inner surfaces reaches 

≈15% - 20%, and the difference between the stresses on the middle and inner 
surfaces ≈10% ( )0 1 0.5r r = . Calculations show that when 

1
12 PCτ α=  the 

results of this study are approaching the exact static value * 8.13θθσ = . The de-
pendence of the circumferential voltage on τ  presented in Figure 8. It is seen 
that the maximum stress and displacement significantly depend on η  and E . 

6. Diffraction of Elastic Non-Stationary Waves in a  
Two-Layer Cylindrical Body 

Let a non-stationary step load (1) fall on an elastic two-layer cylindrical body for 
t > 0. A hard contact condition is set at the borders of the contact. The stress 
tensor in each layer is written as 

( ) ( ) ( ) ( )1 1 1 1
0

1 Re d , 1, 2,3.
π

b

a

k k
ij nij

n
r t r k

ω

ω

σ θ σ θ
∞

=

′= Ω Ω =∑ ∫           (20) 
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Figure 6. The dependence of the ring voltage of the middle surface of the layer on τ . 
 

 

Figure 7. The dependence of the dimensionless ring stress on τ  at various h/R. 
 

 

Figure 8. The dependence of the annular stress of the inner surface of the cylindrical 
layer on the time: 1—granite-concrete; 2—sandstone concrete; 3—soft concrete.  

 
Stress tensor ( )k

ijσ  represents the functions of Bessel and Hankel of the first 
and second kind of the n-th order. Integral (20) is calculated according to the 
developed algorithm of the first chapter. The decision was limited to five mem-
bers of the series (20), since the retention of the next members of the series has 
almost no effect on the results. For example, holding ten members (20) changes 
the voltage value by less than 2% - 3%. The following parameters were used in 
the calculations.: 0 2 0.2r r = ; 1 2 0.6r r = ; 1 0.2ν = ; 2 0.25ν = ; 3 0.2ν = ; 

1 2 0.3E E = ; 3 2 0.1E E = ; 1 2 0.3ρ ρ = ; 3 2 0.1ρ ρ = . 
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7. Conclusions 

1) In this paper, a method and algorithm are proposed for solving the problem 
of no stationary interaction of elastic waves on multilayer cylindrical bodies. 

2) A new approach to solving dynamic problems of bodies interacting with 
the environment, based on the methods of Fourier and the Romberg method, is 
proposed. 

3) It has been established that with the same loading characteristics in the 
material of the outer layer of a two-layer body, stress waves with the same para-
meters are formed at the initial moments of time. 
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